# Fermilab FERMILAB-PUB-05-531-T

ZU-TH 06/05
IFT-6/2005
hep-ph/yymmnnn

Electromagnetic Logarithms in B — X /¢~

Tobias Huber!, Enrico Lunghi!, Mikolaj Misiak!? and Daniel Wyler!

U Institute for Theoretical Physics, University of Zurich,
Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.

2 Institute of Theoretical Physics, Warsaw University,
Hoza 69, PL-00-681 Warsaw, Poland.

Abstract

The B — X £/~ decay rate is known at the next-to-next-to-leading order in QCD. It is pro-
portional to (e, (14)? and has a +4% scale uncertainty before including the O (i, In(M32,/m?))
electromagnetic corrections. We evaluate these corrections and confirm the earlier findings of
Bobeth et al.. Furthermore, we complete the calculation of logarithmically enhanced electro-
magnetic effects by including the previously omitted QED corrections to the matrix elements
of four-fermion operators. An important feature of these matrix elements is the presence of a
collinear logarithm In(m?2/m3) that survives integration over the low dilepton invariant mass
region 1 GeV? < m2, < 6 GeV?. In this region, the collinear logarithm enhances the integrated
decay rate by around 6% for the electron channel. The low-m?, integrated branching ratios
yield B(B — X ete ) = (1.64 £ 0.11) x 10 % and B(B — X,uTp ) = (1.58 £ 0.11) x 10°°.



1 Introduction

The inclusive decay B — X ¢*¢~ with [ = e or i is known to be a sensitive probe of new physics
at the electroweak scale. Its branching ratio has been recently measured by both Belle [1] and
BaBar [2]. In the low dilepton invariant mass region, 1 GeV? < m2, < 6 GeV?, the experimental
results read

B(B — X,t07) = (1.493+0.50475351) x 107 (Belle) , (1)
B(B— X,t0) = (1.840.7£0.5) x 10°® (BaBar) . (2)

This leads to a world average
B(B— X,t¢") = (1.6040.51) x 107° . (3)

Measurements for lower and higher values of m?, are available, too. However, for higher m7,,
non-perturbative effects of the J/¥, ¥’ and higher resonances are sizeable, and the theoretical
predictions have larger uncertainties. On the other hand, for m2, < 1 GeV”, the branching
ratio is determined largely by the contribution from almost real intermediate photons, and
it contains essentially the same information on new physics as is already known from the
B — X,v measurements. Throughout this paper, we restrict ourselves to the dilepton mass
region m2,,_ € [1,6] GeV?.

The experimental errors in the branching ratio are expected to be substantially reduced in
the near future. On the theoretical side, the predictions are quite well under control because
the inclusive hadronic B — X1/~ decay rate for low dilepton mass is well approximated
by the perturbatively calculable partonic b — XP2on¢+¢~ decay rate. Thanks to the recent
(practically) complete calculation [3-8] of the Next-to-Next-to-Leading Order (NNLO) QCD
corrections, the perturbative uncertainties are now below 10%.

The branching ratio is proportional to o2, (1) whose scale dependence cannot be neglected.
Indeed, at the leading order in QED, B(B — X,/*¢~) changes from 1.55 - 107% to 1.67 -
1075 when the renormalization scale of i is changed from u = O(my) to p = O(My).
This uncertainty is removed by calculating those QED corrections that are enhanced by large
logarithms In(M% /M?), where My ~ My, m; and My, ~ my, my,.

In Ref. [9], the QED corrections to the Wilson coefficients were calculated, thereby giving
most of the electromagnetic corrections that are enhanced by In(M%/M?). As a result, the
authors find a branching ratio of 1.55 - 107% * which incidentally corresponds to setting a2, =
o (u ~ my) at the leading order in QED. We have calculated and confirm the results of Ref. [9]
for all the two-loop anomalous dimension matrices that determine the size of the In(M3 /M3 )-
enhanced electromagnetic corrections.

However, there are additional QED corrections that get enhanced by large logarithms,
namely In(m2/m?). These corrections are the main new results of the present paper. They
originate from the QED matrix elements of four-fermion operators (loops and bremsstrahlung).

*The number quoted by the authors of Ref. [9] and on which we agree is 1.57 - 107¢. In the text we give the
result obtained using the updated experimental inputs summarized in Table 1.



As we shall see, they bring the final value of the branching ratio to 1.64 - 107 for the electron
channel. Accidentally, this corresponds to setting o = a2 (1 ~ My) at the leading order in
QED. The large logarithms In(m?/mj}) originate from these parts of the QED bremsstrahlung
corrections where the photon is collinear with one of the outgoing leptons. They disappear after
integration over the whole available phase space but survive and remain numerically important
when m?, is restricted to the region that we consider.

Before we come to the results and details of the calculation, some comments on its systematics
are in order. Due to the different scales involved, the perturbative corrections come not only
with increasing powers of some coupling constant, but also with increasing powers of the large
logarithm L = In(M%/M3?). The conventional perturbative calculation would result in an
expansion in the product of the coupling with L rather than in the coupling alone.

A particular role is played by a; that is relatively large. As a consequence, all powers of
¢s = asL must be resummed at a given order of the perturbative expansion, which is achieved
using the renormalization group technology. Within this framework, all the logarithms L are
absorbed into ¢; = O(1). Consequently, each electromagnetic logarithm e,L = CsQem /s
of the conventional perturbative expansion gets replaced by f(cs)aem /s, where the function
f(cs) is found by solving the renormalization group equations. Such a replacement of the
electromagnetic logarithm is not a matter of convenience but an unavoidable consequence of
resumming the QCD logarithms and not resumming the QED ones. Resummation of the QED
logarithms would be technically more difficult and also unnecessary, because a,, L < 1 in our
case. Thus, the conventional expansion in o and ae,, gets replaced by an expansion in a; and
K = Qem /5. Each order of this expansion is calculated exactly in cs.

The amplitude of B — X ¢"¢~ is proportional to Q. The Leading Order (LO) contribu-
tions come from loops and are of order  (the electromagnetic logarithm comes from a loop).
Higher order terms that are proportional to ko, and ka? are conventionally called the NLO and
NNLO QCD contributions, respectively. However, since ka; = iy, the NLO contributions con-
tain purely electroweak terms, too. Since these NLO terms are enhanced by m2/(Mz2, sin® Oy )
while the LO terms are accidentally suppressed, the two contributions turn out to be very
similar in size. An analogous effect occurs at order x?: the terms of order x?a! are larger than
the x?a? ones. For this reason, quite high terms in the x™a™-expansion remain numerically
important.

The corrections to be considered here (and also in Ref [9]) are of order x? and x%a; in the
decay amplitude. Contributions corresponding to x*a? ~ o2, in the amplitude will be included
only if they are enhanced by In(m?/m?) or by an additional factor of m?/(M?, sin? Oy ).

Our article is organized as follows. In Section 2 we summarize the results for the branching
ratio and explain details of the k"a*-expansion. The effective theory used for resummation of
large QCD logarithms is introduced in Section 3 which is quite technical. It includes the list of
the relevant operators, the matching conditions for the Wilson coefficients, the renormalization
group equations and the Wilson coefficients at the low scale. Sections 4 and 5 contain a
detailed description of the four-fermion operator matrix element calculation. In section 6 we
discuss the physical meaning of the aforementioned logarithmically enhanced QED corrections.
Master formulae for the branching ratio are summarized in Section 7. Appendix A specifies our



convention for the evanescent operators that matter for renormalization of the effective theory;
the final results in Section 2 are independent of this convention. Appendix B contains the loop
functions that appear in the text. Some intermediate-step quantities for the evolution of Wilson
coefficients are collected in Appendix C. Appendix D is devoted to describing techniques that
we have used to calculate the QED matrix elements of quark-lepton operators.

2 Branching ratio and numerical results

In order to facilitate the reading of this rather technical paper, we give the final results first.
The differential (with respect to § = mj,/mj .).) decay width of B — X£T£~ can be expressed
as follows:

d'(B — X, 0+47) G%m;,

KE = 4877;?016 [VisVio|* @ee(3), (4)

where the dimensionless function ®4(5) is assumed to include both the perturbative and non-
perturbative contributions.

In order to minimize the uncertainty stemming from mg,pole and the CKM angles, we normal-
ize the rare decay rate to the measured semileptonic one. Furthermore, to avoid introduction
of spurious uncertainties due to the perturbative b — X_.ev phase-space factor, we follow the
B — X, analysis of Ref. [12] where

Vub

Veb

T(B — X.ep)

C=|% FES K )

was used instead. Consequently, our expression for the B — X, /T¢~ branching ratio reads

dB(B — X+07) ViVip |2 4 ®g(3)
= B X.ev ex : ~ 5
1 B(B — X e0)exp | T o (6)
where ®, = 1 + O(a, Qem, A2/m?) is defined by
_ G%’mg ole 2

Our expressions for the ratio ®g(5)/®, are summarized in Section 7. Both the perturbative
and non-perturbative corrections to this ratio are much better behaved than for @, () and @,
separately. The factor C' = 0.58 £ 0.01 has been recently determined from a global analysis of
the semileptonic data [14]. All the input parameters that we use in the numerical calculation
are summarized in Table 1.

Table 1 reveals that for the b and ¢ quark we use the 15-masses instead of the pole masses
since the latter suffer from renormalon ambiguities and therefore spoil the perturbative expan-
sion to a certain extent. Furthermore, the 1S-masses are known with a much smaller error

4



a,(M,) = 0.1182 £ 0.0027 [15] me = 0.51099892 MeV

ae(M,) = 1/127.765 m,, = 105.658369 MeV
52, = sin® Oy = 0.2312 m, = 1.77699 GeV
VitV Ves|? = 0.967 £ 0.009 [16] mlS = (1.27 £ 0.04) GeV [14]

BR(B — X.e0)exp = 0.1061 £ 0.0017 [17] | mi® = (4.68 £ 0.03) GeV [14]

My =91.1876 GeV My pote = (172.7 £ 2.9) GeV [19]
My = 80.426 GeV mp = 5.2794 GeV
Ao >~ L(m%. —m3) =~ 0.12 GeV? C = 0.58 4 0.01 [14]

Table 1: Numerical inputs that we use in the phenomenological analysis. Unless explicitly
specified, they are taken from PDG 2004 [20].

compared to the pole masses. The formulas that relate the pole masses to the 1.S-masses can
be derived from Appendix C of Ref. [12] and from section 4 of Ref. [13]. They read:

Mipote = 13" [1+ by @s(pun) + bo &2(1) + O(&2)] (8)

Mepote = M [1+ c18s(m) + 0262 (1) + O(62)] | 9)
with

by = 27°C% [eds(m)] , (10)

by = 87°C%-Y - [62075(/1,,)] , (11)

and Y can be found in Eq. (C.10) of Ref. [12]. € is an auxiliary parameter that indicates the
order of the expansion. This is also the reason for which the strong coupling appears in the
above coefficients. The role of €, which is set to unity in the end, is explained in Refs. [12,13].
The coefficients in the expansion of the charm quark mass read:

@ = el ; h
& = 87C2 [% - ? In [47r0FaS(MC)]] leZ 22%] . (13)

The scale that naturally appears in the expansion of the charm quark mass is p. ~ m.. We
therefore inserted appropriate powers of ég(up) into the coefficients ¢; and ¢y in order to obtain
an expansion in Qs (pup)-



We performed the above expansion of the quark masses in all relevant terms of the branching
ratio to the respective order. We expanded in particular the pole mass of the b quark in the
definition of 3, yielding a new 8 := m2,/(m;%)? in which we stay differential from now on. This
implies that all phase-space factors and the differential d$§ undergo the expansion. Moreover,
one has to expand all loop-functions and w-functions that contain 3, m, or m,. These functions
will appear in the matrix elements and are presented in subsequent chapters of this letter.

As far as the mass of the top quark is concerned we convert the pole mass to the MS mass.
To the order we are working, we also take into account elektroweak corrections presented in
Eq. (31) of Ref. [35].

Let us explain the details of the a; and k expansion that we adopt for calculating our final
numerical results. The b — s£*¢~ decay amplitude has the following structure (up to an overall
factor of Gr):

A = K [-ALO + oy Avro + Ozi Annro + 0((12)]
+17 [ASE + oy Ao + 02 Ao + 0(d)] + O(x7) . (14)

As mentioned in the introduction, Ao ~ a5 Anro and AYE ~ o AYG . All these terms are
included in our calculation in a complete manner, together with the appropriate bremsstrahlung
corrections. As far as Ay 1o is concerned, we use the practically complete results of Refs. [3-8];
the only missing parts originate from the unknown two-loop matrix elements of the QCD-
penguin operators whose Wilson coefficients are very small.

Among the contributions to A%} o, We include only the terms which are either enhanced
by an additional factor of m?/(M2, sin®#y,) (with respect to AS:,) [9] or contribute to the
In(mZ/m?)-enhanced terms at the decay width level. The latter terms are calculated for the
first time here. They are taken into account in a practically complete manner; the only missing
part is proportional to the same tiny Wilson coefficient that is responsible for the smallness of
ALO-

The perturbative expansion of the ratio ®4(8)/®, has the same structure as that of the
squared amplitude:

A? = g2 [A%O + a5 2A10ANLO + 02 (A% 1o + 2AL0ANNLO)
+al 2(AnzoAvnio +-..) + O(al))]
+ & [QALO 1o T s 2(AnpoALS + ALoANLo)
+a; 2(AypoANL0 + AnnroALo + AroANNLo)
+0] 2(AnoAVNLo T AvnioANLo + ) + 0(0/51)]
+ O(xY). (15)

In our numerical calculation of ®4(8)/®,, we include all the terms that are written explicitly
in the above equations. The dots at orders xk?a? and x*>a? stand for terms that are proportional
to Aro and AY% and, consequently, can safely be neglected. In the numerical analysis we
also inlude subleading 1/m; and 1/m, corrections [12,32,33] as well as finite bremsstrahlungs
effects [5].



Our results for the branching ratios integrated in the range 1 GeV? < m2, < 6 GeV? read

Bee = [1.64 + 0.084ca10 & 0.06,,,, & 0.026,,, & 0.015,,

+0.0244,(m,) £ 0.015ckm £ o.ozﬁBRS,] x 107% = (1.64 £ 0.11) x 107%,  (16)
B, = [1.58 4 0.075ca1e & 0.06,,,, +0.025,,. & 0.015,,,

+0.0234,(m,) £ 0.015cKkm £ 0.0253RS,] x 107% = (1.58 £ 0.10) x 107% . (17)

e I think that we should add here an additional ~ 5%uncertainty due to the un-

calculated order as(ub)m non-perturbative corrections and possible duality

Me,b

violation effects in the tail of the intermediate ¢ peak.

e In the introduction, we should mention we assume that B — X, followed by
1 — X't*{~ is subtracted on the experimental side. At the moment it is not
(as far as I know) while B(y) — X'¢T¢~) = 3 x 107* surviving the invariant mass
cut would make a 100% background. I don’t think B(y) — X'¢*¢”) has ever
been measured, even at the exclusive level. Moreover, when I sum up the
PDG branching ratios of the purely leptonic and inclusive purely hadronic
modes of the v, I get (99.5+ 0.6)%, so I see no space for the (4.1 +0.8)% of the
radiative modes ¢y - X'y [PRD 23 (1981) 43].

e A comment that is related to the ones above: Should we mention the impact
of b — X, v where the ¢ decays via 1y — £T¢/~y and that this might cause a
change of the tail of the intermediate ¢ peak. (We discussed this at CERN)

e Later, we should make some comment on the tree-level charged current con-
tributions to b — XPar*n/*t/~ (with emission of light quarks) — see Eq. (E.10)
of Ref. [12] for the b — X,y case. Here, we have no argument stemming
from high energy of the photons, because we cut the dilepton invariant mass,
not the dilepton energy. However, the suppression factors seem to be small
enough (bringing such contributions below 1%), because Cj ;¢ are much larger
than 07.

The central values are obtained for the matching scale pg = 120 GeV and the low-energy
scale up, = 5 GeV. The uncertainty from missing higher order perturbative corrections have
been estimated by increasing and decreasing the scales pop by factors of 2. Uncertainties
induced by my, my, m., C, as(My), the CKM angles and the semileptonic rate are obtained by
varying the various inputs within the errors given in Table 1; we assume the errors on C and
m. to be 100% correlated. The total error is obtained by adding the individual uncertainties
in quadrature. The electron and muon channels receive different contributions because of the
In(mZ/m3) present in the bremsstrahlung corrections.

In the comparison with the experimental analyses of BaBar and Belle, the size of In(m3/m?)
corrections to B, has to be reduced and we obtain B, ~ B, (see Sec. 6 for more details).
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NLO (e (t0)) 1.82 x 107% | NLO (em(ps)) | 1.69 x 1076

NNLO (cern (i10)) | 1.67 x 107° || NNLO (tern(pts)) | 1.55 x 1076

QED (only WC’s) | 1.55 x 107°

QED (electrons) | 1.64 x 107% | QED (muons) 1.58 x 1076

Table 2: Anatomy of QCD and QED corrections.

In Table 2, we show the partial results that we obtain by adding sequentially all the known
QCD and QED corrections. The rows denoted by “NLO” and “NNLQO” refer to the leading
order in QED. The row “QED (only WC’s)” contains only those QED corrections that stem
from the Wilson coefficients. The row “QED” includes all the electromagnetic corrections (that
are different for electrons and muons).

A numerical formula that gives the branching ratio (average of £ = e, u) for non-SM values
of the high-scale Wilson coefficients of the operators P;, Py, Py and Pjy (see Section 3) reads

BCE

where

7,8 = (00)eff,SM
C$,8) (,Uo)

[ 2.3889 — 0.0005 Z(Ry0) + 0.0005 Z(Ryo RE) + 0.0869 Z(R;) + 0.0223 Z(R; Rj)
+0.0050 Z(R;Rj) + 0.0083 T (Rg) + 0.0258 Z(RgRy) — 0.0464 Z(R,)

—0.5389 R(Ryo) + 0.0594 R(R;) + 0.0154 R(R; R},) + 0.0675 R(R;R;)
—0.8561 R(R; Rj) — 0.0078 R(Rg) + 0.0019 R(Rg R},) — 0.0991 R(RsR3)
+2.7731 R (Ry) — 0.1074 R(RoR},) + 10.8731 |Ryp|* + 0.2761 |R;|?

+0.0039 | Rs|* + 15035 [Ro|* | x 1077, (18)

[2.2306 — 0.0005 Z(R) + 0.0005 Z(RyoR5) + 0.0906 Z(Ry) +0.0223 Z(R;R;)
+0.0050 Z(R7R}) + 0.0086 Z(Rs) + 0.0258 Z(RsR%) — 0.0615 Z(Ry)

—0.5389 R(R10) + 0.1140 R(R;) + 0.0154 R(R:R},) + 0.0687 R(R-R%)
—0.8414 R(R;R}) — 0.0036 R(Rs) + 0.0019 R(RgR:,) — 0.0980 R(RsR)
+2.6260 R(Ry) — 0.1074 R(ReR},) + 10.6042 | Ryo|* + 0.2837 | R7|?

+0.0039 | Rs|* + 1.4645 [Ro|* | x 1077, (19)

C%) T (110) 05,1113 (ko)

and Rg,l() = —AusM, < -
05}118 M(Mo)

(20)

Perhaps we could mention here what happens when the b — sy amplitude changes
sign. I would need to check what value is taken by R; then. It is not —1.
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3 The effective theory

3.1 Operator basis

Resummation of large QCD logarithms is most conveniently performed in the framework of
a low-energy effective theory [21]. There are ten operators that need to be considered at the
leading order in the electroweak interactions. They can be chosen as follows:

P = (5,7,T%y)(€y*T*by,),

Py = (spyucr)(cLy"br),

Py = (517.b) 4(77"9);

Py= (sp7,1br) g(av*T ),

Ps = (5% Yua Vusbr) L@ #2743 q), o
Ps = (30Yu Yo Yus T0bL) g (@1 2 y#2 Tq),

Pr= 5my(300"br) Flu,

Py = my(s500"TgR)GY,,

Py = (87ubr) Xu(In*1),
Py = (5.v4b1) Zl(i7“75l)'

In Pj, ..., P, the quark flavors are ¢ = u,d, s,c,b. In Py and Pjq, all the three lepton flavors
are present. Contrary to other analyses, we have not included any gauge couplings in the
normalization of Py and Pjy. Including them would give only a minor simplification in the
present investigation.

Once QED corrections are considered, five more operators need to be taken into account.
They can be chosen as

Pyg = (5p74b1) g Qq(@7"9),

Pig = (S17uT"br) ¥q Qq(q7v"T*q),

Psg = (507%u M Vusbr) g Qe(Ty" 7272 q), (22)
Pog = (817 Vs YusTbr) Xg Qq(qy* y*2y#2 1),

Py = % [(gL’Vm’Yuz’YusbL) (6'7”17“27%[)) - 4(§L’YubL)(6’Y”b)] :

where (), are the electric charges of the corresponding quarks ( or —%)
The Lagrangian of the effective theory reads

10
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1=3
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3.2 Matching conditions

The Wilson coefficients at the matching scale g ~ My, m; are expanded as follows

Cr(io) = CO (o) + @s(p0) C (10) + s (10)? C (o)
+a5 (o) 5 (t10) C (110) + s (110) 2k (1) O (o) + O(@2, K2a2), (24)

where &, = a,/4m. Note, that at the low scale py ~ my, my, also terms of order k, x? and x%a
arise and are included wherever necessary.

The values of the Wilson coefficients are found from the requirement that all the effective
theory Green functions’ match to the full SM ones at the leading order in M%/M%. At the
order we consider, the following non-vanishing contributions to Eq. (24) must be taken into
account for the four-fermion operators:

C5(wo) = 1, (25)
2
O (no) = 15465, (26)
w
2 2 2
i (1) = E(xt)—g"‘gln]\/;—zzva (27)
7T 4.
Céll)(ﬂo) = 7373 nﬁ%, (28)
2
{8 (uo) = @[X(xt)—QY(xt)], (29)
1
GV () = g X(@) =2V (@), (30)
w
e,y - Ly 4_ 4 m 31
09 (NO) S%V (xt)+W($t)+9 9 m%’ ( )
1
C’S)l)(lio) = _STY(xt)a (32)
w
(11) _ 2 X Y _ _é é] ,u_g 33
C3q” (ko) 38%1[ (@) + Y (2)] — W (z:) 979 hm (33)
1
Olo) () =~ X(@) + V(@) , (34)
w
1
0511)(%) = _ﬁs(xt), (35)
w
C (o) = G (o) — C{ (o) for i=1,...,6, (36)
O (o) = O (o) = Gi? (o) for i=19,10, (37)

tFor the on-shell 1PR functions, the operators from Section 3.1 are sufficient. However, it is often more
convenient find the Wilson coefficients by matching the off-shell 1PI functions. Then, additional operators are
necessary — see Eq. (73) of Ref. [3].
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2

O (no) = —32“’";% (453 — 1) [3+ 72 (@n) — Aulzw)] (38)
C® (o) = 3;2 [3+ 77 (2ne) — Aelane)] - (39)

All the one-loop coefficients C’Z-(lm) (1) above have been evaluated in the MS scheme.! The
functions E(z), X(z), Y(z), W(z), S(z) are collected in Appendix B. The one-loop coefficient

™ is from Ref. [22]. The other one-loop ones have been known since many years (see,
e.g., [23]). For C* and C*, the relevant top (C'®) and charm (C°®) contributions to
the two-loop matching conditions can be found in Section 2 of Ref. [3].z; = (MM5 /My )2,
Zpe = (M), /MM5)? and the functions 'rb( ) and A, can be found in Ref. [35].

We include also the following leading contributions to C )(uo) calculated in Ref. [3, 36].
These contributions were calculated using a different operator basis and a non-linear transfor-
mation is required .

3.3 Renormalization Group Equations

In the effective theory, the RGE for the gauge couplings read
da

L — —201 ﬂs ~n~m’
dlj’ n%:o o e (40)
dao - e~
pt = 2a Y Bhaanal
H n,m=0

where & = Qem/4m. The solution for ag(u) with the initial condition at pu = pg is found
perturbatively in d&s(uo) and @e(uo) but exactly in vy = 14258,cs(10) ln% and v, =
1—288, e (110) In ;7_0 Including all the 3-loop contributions, and, in addition, the 4-loop pure-
QCD term, one obtains

Gln) = as(po) %(s) (ﬁml no, — By, ) N Ml@(l_vs)

Us v2 Bdo Bo v3 Bdo
s 2 s \ 2
+ (ﬁ—io> (ln2 vs — Invs + v, — 1) + (%) In? v, + ﬁmﬁm (—2InwvsInve + pveInw,)
Boo 00 B0 550

~s 4 51— 2 S S
as (ko) [ B30 (2 + B30510 ((21)5 —3)Inv, + Uz _ Us)

Vg Bio 2 (B30)?

/Bs 3 5 1
+ Q%>(—m%f+4ﬁm+2a—mNM%—*%‘”ﬁ
B 2 2

iBeyond tree-level, the Wilson coefficients usually depend on the choice of evanescent operators. Our choice
is specified in Appendix A.
$We thank Uli Haisch for providing us with the basis transformation
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n &s(uo)Q&e(MO) [ @(Ue ~1) ﬂn v In 22 + ﬂmﬁm (Inve — ve + 1)

V2 Ve Bo 500 (850)?
B Bio B 861 ( Us >] 2 -~
+ Inv, + Ve In — — In vy + a X(’)oz , Olg Ot 41
(550)2p 5305530 P Ve ( ) ( )

where p = B5,0s(10)/(Bio0s(10) + Béo@e(t0))- The corresponding solution for é.(p) can be
found by obvious replacements: vy <> v., @5 4> G and 5 =05 (also inside the ratio p).

The MS values of the pure-QCD coefficients 35, can be found in Refs. [24,25]. After substi-
tuting Cx = N =3, Cp =3, tp = 5 and ny =5, one finds 85 = 2, 65, = 48, 85, = 2% and

Byo = 352864 (3) — 58391 The remaining beta-function coefficients that enter 1nt0 Eq. (41) read

1458 -
By = —4tpQ? = 9 ) Bso = % (@N + 3Ql2) = %0,
By = (ACr —8Ca) trQ” = — 3¢ B5 =4 (Q'N +3Q}) = &, (42)
By = 3trQ2B5 + 2trQ* = % Bs = ACRNQZ = +118,

where Q= 1, Qu = 2, Qs = —} and Q" = 2Q +3Q}-

The RGE for the Wilson coeflicients reads

d =« p s
Ha O =7 (WC(w), (43)
where the Anomalous Dimension Matrix (ADM) has the following expansion:
Y = X Aas () ()™ (44)
n,m=0
n+m>1

In Eq. (41), we have made no use of the fact that &, < &;. Now we shall take this relation
into account, and solve the RGE (43) perturbatively in

Boo &G(NO) ~
A= — ——F and w = 28500 (o), 45

550%(#0) 00 ( 0) ( )

neglecting terms of oraer w w . Let us introduce the following short-hand notation:
glecting f ord (’)( 3,)\3, 2)\2) L i d he following sh hand i
Bio B3 5 B
b= ———, by = — by, by = ,
L 2(By)? 2T 4B ! DTN
8, 8, I Gl

b=t —2hiby, bs= o2 —by, WM =2 . (46)
YT A8 ° T 28585 (283)"(265)™

The known evolution of the gauge couplings (41) allows us to rewrite the RGE (43) in terms
of the variable n = &;(o)/ds(1)

1 . 2 " ~ —
S WO LS BBk L Xub W ning| &+ OW?, A, w2, (47)

d =
—C =
dn 1 Pt
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where the matrices B®) are n-independent

BEY = w? (WO — b 20— 1 (10) (48)
BEY = (WD — by W00 02X (WED — by WD — by 0D — by 720 — b, 17100 (49)
BO = wA(1 = \) (WO — b WO — 00 (50)
BW = M1 = NWO 4 wX? (WO 4 W — (b + bg) WO — by W10}, (51)
B® — xon, (52)
The solution to Eq. (47) reads
) = 7 | Do) +3 FO@) + Y G+ 3 AU () + R(n) | 7o)
k=—2 kl=—2 klm=—2
+ O(w?, A3 w?A?), (53)
where V is the matrix that diagonalizes W0

[V‘IW(IO)V] ;= @i (54)

The eigenvalues a; and entries of the matrix V are given numerically in appendix C. The

N

matrices AD(n), F® (), G (), H&™) (1) and R(n) depend on the a; and on products E*) =
V-1B®YV | They read

Dz](n) = 77%51'1', F;(Jk) (77) = E'L(f)fg) (77), Z Ezp p] _p] 77),
5™ () = 3 BYEQET R (), Rij(n) = Nwbs (V—1W<°1>V)ij ri)(m).  (55)
pd
The functions fi (), ggfjl (n), hgﬁ;n (n) and TZ(]k )(n) are given by
k) _ n% Inn, when a; +k —a; =0,
fZ] (77) - { a]_f_i . (naj+k _ ,r’ai) , OtherWise, (56)
@ |p? when a; +k—a; =0
(k) 77 7, i 7 )
Tij (m) = { aJ+k - (naJJrk Inn— f(k)( )) . otherwise, (57)
0 () 7‘1(5)(77) when a; +1—a, =0, (58)
Gip; 11 .
bl a]+} ap (fz(]k+l) (Tl) - fz(;) (77)) ’ 0therw1se,
nalln n, when a,+k—a;=a;+l—a,=a;+m—a,=0,
1 ap+k (k) when a,+k —a; #0 and
(kim) apthk—a; (277 I — (77)) ’ ag +1 —pap =aj+m—a, =0,
Pipag (1) 1 (k+1) (k1) when a,+1—a,# 0 and (59)
agti—ap (Tiq (1) = Gipg (77)) ’ aj +m — Zq =0,
| e (9 ™) — g (m), when a;+m — a, #0.
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3.4 Anomalous dimension matrices

In the present Section, we give the ADM’s for the four-fermion operators. When the opera-
tors are ordered as in the list { P, ..., Ps, Py, Pio, P3q, ..., Psg, P}, then the matrices that enter
Eq. (44) have the following generic structure:

[ (e axe B8 )axa BEMae (B3 )axa Ona
Oz (358 )axa (8 Naxe (oo Naxa  Oaxa
Flnm) = O2x2 BN axa (15 )axa (Aéan))ZXAL O2x1 (60)
O4x2 (&8”}”))4% (Agle))L;xz (Aé"g))zm 0451
L O G5 )ia (G55 (56 )i (55 )i |
However, the pure-QCD ADM’s have a much simpler structure
[ (f?gL(?'))QXQ (’?gllg))b@ 02)(2 02)(4 02)(1 ]
Oz (159 )axs Onca Oaxa Oux1
A =1 090 Opxa Ozxz  Oaxa 0251 (61)
Oz (Ao)axa Oixo (A5 )axa  Oaxa
| O1xe (3’?12))1% O1x2 O1x4 ngg))bq_
Moreover, four additional blocks vanish in 4V
Aer =0, e =0, Vir =0, Yir = 0. (62)
We need to know all the non-vanishing blocks of 4(19):
0o -2 0 2
o=l amee Poo]l el T a b g
12 0 0 4 00 _B6 90
[0 -5 00 0 —-20 0 2 S
a9 | © %28 001 a0 -3 5 5 3 5459 = [4], (63)
0 = 00 0 —128 0 20
0 B g —me w0 w0 2| gpd =03 0 0]
and almost all the ones of 4(°: 301 — [ X 0],
R I A I S AR T - S A R |
0o -8 5 9 5000 —4 0



76 2
9 0 3 0
%2 20 g _2
~(01) 27 3 3 ~(01)
PQ — 496 0 -2 » YPL
9 3
_512 128 5 _20
27 3 3
The matrix 4(?°) is also complete:
_35%5 _ 502
+(20) _ 9 27
Yoo = _ 35 _ 28 ’
3 3
[ 4468 31469 400 3373
81 81 81 108
_ 8158 _ 59399 269 12899
~(20) _ 243 243 486 648
Tpp = | 951680 128648 23836 6106
81 81 81 27
58640 26348 14324 2551
L 243 243 243 162
[ __404 _ 3077 32 1031
9 9 9 36
_ 2698 _ 8035 _ 49 4493
2 (20) _ 81 27 162 216
7QQ = | 10072 14096 1708 1622
9 9 9 9
32288 15976 _ 6692 _ 2437
L 81 27 81 54

From 4(°?) we need only the mixing of P, ..., P; into Py and Pjq:

11680

2187

2920

729

416
81
104
27

The necessary entries of 4(M) read:

[ 169 100 0 24
~(11) 9 27 (1) _ 729
Yoo = 50 8 |’ Yop = 0 1076
[ 3 3 243
- 11116 14
0 243 0 3
280 18763 28  _ 35
~(11) 27 729 27 18
TpP = 0 111136 0 140 |
243 3
2944 193312 _ 280 _ 175
L "o7 729 27 9
6752 (7] 24352
243 ~ 729
_2192 54608
~(11) 729 ~(11) 2187
TpPL = | _ 84032 0l ToL = 297008
243 7799
_ 37856 551648
| 729 i 2187

16 __ 272
g U 57 0
32 _ 3
27 0 ~(01) _ 81 0 (64)
_u2 g |0 e T | _zes
9 27
512 _ 512
57 0 T
_ 1412 1369 134 35
~(20) _ 243 243 243 162
Yep = | 416 1280 56 35 J
81 81 81 27
832 4000 112 70
243 243 243 81
3376 6344 280 55
2 (20) _ 729 729 729 486
v TP = | 2272 72088 688 1240 | >
243 243 243 81
45424 84236 3880 1220
729 729 729 243
5(20) [ _1576 446 172 40
YBp = 81 27 81 27 |°
: (65)
~(20) [ 325
BB — 9 -
_ 39752 136
729 27
) 1024 448
~(02) 2187 81
TpL = | 381344 _ 15616 (66)
729 27
24832 7936
2187 81
2272 122 49
00 ~(11) 729 st U 31
00l TCQ T | 1952 w8 0 82|
243 27 27
- 23488 6280 112 538 -
243 27 9 27
31568 9481 92 1012
(1) 729 81 27 81
PQ = | 233920 68848 1120 _ 5056 |
243 27 9 27
352352 116680 752 10147
729 81 27 81
0
2972
0 ’3/(11) _ 729 U ,?(11) |0 16
CL — ) LL — )
) 1952 1
0 243 6 0 (67)
~(11) 8
0 YBL = | —9 0

15



Finally, the relevant 3-loop anomalous dimensions yield [8]

T 12773 1472¢(3) 745  4288¢(3) 1359190 6976 ((3)
;yg,g) = 5T 0 o ] ’AYgJi) = l togss 358%48(3) 0] (68)
1177 ) 229696 __ )
| =5 - 2144¢(3) 306 — 224¢(3) = 1 0
(30) - 63187 981796 202663 24973 1360 776 124 100
- _ | 13122 6561 52488 69984 81 81 81 27
YoP = | 110477 133529 42029 354319 ] +¢(3) l 2720 2768 248 110 ] ) (69)
2187 8748 8748 11664 27 27 27 9
r 3572528 58158773 552601 6989171
2187 8748 4374 11664
_ 1651004 155405353 1174159 10278809
+(30) _ 6561 52488 52488 34992 (70)
TPP = | 147978032 _ 168491372 11213042 17850329
2187 2187 2187 2916
136797922 72614473 9288181 _ 16664027
L 6561 13122 6561 17496
__608 61424 _ 496 _ 2821 1290092 |, 3200¢(3) 0
27 27 27 9 61 T m
88720 54272 _ 9214  _ 3100 819971 _ 19936 ¢(3) 0
+((3) 81 81 81 27 ~(21) _ 19683 243 (71)
87040 324416 13984 _ 31420 | > YPL 16821944 , 30464 @ ol
27 27 27 9 6561 81
721408 166432 95032 7552 _ 17787368 _ 286720¢(3)
81 81 81 27 19683 243

The three-loop ADM’s have no influence on the logarithmically-enhanced QED corrections at
the considered order but are necessary for the NNLO QCD corrections. As far as the one-
and two-loop ADM’s are concerned, we have calculated all of them, and our results agree with
Ref. [9].

3.5 Wilson coefficients at the low scale

From the solution to the RGE in Section 3.3 we obtain the Wilson coefficients at the scale
iy ~ My as an expansion in d&s(ug) and k(u). We then use Eq. (41) to express the couplings
at the high scale in terms of &g(us) and k(up). The running of &g is simply done in terms of 7,
namely

s (o) = 1 &s(pa) 5 (72)

and holds to all orders. In order to obtain the running of x we invert Eq. (41), treating v, and
vs as quantities of order O(1). To the order we are working, we have

k() | Bool—m o Inn | Bi Blo B | ~ 2
k(o) = + o5 k() + — 5 — as | Qs(i) K7 (1p) - (73)
Ui Boo  m° (B%)?  Boo
The final expression for the Wilson coefficients at the low scale is:

2

Cr(te) = 3 @) ()™ O™ (1p) + O(&2, 7). (74)

n,m=0
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(00) (01) (10)

c"™ [ [-0.763 ,-0.544 , -0.379 ] | [-0.180, -0.0835, -0.0378] | [13.764 , 14.943 , 16.066 ]
c{™ | [1.054,1.029 , 1.015 | [0.248, 0.158, 0.101] [-1.746 , -1.376 , -1.050 ]
c{"™ | [-1.10 ,-0.571 , -0.283 ]10~2 | [-1.22, -0.400, -0.125]10~3 | [5.28 , 7.98 , 8.38 ]10~2
"™ | [-0.113 ,-0.0741 , -0.0486 ] | [-1.62, -0.697, -0.297]10~2 | [-0.690 , -0.343 , -0.143 ]
ci"™ | [1.04,0.547 , 0.274 1073 [1.17, 0.387, 0.122]10~% | [-1.60 , -1.55 ,-1.36 ]10~2
c{™ | [2.32,1.17,0.563 ]10~3 [2.51, 0.801, 0.245]10=* | [-0.656 , -1.92 , -2.17 ]10~2
ol 0 [-5.03, -3.72, -2.66]10~2 0
ol 0 [-2.13, -1.04, -0.49]10 2 0
oy 0 [-6.08, -1.71, -0.30]10 0
ciy 0 [2.12, 1.03, 0.485]10~3 0

{ ] ] ]

Table 3: Numerical values of the relevant C\"™ (1) (k # 7,8,9,10) for u, = [2.5,5,10] GeV.

where C(™™) are functions of only 7 = as(u)/@s(1), $% and ratios of the heavy masses.
At order O(a2x?), we keep only those contributions to Cy and Cjy that are proportional to
mi /(M shy).

The matching conditions, anomalous dimensions and RG-equations presented in Sec-
tions 3.2-3.4 do not include the two dipole operators Prg. For those two operators, it is
more convenient to consider the so-called effective coefficients

CM(w) = Cr(m) + 2%’ [Ci(ﬂb) - %CiQ(U'b)
= O (1) + @s(v) OF O (v) + (1) CEV (113)
s (o) () OO () + O(@2, 12) | (75)
Ci(m) = Cal)+ Y. % |Cilm) - 5Cialim)]| = CL (1) + O(@i ) (76)

where, in dimensional regularization with fully anticommuting ~s, y = (0,0, —%, —%, —%, —%

and z = (0,0,1,—%,20, —3). The effective coefficients OO0y, O (1) and CSLO (1)
can be found in Egs. (10)—(22) of Ref. [26], while C{**" (1) can be found in Eq. (12) of Ref. [27].

Following Ref. [9], we take into account the O(dgk) term in CST (1), although it is formally
higher order with respect to what has been specified in Section 2. An explicit expression for
C7ll)eﬁ(,ub) can be found in Eq. (30) of Ref. [22]. In Tables 3 — 5 we present the relevant

C’,S"m) (1) We fix the input parameters to their central values (specified in sec. 2) and choose
1 = [2.5,5,10] GeV and po = 120 GeV.
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"™ () 5™ (o)
(00) | [-0.362 ,-0.320 , -0.285 | | [-0.168 , -0.151 , -0.138 ]
(01) | [3.20, 3.33 ,2.82]1072 -
(10) | [1.625,1.171 , 0.690 ] -
(11) | [4.132,4.314 ,4.397 ] -

Table 4: Numerical values of the relevant ngm) (up) for py = [2.5,5,10] GeV.

c§™ () Co™ ()
(00) 0 0
(01) | [ 5.025 , 3.722 , 2.664 ]102 0
(10) 0 0
(11) | [2.003 ,1.934 , 1.863 ] [-4.222 ,-4.222 , -4.222 ]
(20) 0 0
(02) | [ 0.376 , 0.208 , 0.104 ]10~2 | [ 1.081 , 0.489 , 0.218 |10~ 2
(12) | [-6.614 ,-4.317 , -2.810 ] [-5.854 , -3.798 , -2.458]
(21) | [5.645 ,3.538 , 1.193 ] [5.105 , 6.380 , 7.631]
(22) | [36.814 , 27.320 , 20.275] | [-32.014 , -36.090 , -39.764]

Table 5: Numerical values of the relevant Céﬁ?) (up) for ppy = [2.5,5,10] GeV.

4 Matrix elements 1

Once C™™ (1) is found, one needs to calculate the on-shell b — si*l~ matrix elements (P;)
of the corresponding operators. In the present section, we consider those parts of the matrix
elements that originate from diagrams with no photons inside loops and/or bremsstrahlung
photons. These parts are unrelated to the In(mZ/m?)-enhanced correction to the decay width.

One-loop penguin contractions of the 4-fermion operators give the following contributions
to the matrix elements:

\peng  __ 9 7 <P7>tree

P Hi(Poluaee + H, 05 (0) K (1)
The above formula holds also for the tree-level matrix element of P;, the one-loop matrix
element of Pg, and for those parts of the two-loop O(as0em) matrix elements of the 4-quark
operators where the gluon couples to the closed quark loop. The corresponding coefficients
H{* are summarized in Table 6 where the functions F;*(8) are taken from Egs. (54) — (56) and
(71) — (72) of Ref. [4], and the functions f;(§) and f&*"(8) read

+ H1'10<P10>tree . (77)

. m c 8. m o
f(3) = 2 u_: + 0 (g(yc) +5ln #) + pbg(ys) + p0 (In3—im) + pf (78)
8 8 40
pen(z) — 8ln%—3<g(yr)+§ln2—i) +o(ns—im) - (79)
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5, H HD
i=1,2 ok fi(3) — a2k FP(3) | —a2x FT(3) | O
i=3-6,3Q-6Q,b ot f1(5) 0 0
i=7 0 gk 0
i=8 —a2k FY(3) —alk F{(3) | 0
i=9 14 ask f8(8) 0 0
i=10 0 0 1

Table 6: Coefficients H* that appear in Eq. (77). Here, a5 and & are taken at the scale j.

P P, P, P, P, P P? P? P? P¢ P
¢l 2 1 6 0 60 0 4 0 40 0 0
b 7 2 32 7 2 38 32

0 0 -3 -3 38 -5 § § 3 g 2
0 2 8 32 128 74 8 752 128

0 0 § % % % —x% ~& ~—2 —& VU
#|_16 _a4 2 s _ 136 320 358 _ 8 1144 _ 320 2
P 27 9 27  BI 27 81 81 243 81 243 27

Table 7: Numbers that occur in the four-quark operator matrix elements in Eq. (78).

Here, y, = 4m?2 __,./s, the function ¢(y) is given in Appendix B, and the numbers p are collected
in Table 7.

For what concerns the remaining contributions to the NLLO and NNLO QCD matrix elements
of P; 419, the virtual and real corrections can be effectively taken into account via the following

redefinitions of the squared tree-level matrix elements in the expression for the decay width:

a,pole

[(PoYireel” == [(Po)irec|” [1+8 & wi (3) + 16 &2 wi? (3)] 80

) (80)

(Pio)iree]” == [{Pr0)iree|” [1 + 8 & wio(3)] , (81)
|<P7>tree| = |<P7>tree‘2 [1 + 8 as w7(§)] ) (82)

Re ((Pr)tree(Po)iree) == Re ((Pr)tree(Po)iree) [1 + 8 a5 wro(3)] (83)

where the functions w;($) calculated in Refs. [4,9] are listed in Appendix B.

The remaining IR-divergent contributions to the NNLO matrix elements of the 4-quark
operators, P;_g, originate from diagrams where the gluon does not couple to the quark loop.
Thus, the sum of real and virtual corrections is given by the same functions of § as in Eq. (80).

5 Matrix elements I1

In this Section, we calculate those electromagnetic corrections to the matrix elements of the
4-fermion operators that are responsible for the In(m?2/m?)-enhanced correction to the decay
width. In section 5.1 we cover in great detail the calculation of QED corrections to (FPy). In
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b S b s

Figure 1: Examples of diagrams contributing to the virtual (left) and real (right) electromag-
netic corrections to the matrix element of P.

Section 5.2 we give the logarithmically enhanced QED corrections to the matrix elements of P,
with ¢ # 9.

5.1 Corrections to (F)

Electromagnetic corrections to the matrix element of Py are infrared divergent and must be
considered together with the corresponding bremsstrahlung. The dilepton invariant mass dif-
ferential decay width is not an infrared safe object with respect to emission of collinear photons.
Hence, electromagnetic corrections contain an explicit collinear logarithm In(mZ2/m2). The co-
efficient of this logarithm vanishes when integrated over the whole phase space but not if we
restrict it to the low-3 region.

In this calculation, we adopt the NDR scheme with D = 4—2¢. The NDR scheme is suitable
for our calculation since no Levi-Civita tensor survives in divergent terms proportional to 1/e or
1/€%. Thus, all the Levi-Civita tensors can be evaluated in D = 4 and are therefore well-defined.

In the first step, all the external particles are taken to be on-shell, and, in addition, all the
final state particles are treated as massless (ms; = my, = 0). This implies that all the collinear
divergences are regularized in the dimensional regularization, and that the collinear logarithm
appears as a residual 1/e. Later, we will be able to re-express such a residue in terms of
In(m?/m?) using the photonic splitting function of the electron.

In the next two subsections, we present the calculation of virtual and bremsstrahlung cor-
rections. In the last one, we show how to change the collinear regulator from dimensional to
the physical mass regularization.

The calculation involves the following kinematical invariants: §;; = 2 %5 where 4,5 €

my
{l+’ l_, S, b’ ’}/} = {1’ 2, 8, bi q}‘

5.1.1 Virtual corrections

In order to obtain the virtual corrections, one has to consider one-loop diagrams of the current-
current type. There are in total six such diagrams, one of which is shown on the left in Figure 1.
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The sum of the six amplitudes contains infrared and ultraviolet divergences. The latter cancel
after the addition of counterterms. The next step is then to compute its interference with
(Py)tree Which yields an expression Ky (819, $15, $25). Finally, one has to integrate Ky over the
phase space. The phase space measure for a three particle massless final state in D dimensions
is given explicitly in [28]. Since Ky does not depend on angular variables we can immediately
integrate them out

dPS; = ji* / dPSs = ji*“ M (312, 515, S2s) dS12 d51, s,
Q

9 BHBe =S4 (p2)1=2¢ . A 2 310 dé.. ds
= ,U46 3 (m;) (812 815 825) T0(1 — 519 — 815 — 52,) d512d315 d5o, . (84)

N ERE )

By means of this expression we obtain the final contribution from virtual corrections via

TV = /d/PS—ng Kv(§12,§15,§23) . (85)

5.1.2 Real corrections

In order to cancel the infrared singularities present in 7} one has to add the corresponding
bremsstrahlung contribution. There are four diagrams, one of which is shown on the right in
Figure 1. Contrary to the case of gluon bremsstrahlung, the photon couples to all external legs,
which makes the calculation more involved. The sum of the four amplitudes has to be squared,
yielding an expression Kg($12, 815, S2s, S145 S2¢» Ss¢» Stri), Where

§tri =1- §12 - éls - é25 = §1q + §2q + §5q (86)
is the triple invariant. The corresponding phase space measure for the four particle final state
can also be found in [28]. After integration over angular variables, it reads
2—12+106 7T—5+36 (mZ)Z—Se
MG ar(i - ort 9

X (—A4)_§_6 . @(—A4) . 5(1 — 312 — §15 — §1q — §23 — §2q — ésq) . (87)

315 dé1y ddyg ddo, désg dis

dPS, = ji* / dPS, = [i%-
Q

In the above equation, the Gram determinant is given by
A 2 N2 (A a2 1 (4 a2 A Al a 2 A a4 f Ao a
Ay = (81285¢)° + (S1552¢)" + (814825)" — 2 (81281582¢8sq + S1551452552¢ + 8128145258s¢)-  (88)

The phase space measure is completely symmetric in {1, 2, s, ¢}, but since we stay differential
in 515 we can only make use of the symmetries 1 <> 2 and s <> ¢.Y The use of these symmetries
is, however, essential since the number of distinct terms in Ky gets reduced significantly. In
addition, all terms of the form A/(8148s,) and A/(8245s,) as well as B/(81484;) and B/(S2451r)
drop out by means of the 1 <+ 2 symmetry.

Another crucial point is to choose for each term in Ky the order of integration in a suitable
way in order to ensure that all terms up to and including order €® can be found analytically.

YIn the terms containing 3;,; in the denominator, only the 1 <+ 2 symmetry can be used.
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Appendix D is devoted to this rather technical issue. The QED bremsstrahlung contribution
finally reads

Tn = [ dPSi Kn(312: $15: 20, $10s 205 S50 1) - (39)

In the sum of Ty and Tx the 1/€® terms cancel as well as the Q% part of the 1/¢ terms, whereas
the collinear divergences o< Q? /¢ remain.

5.1.3 From NDR to mass regularization

As we have stated earlier, the differential decay width is not an infrared safe object with respect
to emission of collinear photons. This means that, as long as the electron is treated as massless,
the sum of virtual and real corrections is not free of collinear divergences. If we had kept the
electron mass different from zero during the whole calculation, the sum of virtual and real
corrections would have been finite. However, the computation of the diagrams and the massive
phase space integrals in 7y and Tk would have been much more tedious.

The translation of the 1/e pole into a In(m2/m?) corresponds to changing the regularization
scheme and is complicated by the presence of soft infrared singularities. The correct procedure
is to start with constructing an observable that is infrared safe and, consequently, regularization
scheme independent. Only at this point we can switch to the m, regulator and obtain our final
result. As an intermediate step, we construct a differential branching ratio where § is identified
as follows:

s = | (oo +pe+py)/my iy || (Be or fe) (90)
(Pey + pe,)?/mi otherwise.

In order to switch to this intermediate observable we must subtract the collinear decay width
differential in the dilepton invariant mass and add the same quantity but remaining differential
in the triple invariant.

The calculation of the differential branching ratio in the collinear limit is done with the help
of the NDR-~scheme splitting function for the massless electron. The splitting function in this
scheme can be derived from Refs. [29,30] and reads

fr+@=-22( 1 E 2-2)? 2-=z
Dz, E) = 4@, |——2 [—— +In— +1In(2—2z) | — 1 1
[ (z, E) ae[ . ( 26-|- n'u-l—n( x) 5o , (91)

where F is the energy of the incoming electron and zF is the energy of the emitted photon.
See Fig. 2 for a pictorial view of the kinematics.
The fully differential decay width in the collinear limit is given by (here and in the following
we omit the factor 8G%|ViyVis|? stemming from the effective Lagrangian):
AT (512, 815, 820,2) = (2my) ™" [£19(x, By) + £ (2, B2)] [(Podureel” dPSs dx
= " [9(2, ) [(Po)uwee” dPS3 e, (92)
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Tp2

D2

b § b §

Figure 2: Splitting function kinematics. The photon is emitted by a quasi-real electron.

where z, 819, 815, 825 € [0,1], E1 = mp(1l — 895)/2 and we used the ¢; <> /5 symmetry. The
collinear decay width differential in the triple invariant (§ = (pe, + pe, + p,)%/mi) reads

COH 3 = _1 / d.T / dsls / d523 M3 5 513; 825) f,se) (-Ta El) |<P9>tree|§12_)§ ) (93)
The colhnear decay width differential in the dilepton invariant mass (§ = (p; +Zp2)?/m?) reads
dr,

1-§ dx
szt [0 [ [ s, My(3/7, 810 8) SO B [Pl (99)

where Z = 1 — z and the non linear change of variables ;5 — §/% also implied a distortion of
e ar©
the z-integration domain. The addition of —53* — —5%*2 to the results of previous subsections

removes the remaining e-pole from the differential decay width.

We are now free to convert back this observable to the usual one (in which § is always
the dilepton invariant mass) using mass regularization. To this extent, we need the splitting
function in this scheme [29]:

1 1—1)? E 2 2—1)?
fém) (z,E) = 4&4% (ln e +1In(2 — 233)) —1+z— % Inz— % In(2 —x)] .(95)
(m) NG

The original dlfferentlal decay width is then obtained by by addlng —o — ar 2"“ 3 where d['™)
is obtained from dI'©) via f(f) — f . Therefore, the total correctlon term is given by the
following double difference:

ro_ (o) (ar, o

2my, ds ds ds ds '

Note that only the E-independent difference f{)(z, E)— f{™(z, E) enters in the total correction
term. Hence, we can perform separately the (z, §12) and (815, So5) integrations. The tree level
squared matrix element of Py integrated over the phase space reads

9= TH6e 5426 (yn2)3—2e e T(2—¢) 25,(1—¢€)+1

4
o M N Al A \2-2
d s (1 — ¢
o(312) I3 —e $12 813 (1= 812) ['(2 — 2¢) 3— 2

(97)
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and the total correction term is finally expressed as

Ty = 2 [ de [19@) = £ @) 0(3) - /da: B L0, (L )] (98)

1—1x) l—x

Both integrals in Eq. (98) are infrared divergent for  — 0, but their sum is not.

The sum Ty 4+ Tx +Ts is now free of divergences and contains an explicit collinear logarithm
In(m2/m3). The coefficient of this logarithm vanishes when integrated over $;2. This means
that if we had considered the total branching ratio instead of the differential one, the sum of
Ty +Tg would have been already finite and the inclusion of T would have become unnecessary.
However, the coefficient of the collinear logarithm is large and positive for low 515 and large
and negative for high §;5. Furthermore, this term renders by far the major contribution to the
electromagnetic corrections. Its impact is considerably larger in the case of electrons compared
to the case of muons. In the sum Ty + T + T the coefficient of Q2% is up to a color factor
proportional to the QCD-function wél) (8) from Eq. (150), providing another check for our result.
Inserting Qg = —1/3 and @, = —1 finally yields

Qe mg (]_ — 312)2 (]_ + 2 §12)w(em)
9

Ty +Tr+Ts = 51,3 (512) , (99)
with
o 2 14+45—88 1-652+45)1ns
wi™ (3) In(—2) |- reo-0 +ln(1—§)—( Sff ?) =
my 6 (1—-35) (1423 2(1-5°"(1+42%)
1 4 121 — 2735 — 30 52 41 5) In(1 — 35
e+ A Ts 305A _ (41+763) n(A 3)
9 27" T2 (1-25) (1+29) 36(1 + 239)
—3-108—17824+148°  17In(1—3 1-652+45%) In”3
3 03A27$ +As 7 In(1 - 3) ln§—( 63;{2- S)HAS.(IOO)
18(1—38)" (1+25%) 18 2(1-35) (1+23)

The contribution that we have calculated can be effectively taken into account via the following
substitution:

[Cop6) (Poircel” == |Co (1) {Po)irce|” [1+ 8 e wi™(3)] - (101)

5.2 Other log-enhanced corrections

QED corrections to the matrix elements of P; with 7 # 9 are formally higher order, i.e. O(a3k?),
and should be neglected; nevertheless, we decided to include those contributions that are en-
hanced by an explicit In(m;/my). The relevant terms in the amplitude are

A o< [(Co+Cr Ch) sk fo(8) + Co| (Poirce + Cr0(Pio)irce + Cr{Pr)iree (102)

where the f;(5) is defined in Eq. (78). Here we dropped the NNLO QCD corrections to the
matrix elements as well as terms proportional to the penguin coefficients Cj). The former
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result in O(a%) log-enhanced QED corrections, the latter are numerically very small. After
squaring and under the assumption that C; and Cs are real, we obtain

A7 [|09|2 + &2k% (Cy + Cr C1)? | f2(8) ] + 2 agk Re[f2(8)(Cy + Cr cl)c;]] 1{Py) tree|”
+2 Re[C7C + sk Cr(Co + Cr C1) £5(3)] (Pr)iree (Po)iree
+|C’7|2 |<P7>tree|2 + |C110|2 |<P10>tree|2 . (103)

The fully differential decay width in the collinear limit now yields

AT (312, 815, 805 2) = my ' £ (z, By) |A]” dPSsdz . (104)
(m) qrm
These corrections are induced by collinear photon emission and are given by —$ — —32

where we retain only the In(mp/my) term in f{™(z, E). The result reads

dAF G2m5 AN ~ N m) / ~ m) / ~
i = agm VeVl s)Zas“{S (1+28) [\CQF ws™ (8) + 1Cuol” wigio (4)

+8s Re [(Cy + CrC1)Cy wiz™ (3)] + 62k2 (Co + CpCy)? wg;"ﬂ(g)]
+96 lasﬁ Re[C7Cy] wig™ (3) + 6267 Re [(Cy + CrCh)C wir™ (3)] ]
# (44 Dt (O o)) (105)

where wéem)(é) was already found in the previous section. The other w-functions read:

witio(3) = In (%) :— - éti;aiﬁs) +1In(1 - 8) - (21 (_16_8;??182212)8] , (106)
W) = In (%) :2 (1_5 Cp +1n(1—§)—2(§1 (__j)jéi)s) ln(é)] (o7
W) = In (%) :—ﬁ#—ln(l—é)—% (_12+(12_§_)f %) 1n(§)] , (108)
76 = (78 | e m () (109
W (5) = In (%) 3(1 —?)22(51)”@) o0 —?)1251)+2§) 1“(552\/)]

+ 2—11 w%%rlno)(é) In? (%) , (110)
) ] o). o
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and the functions ¥; have been evaluated numerically in the low-3-region (for fixed values of
myp and my):

¥1(8) = 31.163 —192.8315 + 875.237 5% — 1857.697 3% (112)
YI(8) = 1.445+80.702 5 — 605.109 5% + 1908.079 5% | (113)
Yo(8) = 19.083 — 73.197 3 + 557.253 8% — 1085.284 §* | (114)
Y3(8) = 143.314 — 1198.934 5 + 5074.384 3* — 9244.165 §° | (115)
Yi(8) = 3.299 + 285.8775 — 2176.185 3% + 6778.036 5> . (116)

6 Significance of log-enhanced corrections

The explicit logarithm of the lepton mass signals the presence of a collinear singularity, whose
appearance in the differential branching ratio is strictly related to the definition of the di-lepton
invariant mass. As we explained in Sec. 5.1.3, this logarithm disappears if all photons emitted by
the final state on-shell leptons are included in the definition of s: (pg, +pe,)* — (Pey +Pe, +14) %

Let us consider a cone (of angular opening #) around an on-shell lepton with momentum p,.
For all photons emitted in this cone we have: m7 < (pg+ p,)? < A% ~ 2E7(1 — cos §), where Ej
is the energy of the lepton. Therefore, the inclusion of such photons in the reconstruction of
the lepton momentum results in an effective lepton whose mass can be much larger than m,.

At Babar and Belle, collinear photons are included in the reconstruction of the electron
momentum but not of the muon one.

Since muons are completely disentagled from collinear photons, In(m; /mi) enhanced cor-
rections are physical and should be included in comparisons with their measurements.

For electrons the situation is more complicated. In first approximation, the inclusions of the
collinear photons results into an effective electron with a larger mass (A) so that: In(m32/m?) —
In(m?/A?). In both experiments the cone is defined in the laboratory frame and has polar and
azimuthal angles around 45 mrad and 5 mrad, respectively; hence, A $m,,/2 and the correction
term becomes proportional to In(4mj/m’) < In(mj/m?). The real size of the corrections will
be larger because the collinear cone is asymmetric and the proper way to calculate them is to
numerically integrate the phase space taking into account the experimental setups.

In terms of an arbitrary A, the integrated branching ratio reads:

2

B(A) = 1.582+0.005ln% x 107 (117)

7 Master formulae for the branching ratio

In Section 2, we have expressed the branching ratio in terms of the quantity ®(5)/®,. In
the present Section, we express this quantity in terms of the low-scale Wilson coefficients and
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various functions of § that arise from the matrix elements. The main master formula reads

Dy(3) Re [C (116) C5™ (1) Hi(ps, 5)]

QoG L () + 1682 ()pi” R ()i + () ()i = 325

2mb

(118)

where C¢% (1) # Ci(up) only for z' = 7,8 (see Egs. (75) and (76)). It is assumed that the above
ratio is expanded in &, x and 2%, and that the higher orders are neglected (see Section 2).
my

The numbers p{™ originate from the QCD corrections to b — X,er [31] and can be found in
Egs. (C.6) and (C.7) of Ref. [12]. What are the numbers r("? Will we include them or
not?

The functions H;;(us, §) can be expressed analytically in terms of the coefficients H listed
in Table 6 and of the following building blocks:

See = (1-—4)2(1 +23) [1+8 6 wi(5) + 16 a2 W (3)] | (119)
St = (1-38)°(4+ )[ + 8 as wr(5)] (120)
Sre = 12(1-8)°[1 +8 as wre(8)] (121)
Siie = (1—238)%(1+238)[1+ 8 ds wio(3)] - (122)

The S 44 are obtained by integrating over the phase space the squared matrix elements modified
according to Eqs. (80)—(83). We find:

Hi = Y |H?Saa+2Re(H'H}) St , (123)
A=7,9,10

Hy = 2 Y HPH! Sya+2 (H/H” +HH]*) S . (124)
A=7,9,10

In the above expressions we did not include some finite bremsstrahlung contributions that
appear at NNLO [5]. In Ref. [5] the authors present the results adopting a notation very
similar to the one proposed here. We do not present these corrections here but do include
them in the numerical analysis. Finally, the remaining In(m3/m3)-enhanced corrections to the
4-quark matrix elements are included according to Eq. (105).

QED effects enhanced by an explicit In(m?2/m?) are taken into account by:

AHgy = 8(1—38)% (14 28) dsk wi™ (3) (125)
AHigo = 8(1—38)% (1+28) dsr w'H(3) (126)
AHp = 8(1-§)2(4+§)m W™ (5) (127)
AHzy = 96(1— 3)?as® wig™(3) (128)
AHyy = 8(1—38)% (14 25) &k wid™(3) (129)
AH;y = Cp AHy (130)
AHy = 96 (1 —§)2 &%k wie™(3) (131)
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AH;; = Cp AHy (132)
AHy = 8(1—3)% (1+28) @k® wie™(3) (133)
AHi, 2 Cr AHy (134)
AHy,, = C2% AHy, (135)

The decay width for B — X,¢T¢~ decay equals the partonic one up to O(1/m?) and O(1/m?2)
power corrections. The O(1/m?) contributions were calculated in Ref. [32] and can be incor-
porated in our formalism by modifying the functions S44($):

ASyy = 5—722%(1 — 5)%(1 — 158 + 108%), (136)
ASuoyi0) = ASgg (137)
ASy = _%(1 — 8)%(6 + 35 — 55®), (138)
ASzy = —%(1 — 8)%(5+ 65 — 75°). (139)

The O(1/m?) contributions were calculated in Ref. [33] and can be incorporated in our formal-
ism by modifying the functions H;;:

_ 8A ol +65—32
AHy = —asﬁ—gm%(l—s)ZiA F(y.), (140)
A ~ 8)\2 ~\2 ~
Hyy = —asli—gmg(l—s) (24 3)F (ve) (141)
A
AHy = _asm%u—g)?(zm)ﬂyc)ﬂg* fori=1-6,3Q—6Qb.  (142)

Cc

At this point it is necessary to expand the Wilson coefficients and the ratio in powers of &g, K
and Ay keeping all the terms that have been specified in Section 2.
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A Evanescent operators

Throughout the calculation, we have used the MS renormalization scheme with the following
evanescent operators [34]:

By = (50%m Y Yus Tc) (CLy" y*24*3 T ) — 16 P,
E2 = (§L7u17u27u3cL)(EL’YM’YM’YNSIJL) — 16P2.
Es = (80%u Yo Vs YVua Yusbr) D (@Y 4234415 q) — 20 P5 + 64D,

q

Eyr = (5% Yo Yous Yua Yus T0L) D (@7 #2344 T%q) — 20P5 + 64 Py,
q

Ey = (§L7M17u27u3bL) Z(Z’Yulfyuz’)’ugl) —10P + 6P10a
l

By = (§L7u17u2’yu3bL) Z(Z’Yul’)/uz’)’%’}%l) + 6Py — 10P,
l

E?,Q = (§L’Yu17u27u37u47u5bL) 2(67u17u27u37u47u5€]) - 20P5Q + 64P3Q,
q

E? = (50%um Y Vs Vi Vus T01) D (g™ A2 3 qin#5Tg) — 20P§ + 64P¢.

q

Shall we make this list complete for the NNLO QCD case or rather delete this
Appendix at all and refer to other papers?.

B Various functions

The loop functions that appear in the text are:

Al) = % Inz + 83”?;2;9121_)3”, (143)
Y(z) = S(fiizlylnx + %, (144)
W(a) = —322% +1388(:;3 _+11)ix2 — 18z, N —182% + 122?; : f)i?x? + 1083:’ (145)
S(x) = 2(;7?1)3 Inz + v 4_(;1_3321; 4:1:’ (146)
X(z) = %mx + %, (147)
Blz) = x(lf{(ﬁxx; ), :c2(156(—1 1_62 )+ 42%) e — zl . (148)

29



The following function appears in the matrix elements of the 4-quark operators:

In |1+v —m, when y <1,
(149)
27 9 9

4 92
9y) = =+-v—-2+y) |1—y|{2 . e v > 1
arcanm, when y > 1,

The w; functions that include the sum of infrared divergent virtual and real contributions to
the matrix elements of P;, Py and Pjq are:

) 4 2 2 5+ 43 .
wgl)(s) = —gLZQ(S)—gln(l—S)lnS—gﬂ'Q—mln(l—S)
a 2\ (1 _ 92 s _ pa2
_23(1 —i—As)(l Qf) 03 5-1—9:9 65 - (150)
3(1—35)%(1+23) 6(1—3)(1+23)
wP(8) = —19.2+6.15+ (37.9+ 17.21n8)5> — 18.78° 151
9
win(8) = wi’(3), (152)
4 2 2 8
wr(8) = —gLi2(§)—§ln(1—§) ln§—§ﬁ2—%ln(l 3)
25 (2-25— 82 16-115—178 8
251 0 SA) ng— i SA——nﬂ), (153)
3(1—-38)" (2+3) 18(1—58)(2+5 3 "my
4 2 2 247
wro(8) = —3Lia(s) — In(1— ) In — =n” - (JngS)I (1—3)
25 (3 — 28) O 5—98 4
- ng+——— — “In(22). 154
ou_2e+s M rta—g 3G, (154)

The function wy’ ( ) has been calculated in Ref. [9] (Eq. (5)). The approximate formula is valid
in the range 0 < § < 0.4.

C V and a;

The numerical diagonalization of the matrix W yields:

a; = [—1.04348,-0.899395, —0.521739, —0.521739, —0.422989, 0.408619,
0.26087, 0.26087,0.26087, 0.145649, 0.130435,0,0]  (155)
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and

0
0
—0.0109144
—0.0654862
0.000682148
0.00409289

V = 0
0
0.163715
0.982293
—0.0102322
—0.0613933
0

0
0

—0.160583
—0.984073

0.00725171
0.0759058

0
0
0
0
0
0

0
0.00100213
0.00066809
—0.0255649
—0.0383473
0.00639122
0.00958682

0
0
—0.53753
—0.806295
0.134383
0.201574
0

0.942522
—0.314174
0.0349082
—0.104725

—0.00872705
0.0261812
0

0
0
0
0
0

0
—0.83105
—0.554033
—0.0263825
—0.0395738
0.00659563
0.00989345
0

c © o o o o

0.0253179
—0.0084393
—0.0961354

0.288406
0.0240338
—0.0721015
0
0
0.291219
—0.873658
—0.0728048
0.218414
0

0.00542193
0.00361462

0.0632231

0.0948347
—0.0158058
—0.0237087

0

0
0
0
0

0
0.993053

0.917797
—0.266582
—0.153681

0.250927

0
0

0.726443
—0.684418
—0.0368909
0.0499047

0

0
0
0
0
0
0

0
0

0

o O O o o ©

0
0
—0.922049
0.331368
0.130848
0.151325
0

S o o o o o ©

0
0.0531116
—0.0398337
—0.00331947
0.00248961
0
0
—0.796674
0.597505
0.0497921
—0.0373441
0

D Details of the bremsstrahlung calculation

o o o o ©

= o o o o o o o

(156)

This last appendix is devoted to some technical details of the bremsstrahlung calculation. We

1
will integrate the sample kernel K'r = ——— over the four particle phase space, show how the

81q82q

Gram determinant factorizes, and explain how to extract all terms up to and including order
€® analytically. Omitting bothersome prefactors and, in addition, removing all hats from the
invariants 5;; we consider the expression

1
A = dsu/ ds1s dS1qdSoq dsas dssqd(1 — S19 — S15 — S1g — S2s — S2g — Ssq)
0

1, 1
X (—A4) 2T O(—Ay)s1, 55,
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where the Gram determinant is given by

A4 = (51255q)2 + (81552q)2 + (31q325)2 -2 (51251552q85q + 51551¢52552¢ + 31231q32585q)- (158)
The first integration is over the d-function and it will be done by means of the variable s,
yielding

1—s12 1—s19—815 L1—812—815—51¢ 1—812—815—514—52¢

A = dslz/dsls/dslqsl_ql /dszqsgql / dso
0 0 0 0

X (—A4) T O(—Ay) (159)

|Ssq:1_512_315_51q_52(1_323 ’

Substituting s, = 1 — 12 — 515 — S14 — S2¢ — S25 in the Gram determinant yields an object that
can be transformed into a quadratic polynomial in either of the variables si, S14, S25 OF Sg4, %.€.
in either variable that does not accompany s, in the quadratic piece of the Gram. We choose
this quadratic polynomial to be in so;:

—Ay=—(s12+ 51,)” [55, + 2 B 520 + C = (512 + 519) (55, — 52.) (520 — 55,) , (160)

where s3, are the roots of the quadratic polynomial:

55, = —B+VB? - —-B+VE. (161)
The O-function now requires these roots to be realll which is equivalent to the condition = > 0.
From the latter inequality we conclude

. S12 + S1gq
S9g < 2(1 — 819 — 815 — 8 with z2=—* <1 162
2q > ( 12 1s lq) S19 + 51q i S1s = ( )

The above roots now fulfill the inequality 0 < s5, < s;s <1 — 819 — 515 — S1g — S24 Which leads
to the following new limits of integration:

1—-s12 1—s12—S515

A = dslg/dsls/dslqsfql(su + 5‘1(1)_1_26
0 0
2(l1—s12—815—S1q) s;'s
1 N1
/ ds2q554 /dSQs (83, — S25) 2 (825 — S9q) 2 €. (163)

S2s
Substituting sos = (54, — 52,)X + 52, the subsequent x-integration can be done trivially in terms
of I'-functions.

As a general strategy for the choice of the order of integration we suggest the following: The
variable of the first integration (6-function) must not be contained in the term of Kg that one
considers. If possible, this term should also be free of the variable that one uses to factorize the

lotherwise — Ay is negative for all so
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S1s 25

Gram (sgs in our case). If the latter is not possible as for instance in Kg = , one should

Slq 82q
at least factorize the Gram in a variable that does not appear in the denominator of K. This

procedure ensures that the first two integrations can be done in terms of I'-functions, and it
avoids hypergeometric functions to emerge at this stage of the calculation.

The choice of the subsequent order of integration is governed by the aim to extract all
divergences as early as possible, this being the reason why we solved the condition = > 0 for
Saq- We now substitute sg;, = 2(1 — s12 — s15 — S14) t and perform the t-integration, yielding
again only I'-functions. After simplification we obtain

1—s12 1—512—51¢
T
_ - - —1- -1 -2
A= —Z d812 812€/d813 8186/d81q81q 6(312 + 81q) (812 -+ S1q + 815)6(1 — 819 — S15 — 81q) ¢ (164)
0 0

We now proceed as follows

. . . . 1 1 1
e Perform an expansion into partial fractions via = —
S19(s12 + S14)  S12514  S12(S12 + S14)

e Substitute s1; = (1 — s12 — s15)(1 — u) . The u-integration can be carried out in the first
term of the above expansion.

e Substitute s153 = (1 — s12)(1 —v), again the v-integration can be done in the first term.

One finally obtains the following expression:

['(1—2e)T'(—€)l'(1 —¢)
['(2 — 4e)

A = —g dsiz 515 (1 — 312)145{ oF1(—€,1 — 26,2 — 4e;1 — s19)

s12 4+ (1 — s12) v (1 — u)

1= s) /1du /ldv w2 (1 —u) " 031 —v)7E 1= (1= s19) ] } _ (165)

All divergences have now been extracted in terms of poles and I'-functions. The integrand of
the remaining u and v-integration can therefore be safely expanded in € up to and including
order €' before carrying out the integrations over u and v. Finally, the hypergeometric function
has to be expanded up to and including order ¢2. This can can be done by means of the
Mathematica package HypExp [37].
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