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Abstract 

 Harmonic analysis of turn-by-turn BPM data is a rich 
source of information on linear and nonlinear optics in 
circular machines. In the present report the normal form 
approach first introduced by R. Bartolini and F. Schmidt 
is extended on the basis of the Lie-transform perturbation 
theory to provide direct relation between the sources of 
perturbation and observable spectra of betatron 
oscillations. The goal is to localize strong perturbing 
elements, find the resonance driving terms - both absolute 
value and phase - that are necessary for calculation of the 
required adjustments in correction magnet circuits: e.g. 
skew-quadrupoles for linear coupling correction. The 
theory is nonlinear and permits to analyze higher order 
effects, such as coupling contribution to beta-beating and 
nonlinear sum resonances. 

INTRODUCTION 
 In their seminal paper [1] R. Bartolini and F. Schmidt 
showed how spectral lines of betatron oscillations are 
related to generating functions of the transformation 
bringing the dynamic variables to the so-called non-
resonant normal form. This method was successfully used 
for analysis of nonlinearities in SPS, LEP and later in 
RHIC [2]. To derive information on the sources of 
nonlinearities  R. Bartolini and F. Schmidt relied on the 
exponential map approach [3] as an alternative to the 
Hamiltonian perturbation theory (the flow approach). 
 However, provided that BPMs sample the lattice 
densely enough, the Hamiltonian flow approach is quite 
adequate for the TBT data analysis and directly yields 
information of the resonance driving terms (RDTs) as 
well as on localization of the perturbing elements.  
 An important statement was made by R. Tomas et al. 
[2] that the generating functions experience abrupt jumps 
at location of sources of perturbation. However, they 
stopped short of deriving the corresponding differential 
equation and using it for determination of the resonance 
driving terms (as they enter the expression for the 
resonance width). Particular - and very important for 
practice – example of such driving term is linear coupling 
coefficient which determines the closest tune approach. 
 In the present report we show how this information can 
be obtained from TBT data on the basis of the Lie-
transform perturbation theory as presented in Ref.[4] and 
try to analyze higher order effects in the perturbation 
strength. 

BASIC RELATIONS 
 Using unperturbed lattice functions (assumed 
uncoupled for simplicity) we can construct complex 
dynamic variables 
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where φu=ϕu-Quθ  is periodic phase function andθ =s/R is 
the generalized azimuth.  
 Variables au and their complex conjugates au

*, can be 
considered as pairs of canonical variables satisfying 
Hamilton’s equations. In the presence of perturbations the 
new Hamiltonian is 
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where �pert is the perturbing part of the Hamiltonian in the 
original variables, z =(x, px, y, py), V is the inverse matrix 
of transformation (1) and its complex conjugate.  

Making the Hamiltonian imaginary preserves the form 
of Hamilton’s equation (a minor deviation at this point 
from [4]) and allows one to use the whole arsenal of the 
canonical transformation theory. 

Perturbation theory 
 Provided the perturbation does not destroy stability of 
the motion, the phase space vector a =(ax, ax

*, ay, ay
*) can 

be expressed via normal form vector 

  ATa )(ˆ 1 θ−=               (3) 

where T̂  is generally a nonlinear operator. The 
Hamiltonian theory provides an algorithm (Deprit’s 
algorithm) for finding this operator as a perturbation 
series 
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where ε is the ordering parameter, Î  is the identity 
operator and 
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is the adjoint (or Poisson-bracketting) operator. 
 Generating functions wn(A,θ) satisfy the so-called 
homological equations 
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where �0,n and �n are n-th order terms in the original and 
normalized Hamiltonians respectively (�0=�0,0) and 
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 We will not go into the detail of normalization 
procedure which can be found elsewhere (see e.g. 
Ref.[4]). Let us note that the perturbing Hamiltonian 
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From the first order homological equation (5) we 
immediately recover relation 
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where Qjklm=(j-k)Qx+(l-m)Qy. This very important result 
confirms the statement made in Ref [2] that strong 
perturbing elements can be located by jumps in generating 
functions, especially in the phase. 

In the perturbation-free areas we find 
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Generally the periodic solution of eq.(8) is 
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 Let us note in passing that would there be just one term 
hjklm(θ) in the perturbing Hamiltonian (and its complex 
conjugate) containing just one azimuthal harmonic, all wn 
would commute resulting in a closed expression 
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which is indeed an exponential map.  

Resonance driving terms 
  The most important effect of lattice perturbation is 
excitation of resonances, characterized by the so-called  
resonance driving terms (RDTs). With our choice of 
dynamic variables (1) RDT can be defined as  
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where n =Round(Qjklm). 
 Computation of RDTs requires the knowledge of the 
corresponding generating functions all around the ring, 
however, if the tunes are set close to the resonance of 
interest, the resonance harmonic will dominate wjklm(θ), so 
that its θ -dependence will be given by eq.(9) and 
information from only 2 BPMs in each plane will be 
sufficient. Also, working close to the resonance reduces 
effect of both random and systematic errors. 

ANALYSIS OF TBT DATA 
The leading idea of the method [1] is to extract  

generating functions from the Fourier spectrum of ax,y. 
using the first order formula 
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For example, term (6) produces in the spectrum of ax lines 
ν = Qjklm+Qx (k≠0) and ν =-Qjklm+Qx (j≠0) with amplitude 
|wjklm(θ)|Jx

(k+j-1)/2Jy
(l+m)/2.  

 There is a difficulty: BPM provide information only on 
coordinates. To find momenta and, finally, dynamic 
variables ax,y we have to rely on assumption that between 
two adjacent BPMs there is no strong optics perturbations. 
Then 
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This approximation is equivalent to the assumption that 
the generating functions propagate between these BPMs 
according to eq.(9). 
 Applying eqs.(12), (13) we obtain piece-wise functions 
w(meas)

jklm(θ). Below are examples of measurements at the 
Tevatron. 

Linear coupling 
Fig. 1 presents function w- = w(meas)

1001 × exp[i(Qx-Qy)θ] in 
the Tevatron at injection energy measured in two cases. In 
the first one coupling was well corrected (C<0.001) and 
tunes set apart: Qx = 20.583, Qy = 20.574. In the second 
case coupling was larger (C=0.0025) and tunes closer: 
Qx = 20.583, Qy = 20.579 resulting in much larger values 
of w-. Its variation with θ is however the same in both 
cases, so no information on sources of coupling is lost by 
working on a resonance. 
 Only one strong source can be seen which is a 
defocusing quad at D16 location with large tilt. 

Higher order contribution to coupling RDT 
 Generally the measured generating functions are 
contaminated with contribution from higher order terms 
especially in the case of strong perturbations and/or 
closeness to the resonance.  

Figure 1. Real and imaginary parts of the difference 
resonance generating function seen at the Tevatron 
vertical BPMs starting from F18: blue and red – far 
from the resonance, cyan and magenta – close to it. 



 For linear resonances all wn are quadratic in A and can 
not be filtered out. The question is of practical importance 
since for express measurement and compensation of 
coupling it is better to put the tunes close to the difference 
resonance. 
 Solving the chain of Deprit’s equations permits to find 
the correction [5]: 
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where νx,y are measured fractional tunes, κ1 =1, κ2 =1/3, 
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(θ1, θ2) being the available range. 
 Let us note that in the hypothetical case of  h1010(θ) =0 
formula (14) is exact (provided that the uncoupled tunes 
are equal modulo 1).  

Second order beta-beating 
 Another application of higher order perturbation theory 
is finding what part (if any) of the observed beta-beating 
may come from skew-quadrupole errors. Horizontal and 
vertical beta-beating are described by generating functions 
wx≡w2000 and wy≡w0020 respectively. In the second order 
we have 
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Measuring coupling functions w1001, w1010 and using eq.(8) 
to recover the corresponding Hamiltonian terms it is 
possible to calculate the second order beta-beating. 
 This procedure was applied for analysis of strong beta-
beating in the Tevatron observed with tunes shifted to 
half-integer values Qx = 20.518, Qy = 20.514 (see Fig.5 of 
Ref.[6]). Fig. 2 shows that coupling contribution to beta-
beating can be quite significant. The measurements were 
performed before the QD16 tilt was accidentally 
increased, so the visible perturbations originate mainly 
from low-beta regions. 

Third order resonance 
 The described approach was also applied in studies of 
nonlinear resonances in Tevatron [7].  
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Figure 2. Functions wx,y vs distance from F18 for 
Tevatron collision optics with tunes close to half-
integer values: red and blue - as directly determined 
from data, magenta and cyan - with coupling 
contribution subtracted. 
 

Figure 3. Generating function w3Qx = w(meas)
3000exp(3iQxθ). 

Jumps associated with strong feeddown sextupoles at A46 
and C46 can be clearly seen. 


