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The little Higgs idea is an alternative to supersymmetry as a solution to the gauge hierar-
chy problem. In this note, I review various little Higgs models and their phenomenology
with emphases on the precision electroweak constraints in these models.
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1. Introduction

The Standard Model (SM) requires a Higgs boson to explain the generation of
fermion and gauge boson masses. The precise electroweak (EW) measurements at
LEP suggest that the Higgs boson must be relatively light!, with mpy < 219 GeV. A
light Higgs is also required in order to unitarize the longitudinal W, — W7y, scattering
amplitude?. In addition, the triviality bound indicates that the SM with a light Higgs
can be a theory valid all the way up to the Planck scale. This simple assumption of
the SM with a single Higgs doublet, however, has the theoretical problem that the
Higgs boson mass is quadratically sensitive to any new physics which may arise at
high energy scales. To cancel these quadratic divergences due to the SM particles, a
set of new states, which are related to the SM particles by some symmetry, have to
appear at the TeV scale®. Little Higgs (LH) models are a new approach to stabilizing
the mass of the Higgs boson. These models have an expanded gauge structure at
the TeV scale which contains the Standard Model SU(2) x U(1) electroweak gauge
groups. They are constructed such that there are multiple global symmetries that
prohibit the Higgs boson from obtaining a quadratically divergent mass. It is only
when all these global symmetries are broken can a quadratic contribution to the
scalar potential arises, which is at least at the two loop order.

There is generally a tension between the solution to the gauge hierarchy problem
and the EW precision fit, nevertheless. The deviations from the SM predictions due

aTt has been realized recently in twin Higgs models that this needs not be the case3.
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to the presence of new interactions above the SM cutoff scale, A, can be parameter-
ized by a set of higher dimensional operators which have been classified in Ref. 4.
Among these operators, the most stringent bounds are those on the coefficients
of the dim-6 operator, iz (H'D,H)?, which breaks the custodial SU(2) symmetry,
and ﬁ(D2H tD2H), and thus contributes to the S-parameter. These bounds indi-
cate that the cutoff scale A has to be above 5 TeV. Thus the form of possible new
Physics, including the little Higgs models, which have to appear at the TeV scale
to solve the gauge hierarchy problem, is severely constrained.

This review is organized as follows. In Sec. 2, I introduce the basic idea of the
little Higgs models, show explicitly how the quadratic divergences are cancelled in
various sectors of the littlest Higgs model, and briefly review other existing little
Higgs models. Sec. 3 is devoted to the precision electroweak constraints in these
models, followed by Sec. 4 in which other issues such as implicit fine-tuning and UV
completion are briefly discussed. Sec. 5 concludes this review.

2. Little Higgs Models

The idea of Higgs boson being a pseudo-Goldstone boson arising from the breaking
of some approximate global symmetry was proposed® in the early 80’s. Because
the Higgs boson mass is generated radiatively, this therefore provides a natural
way to understand why the Higgs boson is so light. In its early realizations, the
quadratic contributions to the Higgs boson mass arise at one-loop, leading to a Higgs
mass that is still too heavy because it is only suppressed by the one-loop factor.
The new ingredient in the little Higgs models is the so-called collective symmetry
breaking. The idea is to choose the gauge and Yukawa interactions in such a way
that by turning off some part of these interactions, the model has enhanced global
symmetries that forbid a quadratic contribution to the Higgs mass. As a result,
the quadratic contributions to the Higgs mass can arise only when two or more
operators are involved, which can occur only at the two loop level or beyond. This
leads to a Higgs mass u? of the order of p? ~ %. Note that, the logarithmic
contributions to the Higgs mass can still appear at one—loog. These models have the
following general structure: at the electroweak scale, v ~ % ~ 200 GeV, there are
one or two Higgs doublets and possibly a few additional scalar fields; at the scale
g-f ~1TeV, there exist new gauge bosons and fermions; above the cut-off scale
of the non-linear sigma model, A ~ 47f ~ 10 TeV, the model becomes strongly
interacting. Various realizations of the little Higgs idea are described below®.

2.1. Original Littlest Higgs-like Models

2.1.1. Littlest Higgs Model

The minimal realization of the little Higgs idea is the littlest Higgs model”, which
is a non-linear sigma model based on SU(5)/SO(5). The SU(5) global symmetry

bFor recent reviews on the little Higgs models, see Ref. 6.
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in the model is broken down to SO(5) by the VEV of the sigma field, (X), which
transforms as an adjoint under SU(5), where,

I2><2
I2><2

The sigma field can be expanded around the VEV in terms of the Goldstone modes,
II=7n%X? as,

; I1
Y =275, = N + 21'720 + o (2)
where X ® correspond to the broken SU(5) generators. The gauge subgroup is chosen
to be [SU(2) x U(1)], x[SU(2) x U(1)],. It is broken down to its diagonal subgroup,

[SU(2) x U(1)],,,, which is identified as the SM gauge group. The kinetic term of
the sigma field can be written as

1
Ly =3 P I[(DEN(DY)] , (3)
where the covariant derivative is,
DE=0,5-i ¥ s Wr@s+ 3o + Bz | @
j=1,2

The generators of the two SU(2) gauge groups, Q¢ and Q% for (a =1,2,3), are,
15010, ) (0 0 )
a _ 2 X3 a _ 3x3 3x2 5
Qi (0 3x2[03x3 /)’ ©3 0 2x3|—20%* )’ 5)

and the two U(1) generators, Y; and Y3, are,
1 1
Vi = odiag(=3,-3,2,2,2), Y = odiag(-2,-2,-2,3,3) . (6)

When the gauge coupling constants g, and g5 are turned off, a global symmetry
SU(3)1, which acts on the last three indices, is restored,

( SU(3)1> | @

Similarly, when g; and g¢{ are turned off, there is an enhanced SU(3)2 global sym-
metry acting on the first three indices,

(SU(3)2 ) _ -

Each of these two SU(3) symmetries individually forbids a quadratic contribution
to the Higgs potential. Thus a quadratic contribution to the Higgs potential can
arise only when both global symmetries are broken, which is possible only at the
two loop level.
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The 14 Goldstone bosons resulting from the breaking of the global symmetry
can be decomposed in the following way,

14=4@10=10® 30 ® 2412 ® 311 , 9)

where the subscripts in the above equation denote the hypercharges. The compo-
nents 1g and 3y are eaten and become the longitudinal degrees of freedom of the
heavy gauge bosons, Ag, Zg and Wg. In the low energy spectrum, there are two
scalar fields: the component 2., /5 is identified as the complex doublet Higgs boson,
h, of the SM, while 31, is an additional complex SU(2), triplet Higgs, ®. In terms
of these low energy degrees of freedom, the II field can be written as,

0 % ot
H H*
® b 0
V2
where
¢+
= (h* 1K) ,® v (11)
) L ¢0 -

Expanding the kinetic terms of the ¥ field in Eq. (3), one finds,

2 2
Ly — %Tr Z [ngj(QjEO +%0Q)) + 95 B;(Y; 50 + EoY}r‘r’)] (12)
j=1,2
2
f { [gl WiW1 — 2g1goW1Wa — 291 g2W1 W2 + Q§W2W2]
1
+g [gizBlBl — 2gllgl2B1_Bz + gé2BQBQ:| } .
This gives the following mass matrices for the gauge bosons,
2
g1 —9192 Wi
MW)= (W, W 13
W) ( ' 2)<_9192 93 ><W2) 3)
9t —gigé) (Bl)
M(B)= (B B , 14
B = (5 2)(—9’19’2 9% ) \B a9
and the mass eigenstates of these mass matrices are
Wi = sWi + cWs, with MWL =0, (15)
1
Wg = —cWi + sWy, with Mw, = > 92 +g2f, (16)
B, =s'B; +cd By, with Mpg, =0, 17)
o ' . _ +92
By = —dBy1+s'Bs, with Mg, ={\/=———=Ff, (18)
- ; — 9 g : — — 2
where the mixing angle s is s = Jotra and s’ = g while ¢ = V1 -5

and ¢ = /1 —s2. The two massless eigenstates, W, and By are identified as
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the weak gauge bosons in the SM. The two massive eigenstates, Wy and By, are
the additional gauge bosons having masses of the order of f. The gauge coupling
constants of the unbroken subgroup, SU(2)r and U(1)y, are given by,

9192 g = 919
Vi +93 Vot + 9%
The quartic couplings of the Higgs boson to the gauge bosons arise from the
next-to-leading order terms in the expansion in Eq. (3),

(19)

2

Ly — %Tr (20)

> [g,-W,-(Q,-HEO +TT50Q7 ) + 9} B; (Y; 115, + HEonT)]
j=1,2

1
- 2(9192W1W2 +gigsB1B)HTH + ...

1
= Z [g2(WLWL - WHWH) + g'2(BLBL — BHBH):| H'H +

Thus the quartic couplings H tHW Wi, and Ht HWg Wy are of equal magnitude
but opposite signs. The opposite signs come about because the Wi and Wy gauge
bosons are orthogonal to each other. The cancellation of quadratic divergences
among diagrams shown in Fig. 1 at one loop thus ensues.

In the fermion sector, to cancel the top loop contribution to the radiative cor-
rections to the Higgs boson mass, one needs to introduce a vector-like pair of the
color triplet and iso-singlet heavy tops, # and #. The field # then form a triplet,
together with (b t), under the SU(3); global symmetry, x” = (bt T). The Yukawa
interactions take the following form,

1 .
Lyur = §A1f€ijk€$yxizjwzkyug + )\thtl + h.c. . (21)

The first term in this Yukawa Lagrangian preserves the SU(3); global symmetry and
breaks the SU(3)s global symmetry, while the mass term of the vector-like quarks
preserves the SU(3)2 and breaks SU(3):1. Due to the SU(3): global symmetry, the
couplings of t3 to h%u}y and tuj, and the quartic coupling h°h%*tu); are related,

~ t
Lo = —iXt [V2R%ts + i fT — ihoho*? uy + h.c. . (22)

Fig. 1. The cancellation of the quadratic contributions to Higgs mass square at one loop in the
gauge sector.
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These relations lead to the cancellation of the quadratic divergences among diagrams
shown in Fig. 2 in the fermion sector at one-loop.

Because of the non-abelian transformation, h — h + €, the quadratic contribu-
tions to mpy can only arise at the two-loop level, due to the following scalar and
fermion interactions,

<o)+ (@) ool (50) () ) oo

1
Ly = —azx\ff‘lewweyze”kekmnEinj:cE*myz*"z , (24)

Ls

where the parameters a and o' are the coefficients that parametrize the unknown
UV physics. The scalar potential arises by integrating out the heavy top, 7', as well
as the heavy gauge bosons,

Vow = A2 f2Tr(®1®) + Agor f(HOTH) — p>HH' 4+ g« (HH')? | (25)
where
2 f?
~J 2
T (26)
a g2 gl2 5
ADpgs = Ag2 = = |5 + —] + 8a'\? (27)

2 82 c2 312 CI2

a 92 c2 _ 82 gl2(cl2 _ 812)
AHoH = ~1

12
522 512012 ] +4a’ ) (28)
The complete Feynman rules of the littlest Higgs model has been presented in
Ref. 8. Various collider phenomenology of the littlest Higgs model has been discussed
extensively in Ref. 8, 9, and the flavor sector in this model has been studied in
Ref. 10, including the generation of fermion masses!!.

2.1.2. Littlest Higgs with T-parity

As we will see in the next section, the littlest Higgs model is severely constrained
by the precision electroweak data. The most stringent one comes from the tree level
contributions to the p parameter, due to the presence of the Wy Wy HH coupling
and the tri-linear HT®! H coupling, which breaks the tree level custodial symmetry
explicitly. In Ref. 12, Cheng and Low found that these operators can be forbidden

e

i t

Fig. 2. The cancellation of the quadratic contributions to Higgs mass square at one loop in the
top quark sector.
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by imposing a discrete Z symmetry, called the T-parity. Under the T-parity, all
new particles, except the heavy top partner, {, that are responsible for canceling
the SM contributions to the one-loop quadratic divergences in the Higgs potential
are odd, while all the other particles are T-even®. As a result, the heavy particle
contributions to the observables involving only the SM particles in the external
states are forbidden at the tree level. These contributions of the new particles to
precision EW observables can arise only at the loop levels in this model, and thus
the constraints in this model is not as stringent as in the littlest Higgs model. Due
to T-parity, all T-odd particles have to be pair-produced, and the lightest stable
particle can be the candidate of the weak scale dark matter'®. Various collider
phenomenology and flavor constraints in this model has been discussed in Ref. 15
and 16, respectively. It was found that the collider signatures in this model mimic
that of the MSSM.

2.1.3. SU(6)/Sp(6) Little Higgs Model

In Ref. 17, the global symmetry of the model is chosen to be SU(6) which is broken
down to Sp(6). This has the advantage that the pseudo-Goldstone multiplet does
not contain a SU(2) triplet component. This thus weakens the constraints from
precision data. The gauged subgroup of SU(6) is [SU(2) x U(1)]?, which is broken
down to its diagonal subgroup, [SU(2) x U(1)]su. There are fourteen Goldstone
bosons (35 — 21 = 14) resulting from the global symmetry breaking. Four of them
are eaten due to gauge symmetry breaking. Thus at low energy spectrum, there
are two complex doublet scalar fields. At the TeV scale, there are one complex
singlet scalar, a few pairs of vector-like colored fermions and an extra copy of the
SU(2) x U(1) gauge bosons. By turning off either one of the SU(2) gauge coupling
constants, there is an enhanced SU(4) global symmetry which forbids a square mass
term for the Higgs. Thus the quadratic divergences to the Higgs mass can only arise
at two loop. The issue of vacuum stability in the presence of the anti-symmetric
condensate of the ¥ field in this model has also been investigated'”.

2.2. Models with Simple Group
2.2.1. Little Higgs Model from A Simple Group

In the model proposed in Ref. 18, the global symmetry is [SU(4)]* which breaks
down to [SU(3)]*. And the gauge subgroup is SU(4) x U(1) which breaks down to
SU(2) xU(1). There are (15—8) x4 = 28 NBG’s: 12 of them are eaten due to gauge
symmetry breaking and the remaining 16 real components are decomposed into two
complex doublets, three complex SU(2) singlets and two real singlet scalars. By
embedding the electroweak SU(2)L gauge group into a simple group such as SU(3)
or SU(4), this model has a nice feature that the cancellation of one-loop quadratic

¢See also Ref. 13.
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divergences from the gauge and perturbatively coupled fermion loops is automatic.
Generation of neutrino masses in this model has been discussed in Ref. 19.

2.2.2. A Simple Model of Two Little Higgses

The coset of the model proposed in Ref. 20 is SU(9)/SU(8) while the electroweak
gauge symmetry of this model is expanded to SU(3) x U(1) which is embedded into
SU(9). Due to the enlarged gauge group, SU(3) x U(1), there is no mixing induced
by the VEV of the Higgs boson between the light and the heavy gauge bosons in
this model, and it has only one additional gauge boson, the Z'.

2.3. Moose Models
2.3.1. Minimal Moose Model

In moose models, the electroweak sector of the SM is embedded into a theory with a
product global symmetry, GV, which is broken by a set of condensates transforming
as bi-fundamental representations under G; x G; for pair (i,j). Some subgroup of G
which contains the SM is being gauged for each site; it is then broken down to the
SM gauge group SU(2) x U(1) by the bi-fundamental condensate at the TeV scale.
The minimal moose model proposed in Ref. 21 has [SU(3)]® as global symmetry.
The gauge subgroup of the model is [SU(3) x SU(2) x U(1)]. The spectrum at low
energy contains two complex Higgs doublets, a complex triplet and a singlet.

2.3.2. SO(5) Moose Model

By enlarging the global group in the minimal moose model to [SO(5)]® =
[SO(5)L]* x [SO(5)g])* and the gauge group to SO(5) x SU(2) x U(1), it has been
shown in Ref. 22 that the model preserves an approximate custodial SU(2) symme-
try. As a generic feature of the moose models, it is a two-Higgs doublet model at
low energy. At the TeV scale, there is a colored Dirac fermion, a triplet Higgs and

extra gauge bosons in the spectrum.

2.3.3. SO(9) Moose Model

The mass splitting among the triplet components give large contributions to the p
parameter, which occurs in the SO(5) moose model. This problem can be alleviated
by expanding the global symmetry to SO(9) as shown in Ref. 23. In the SO(9) moose
model, the coset is SO(9)/[SO(5) x SO(4)], while the embedded gauge symmetry
is SU(2)p x SU(2)r x SU(2) x U(1). At the TeV scale, there are three triplet
Higgses present whose VEVs preserve an approximate custodial symmetry. This
is an essential feature that reduces the contributions to the p parameter from the
scalar sector in this model.
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3. Precision Electroweak Constraints

As the electroweak sector of the SM has been tested to a very high accuracy, an
important test of the validity of any new models is through the agreement between
the predictions of these models with the precision data. A SM-like renormalization
procedure with three input parameters in the gauge sector is valid as long as the
models has tree level custodial symmetry and thus p = 1 at three level. Examples
of models with p = 1 at tree level include the SM augmented by additional Higgs
doublets or singlets, additional fermion families and MSSM. On the other hands,
in many extension of the SM, the tree level custodial symmetry is no longer a good
symmetry of the model, i.e. p # 1 already at the tree level. Models of this type in-
clude the left-right symmetric model based on SU(2), x SU(2)g x U(1) g1, models
with additional SU(2) triplet Higgses (which might be relevant to generation of
neutrino masses?42%), and various little Higgs models, to name a few.

In the gauge sector of the SM, there are only three independent parameters, the
SU(2)r, and U(1)y gauge coupling constants, g and g', as well as the VEV of the
Higgs doublet, v. Once these three parameters and their counter terms are fixed
by the experimental data, all other physical observables in the gauge sector can
then be predicted in terms of these three input parameters?. A special feature of
the SM with the assumption of one Higgs doublet is the validity of the tree level
relation, p = 1 = Mﬂg% due to the tree level custodial symmetry. There is thus
a definite relation between the W-boson mass and the Z-boson mass. Of course,
one can equivalently choose any three physical observables as the input parameters
in the gauge sector. If we choose G, Mz and «a as the three input parameters in
the gauge sector, the W-boson mass, My, then is predicted in the usual way via
muon-decay,

T
ME, = —— [1 + Ar] 29
w \/iGpsg ) ( )
where Ar summarizes the one-loop radiative corrections, and it is given in terms of
the gauge boson self-energy two point functions as,

2 2
Ar = _0Gu My a5y (30)

G, M o s
nww —TI"W (M "z 2
My, cyg My 85

The counter term for the weak mixing angle sp which is defined through the W-
2

. M2, .
and Z-boson mass ratio, s3 =1 — ws is given by,

sz s2 M2 M3, '

dTn addition to these three input parameters in the gauge sector, there are additional input pa-
rameters in the fermion and scalar sectors. These can be chosen to be the fermion and scalar
masses.
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Both of the two point functions, ITYW (My,) and IT"W (0), have identical leading

, ‘{gf;‘ 3m?(1+2In g—;), and thus their difference is only
logarithmic. The two-point function, II7(0), is also logarithmic in m;. However,
the difference between II"'W (My,) and 1% (M z) has quadratic dependence in m;.
Thus the prediction for My is quadratic in m;.

In the presence of a SU(2)y triplet Higgs, on the other hand, a tri-linear cou-
pling between the doublet and the triplet Higgs, H'®!H, is allowed by the gauge
symmetry SU(2)p x U(1)y. So unless one imposes a discrete symmetry to forbid
such a tri-linear interaction, the VEV of the triplet is non-zero, (v') # 0. This thus
leads to the need for a fourth input parameter in the gauge sector, with the fourth
parameter being the VEV of the triplet Higgs, v'. Many of the familiar predictions
of the Standard Model are drastically changed by the need for this extra input
parameter?®. One can equivalently choose the effective leptonic mixing angle, sy, as

the fourth input parameter, where sy is defined through the ratio of the vector to
Re(st)
Re(gg)”
formally related to the wave function renormalizations for v and Z and it is given

by,

ﬁzRe{c_e[W(Mz) Ve (—E (m2)+A1Z/66(MZ)_Aﬁee(Mz))]}’

s2 S M2 2spco \ a.v, AV e Ve Qe

quadratic m; dependence

axial vector parts of the Zee coupling, 455 —1 = The counter term for s3 is

(32)
where X4 is the axial part of the electron self-energy and A‘Z/fj are the vector
and axial vector parts of the Zee vertex corrections. Contrary to the SM case in
which the m; dependence is quadratic, in models with a triplet Higgs the dominant
contribution in Eq. 32, 1" (M%), depends on m; only logarithmically. Due to this
logarithmic dependence, the constraint on the model is weakened. On the other
hand, the scalar contributions become important as they are quadratic due to the
lack of the tree level custodial symmetry, as pointed out in Ref. 26, 27, 28, 31, 32.

3.1. Littlest Higgs Model

In many little Higgs models, the p parameter also differs from one already at the
tree level, due to the presence of the triplet Higgs which acquires a non-vanishing
VEV. (For analyses based on tree level constraints can be found in Ref. 29 and
those including the heavy top effects at one loop can be found in Ref. 30.) A con-
sistent renormalization scheme thus requires an additional input parameter in the
gauge sector. In Ref. 31, the authors choose the muon decay constant G, the phys-
ical Z-boson mass M3, the effective lepton mixing angle s} and the fine-structure
constant a(M2) as the four independent input parameters in the renormalization
procedure. The p parameter, defined as, p = My, /(M%c3), and the W-boson mass,
which is defined through muon decay, are then derived quantities. Since the loop
factor occurring in radiative corrections, #, is similar in magnitude to the ex-

pansion parameter, ;i—z, of the chiral perturbation theory for f of a few TeV, the
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one-loop radiative corrections can be comparable in size to the next-to-leading or-
der contributions at tree level. Both types of corrections are of the order of a few
percent.

The effective leptonic mixing angle is defined through the ratio of the vector to
axial vector parts of the Zee coupling,

Re(gy)
Re(g%)’
which differs from the naive definition of the Weinberg angle in the littlest Higgs
model, sf, = g”/(¢"” + ¢%), by,

455 — 1= (33)

1
Asi=sy —s5=————[s2c3(c? = s%) —ca(d? = s"*) (=2 4+ 5c%)] . (34
b=l =5 =~ g @ =) — e =P IICEY
The W-boson mass is defined through muon decay,
M2 = — "% 14 Aree + AF] 35
w \/EGHSZ [ tree ] (35)

where Ariree summarize the tree level corrections due to the change in definition
in the weak mixing angle as well as the contributions from exchange of the heavy
gauge bosons,

As? ?s?
Ariree = ——2 + ——— . 36
tree 83 \/iGu Iz (36)
The one-loop radiative corrections are collected in Ar’,
oG M2 é ds2
Ar' = ——F ;V—F—a—% (37)
G, Mg, o s
1 Cy H’YZ(Mz)

_ ww ww ’
= 3 [T ()~ (0] + T 0) =
The predictions for My, with and without the one-loop contributions for f = 2 TeV
is given in Fig. 3, which demonstrates that a low value of f (f ~ 2 TeV) is allowed by
the experimental restrictions from the W and Z boson masses,>! due to cancellations
among the tree-level and one-loop corrections. This shows the importance of a full
one-loop calculation in placing the electroweak precision constraints.

3.2. Constraints in Other Little Higgs Models

Except for the littlest Higgs model with T-parity, where f can be as low as 500
GeV13, all other models discussed in the previous section receive tree level contri-
butions to the EW observables. The precision EW constraint in the SU(6)/Sp(6)
model has been analyzed in Ref. 33. Due to the absence of the triplet Higgs, the
contribution to the T parameter is minimal, and the scale for f in this model can
be 1 TeV?3. In the simple group model based on [SU(4)]*/[SU(3)]*, the precision
EW fit has been performed in Ref. 34, and the bound on f is found to be 4.2 TeV.
In the SU(9)/SU(8) simple group model, the bound on f is slightly improved to be
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0.4 T T T T T T T T T
f=2TeV
V' = 3.4 GeV
0.2 xL=0.4 -
s=0.22 .

Mtheory — Mexp (GeV)
o
N
T
|

o4 d My, (total) I
dMz(total) —
-06 | s d My, (tree) : ]

1 o limit on 0 My, (exp)---- -
1 o limit on 0Myz (exp) -------

08 ]

| | | | | | | | |

05 052 054 056 058 0.6 0.62 0.64 0.66 068 0.7
o

Fig. 3. Prediction for My, as a function of the mixing angle s’ at the tree level and the one-loop
level. Also plotted is the correlation between Mz and s’ for fixed s, v’ and f. The cutoff scale f in
this plot is 2 TeV, the SU(2) triplet VEV v = 3.4 GeV/, the mixing angle s = 0.22, and 1, = 0.4.
(Figure taken from Ref. 31)

3.3 TeV 20:35, The precision EW constrains in the minimal moose model have been
investigated in Ref. 36, in which f is found to be very severely constrained. Due to
the approximate custodial symmetry in the SO(5) and SO(9) moose models, this
bound can be relaxed®”.

4. Other Issues

It has been pointed out that in many new models with Physics beyond the Stan-
dard Model, there is generally an implicit fine-tuning among the model parameters
which may be over-looked at first glance but show up in a systematic analysis®®.
Such implicit fine-tuning, which is needed to render the models phenomenologically
viable, has been quantified by Barbieri and Giudice in Ref. 38.

In Ref. 39, Casas, Espinosa and Hidalgo examine this issue in the little Higgs
models and find that the degree of such implicit fine-tuning is usually much more
substantial than the rough estimate. If we define the amount of fine-tuning in the
Higgs VEV in the model a la Barbieri and Giudice?® as, v? = v2(py, po,...), where
p; for (1 = 1,....) are input parameters of the model, then the amount of fine-tuning
associated with parameter p; is given by,

SMZ &P dpi

=—=A, —
M% 'U2 Pi Di ) (38)
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and the total amount of fine-tuning in the model is defined as,

A= /Z A2 . (39)

Fig. 4 shows the fine-tuning that exists in various versions of the little Higgs models
as well as in the SM and MSSM. Such implicit fine-tuning in the little Higgs models
has been found to be more severe compared to the fine-tuning required in MSSM?®.
(See also Ref. 40.)

Since the little Higgs models are effective theories valid only up to the cut-off
scale, A ~ 4nf ~ 10 TeV, an important question one has to address is what lies
beyond this cut-off scale*!'. A few possible UV completions have been speculated. In
Ref. 42, the little Higgs model is UV completed into a model in which the little Higgs
is composite at 10 TeV and the model has a matter parity, (—1)2S+3B+L) gimilar
to the R-parity in SUSY. In Ref. 43 and 44, the little Higgs model is completed by
another little Higgs model. This thus postpones the onset of the strong coupling
regime to ~ 100 TeV. In Ref. 45 an alternative was proposed in which the littlest
Higgs model is UV completed by a five-dimensional Anti-de Sitter space where the
global SU(5) symmetry in 4D littlest Higgs model corresponds to an SU(5) gauge
symmetry in the 5D bulk.

The issue of vacuum stability in various little Higgs models has been investigated
in Ref. 46, while their finite temperature effects have been studied in Ref. 47. An
attempt to supersymmetrize the little Higgs model has been made in Ref. 48, and

L
SM
A
100 . E
. T-parity
Littlest 2
Littlest
Simplest
| IMSSM
10 1 1 I I I E
00 B0 200 20 300 . 30 40
m, (GeV)

Fig. 4. Comparison of fine-tuning in SM (with a cutoff of 10 TeV), MSSM and various Little
Higgs models. (Figure taken from Ref. 39)
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it was found that the model can be embedded into an SU(6) GUT.

5. Conclusions

Little Higgs models are a new approach to stabilizing the Higgs mass. The Higgs
boson in these models arises as a pseudo-Nambu-Goldstone boson resulting from
the spontaneous breaking of some global symmetry. No interaction in these models
alone can break the complete global symmetries that prohibit the quadratic con-
tribution to the Higgs potential. Thus only when these interactions act collectively
can the complete global symmetries be broken to give a quadratic mass term to
the Higgs boson. The quadratically divergent contributions to the Higgs potential
can therefore arise only at the two-loop level. In this note, I review various little
Higgs models and the precision EW constraints placed in them. In most of these
models, the parameter space is severely constrained by the precise electroweak data,
with the exception of the littlest Higgs model with T-parity, in which a low cutoff
scale is allowed. The importance of a full one-loop calculation is also emphasized
and demonstrated explicitly in the case of the littlest Higgs model. There are other
important questions such as the UV completion, vacuum stability and the contribu-
tions to the electroweak precision observables from higher dimensional operators at
the cutoff scale, which are either out of the scope of this review or have only been
briefly mentioned. More careful studies on these issues are clearly needed.
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