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Abstract

We calculate the complete next-to-next-to-leading order QCD corrections to the charm
contribution of the rare decay K™ — wtvp. We encounter several new features, which
were absent in lower orders. We discuss them in detail and present the results for the two-
loop matching conditions of the Wilson coefficients, the three-loop anomalous dimensions,
and the two-loop matrix elements of the relevant operators that enter the next-to-next-to-
leading order renormalization group analysis of the Z-penguin and the electroweak box con-
tribution. The inclusion of the next-to-next-to-leading order QCD corrections leads to a sig-
nificant reduction of the theoretical uncertainty from +9.8% down to +2.4% in the relevant
parameter P.(X), implying the leftover scale uncertainties in B(K+t — ntvr) and in the de-
termination of |V,4|, sin 23, and v from the K’ — 7vw system to be £1.3%, +£1.0%, +0.006,
and £1.2°, respectively. For the charm quark MS mass m.(m.) = (1.30 & 0.05) GeV
and |V,s| = 0.2248 the next-to-leading order value P.(X) = 0.37 & 0.06 is modified to
P.(X) = 0.38 £0.04 at the next-to-next-to-leading order level with the latter error fully
dominated by the uncertainty in m.(m.). We present tables for P.(X) as a function of
m.(m.) and as(M,) and a very accurate analytic formula that summarizes these two de-
pendences as well as the dominant theoretical uncertainties. Adding the recently calculated
long-distance contributions we find B(K+ — 7tvp) = (8.0 4+ 1.1) x 107 with the present
uncertainties in m.(m.) and the Cabibbo-Kobayashi-Maskawa elements being the domi-
nant individual sources in the quoted error. We also emphasize that improved calculations
of the long-distance contributions to K+ — 77 vr and of the isospin breaking corrections in
the evaluation of the weak current matrix elements from K+ — %" would be valuable
in order to increase the potential of the two golden K — 7wr decays in the search for new
physics.



1 Introduction

The rare decay K+ — wtvi plays together with K — 7% an outstanding role in the field
of flavor changing neutral current (FCNC) processes both in the standard model (SM) [1]
and in all of its extensions [2,3]. The main reason for this is its theoretical cleanness and its
large sensitivity to short-distance QCD effects that can be systematically calculated using
an effective field theory framework. The hadronic matrix element of this decay can be
extracted, including isospin breaking corrections [4], from the accurately measured leading
semileptonic decay K+ — 7% %y, and the remaining long-distance contributions [5] turn
out to be small [6], and in principle calculable by means of lattice QCD [7].

Consequently the SM decay rate of KT — 7wtvi can be expressed almost entirely in
terms of the Cabibbo-Kobayashi-Maskawa (CKM) [8] parameters, the top and the charm
quark mass, and the strong coupling constant a,(M,) that enters the QCD corrections
calculated within renormalization group (RG) improved perturbation theory. Beyond the
SM additional parameters like new couplings and masses of new heavy particles will be
present in the decay rate, but from the point of view of hadronic effects, the theoretical
cleanness of the prediction will not be affected by these non-standard contributions.

In view of this, the theoretical uncertainties in the decay rate of Kt — 7Tvp are at
leading order essentially only of perturbative origin and in order to be able to test the
SM and its extensions to a high degree of precision it is important to evaluate the first
non-trivial and higher order QCD corrections to this decay mode.

To be specific, the low-energy effective Hamiltonian for the K — mwvv system can be
written in the SM as follows [9, 10]

4GF (e
V2 27msin? 6

Het = Z (XX () + XX () (S19d0) (ZerV Vi) - (1)

w l=e,u,t

Here G, a, and sin? 0y, denote the Fermi constant, the electromagnetic coupling, and the
weak mixing angle, respectively. The sum over ¢ extends over all lepton flavors, \; = ViV,
are the relevant CKM factors and f; are left-handed fermion fields. The dependence on
the charged lepton mass is negligible for the top quark contribution. In the charm quark
sector this is the case only for the electron and the muon but not for the tau lepton.

The function X () in Eq. (1) depends on the top quark MS [11] mass through x;, =
m2(u;)/M?2. Tt originates from Z-penguin and electroweak box diagrams with an internal
top quark. Sample diagrams are shown in Fig. 1. As the relevant operator has a vanishing
anomalous dimension and the energy scales involved are of the order of the electroweak
scale or higher, the function X (x;) can be calculated within ordinary perturbation theory.
It is known through next-to-leading order (NLO) [10,12,13]. The inclusion of these O(ay)
corrections allowed to reduce the +£6% uncertainty due to the top quark matching scale
wy = O(my) present in the leading order (LO) formula down to +1%. Consequently the
reached theoretical accuracy on the top quark contribution to K+ — 7tvv and in the



Figure 1: Examples of Z-penguin and electroweak box diagrams that contribute both to
K* — ntvv and K;, — 7'vio. Here and in the following we do not display the neutrino
line attached to the Z-boson.

0

amplitude of K — n”vw, where only X (x;) enters, is satisfactory.

The function X%(x.) in Eq. (1) relevant only for K™ — 7w depends on the charm
quark MS mass through z. = m?(u.)/M?2. As now both high- and low-energy scales,
namely py = O(My ) and p. = O(m,) are involved, a complete RG analysis of this term is
required. In this manner, large logarithms In(u?/u2,) are resummed to all orders in ay. At
LO such an analysis has been performed in [14]. The large scale uncertainty due to p. of
+26% in this result was a strong motivation for the NLO analysis of this contribution [9,10].

Defining the phenomenologically useful parameter

PAX) = 53X + 37w )

with A = |V,,], one finds for A = 0.2248 at NLO [15]*
Po(X) = 0.369 £ 0.0360me0ry % 0.033,, £ 0009, , (3)

where the parametric errors correspond to the ranges of the charm quark MS mass m.(m,.)
and the strong coupling constant as(M) given in Tab. 4. The theoretical error summarizes
uncertainties due to various scales and different methods of computing a(p.) from a(My,).
Details on how the quoted errors have been obtained will be given in Sec. 9.

Provided P.(X) is known with a sufficient precision, a measurement of K™ — ntvp,
either alone or together with one of K — wvi, allows for precise determinations of the
CKM parameters [1]. The comparison of this standard unitarity triangle (UT) with the one
from B-physics offers a stringent and unique test of the SM. In particular for the branching
ratios B(K™ — ntvw) and B(K — 7vw) close to their SM predictions, one finds that a

!The numerical results presented here differ somewhat from [15]. For the present numerical evaluation
the program used in [15] has been changed slightly in order to implement the various theoretical errors in
an improved fashion.



given uncertainty o(P.(X)) translates into [15]

o (Vi) _ 0 (Pe(X))
VUM TR
o(sin23) o (P.(X))
w3 = 40.34 X
o(y) o (P.(X))
el 40.83 X (4)

with similar formulas given in [3]. Here V}, is the element of the CKM matrix and 5 and ~
are the angles in the standard UT. As the uncertainties in Eq. (3) coming from the charm
quark mass and the CKM parameters should be decreased in the coming years it is also
desirable to reduce the theoretical uncertainty in P.(.X).

To this end, we extend here the NLO analysis of P.(X) presented in [9,10] to the next-
to-next-to-leading order (NNLO) [15]. We encounter several new features, which were
absent in lower orders. First, closed quark loops in gluon propagators occur, resulting in a
novel dependence of P.(X) on the top quark mass and in non-trivial matching corrections
at the bottom quark threshold scale p, = O(my). Second, the contributions from the
vector component of the Z-boson coupling are non-trivial at NNLO and are only found
to vanish in the sum of several contributions, which involve a flavor off-diagonal wave
function renormalization. Third, the presence of anomalous triangle diagrams involving
a top quark loop, two gluons, and a Z-boson makes it necessary to introduce a Chern-
Simons operator [16,17] in order to obtain the correct anomalous Ward identity of the
axial-vector current [18]. The inclusion of such a Chern-Simons term is also required to
compensate for the anomalous contributions from triangle diagrams with a bottom quark
loop. Since all these effects arise first at NNLO, they are not included in the theoretical
uncertainty quoted in Eq. (3), which has been estimated from the variation of scales and
different methods of evaluating o, (p.) from ay(M,). The only way to control their size is
to compute them explicitly, which is a further strong motivation for our NNLO calculation.

Our paper is organized as follows. In Sec.2 we give formulas for P.(X) and B(K™ —
7tvw) at NNLO in a form suitable for phenomenological applications. In particular we
present tables that show P.(X) for different values of as(My), i, and m.(m.) and we give
a simple analytic formula for P.(X) that approximates the exact numerical result with high
accuracy. Sec.3 is meant to be a guide to the subsequent Secs.4 to 7 that describe our
calculation in detail. These sections are naturally rather technical and might be skipped
by readers mainly interested in phenomenological applications of our result. Sec.8 contains
another accurate approximate formula for P.(X) that summarizes the dominant parametric
and theoretical uncertainties. In Sec.9 we present the numerical analysis of the NNLO
formulas. In particular we analyze various scale uncertainties that are drastically reduced
by going from NLO to NNLO. We present the result for B(K™ — nTvv) and B(K — nvp)
and we investigate the parametric and theoretical uncertainties in the determination of the



CKM parameters with the latter being significantly reduced through our calculation. In
the course of this section we also present results provided by the CKMfitter Group [19]
and the UIfit Collaboration [20]. We conclude in Sec. 10. Some technical details as well as
additional material has been relegated to the appendices.

2 Master Formulas at NNLO

2.1 Preliminaries

In this section we will present the formula for B(K* — ntwr) based on the low-energy
effective Hamiltonian given in Eq. (1) extended to include the recently calculated contri-
butions of dimension-eight four fermion operators generated at the charm quark scale p,.,
and of genuine long-distance contributions which can be described within the framework
of chiral perturbation theory [6]. These contributions can be effectively included by adding

6P, = 0.0440.02, (5)

to the relevant parameter P.(X). The quoted error in 0P, , can in principle be reduced by
means of lattice QCD [7].

For completeness we will also recall the formula for B(K; — 7°vv) which we will use
in Sec.9 to obtain its updated SM value in view of the recently modified value of the top
quark mass [21].

0

2.2 Branching Ratio for K+ — ntvw

After summation over the three neutrino flavors the resulting branching ratio for K+ —
7tup can be written as [6,9, 10]

<Im)\tX(a:t))2 + (Re/\tX(a:t) LR b x4 5PC,U)>2

B(Kt — 7tvp) = ky

) (6)

PE PE A
with ) . .
3a* B(Kt — nletv) A
= A= (5.044+0.1 107" —— ) .
o R T o in 0., (5:04 % 0.17) > 1077 { 5075 (7)

Here the parameter ryi+ = 0.901+0.027 summarizes isospin breaking corrections in relating
Kt — mtvw to KT — 7%ty [4]. The apparent strong dependence of B(K™ — 7tvr) on
)\ is spurious as both P.(X) and §P., are proportional to 1/\*. In quoting the value for
P.(X) and B(K* — mtvi) we will set A = 0.2248. « and sin® 6y, entering B(K+ — ntvi)
are naturally evaluated at the electroweak scale [22]. Then the leading term in the heavy
top expansion of the electroweak two-loop corrections to X (z;) amounts to typically —1%



for the MS definition of a and sin®#,, [23]. In obtaining the numerical value of Eq.(7)
we have employed o = ag(M,) = 1/127.9, sin6,, = sin?0,, = 0.231, and B(K+ —
metv) = (4.93+0.07) x 1072 [24]. We remark that in writing B(K™ — 77vp) in the
form of Eq. (6) we have omitted a term proportional to (X¢(xz.) — X7 (z.))>. Its effect on
B(Kt — ntvp) is around +0.2%.

The function X (x;) entering Eqgs. (1), (6) and (17) is given in NLO accuracy by

X () = Xolw) + 2 X () = e Xofa(m). )
with
x = 0.986 = 0.009. 9)

The contribution stemming from Z-penguin and electroweak box diagrams without QCD
corrections reads [25]

2z, + 7 6xy — 377

Xolw) = —ga =2 T 81 =22

Inxy, (10)

while the QCD corrections to it take the following form [10, 12, 13]

297, —x? — Az} oz + 927 — 2} — 2}
Xy(z) = — _ 1
o) =y A-mp " ()
8z + 4o} + a} — xy | day —x} OXo(xy) , i
1 — ——=Liy(1 — 8 | .
MM —ags T o gyl m @)+ Sn— =iy

Here Lig(x) = — [ dt In(1 — ¢)/t. The explicit p-dependence of the last term in Eq. (11)
cancels to the considered order the p-dependence of the leading term Xo(x:(1¢)). The
factor nx summarizes the NLO corrections. Its error has been obtained by varying p; in
the range 60 GeV < p; < 240 GeV on the left-hand side of Eq. (8) while keeping p; fixed
at m; = my(my) on the right-hand side of the same equation. The leftover p,-dependence
in X () is slightly below +1%.

The uncertainty in X (x;) is then dominated by the experimental error in the mass of
the top quark. Converting the top quark pole mass of M; = (172.7 £+ 2.9) GeV [21] at three
loops to my(M;) [26] and relating my(M;) to my(m;) = (163.0 £ 2.8) GeV using one-loop
accuracy, we find

X(z;) = 1.464 £ 0.041 . (12)

The given uncertainty combines linearly an error of £0.028 due to the error of m;(m;) and
an error of £0.013 obtained by varying u; in the range given above.

As opposed to X (z;) the charm quark contribution, represented by the parameter P.(X)
in Eq. (2), involves several different scales like gy, iy, and p.. In order to control the size
of the perturbative corrections to P.(X) the large logarithms associated with these scales
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Figure 2: The parameter P.(X) at NNLO as a function of m.(m.) (upper plot) and ay(M;)
(lower plot). In obtaining the numerical values for P.(X) we have set A = 0.2248, m;(m;) =
163.0 GeV, py = 80.0GeV, up = 5.0GeV, pu. = 1.50GeV, as(My) = 0.1187 (upper plot),
and m.(m.) = 1.30 GeV (lower plot).



Po(X)
ag(My) \ pe [GeV] | 1.0 | 1.5 | 20 | 25 | 3.0
0.115 0.393 | 0.397 | 0.395 | 0.392 | 0.388
0.116 0.389 | 0.394 | 0.391 | 0.388 | 0.383
0.117 0.384 | 0.390 | 0.387 | 0.383 | 0.379
0.118 0.380 | 0.386 | 0.383 | 0.379 | 0.374
0.119 0.375 | 0.381 | 0.379 | 0.374 | 0.369
0.120 0.370 | 0.377 | 0.374 | 0.369 | 0.364
0.121 0.365 | 0.372 | 0.369 | 0.364 | 0.359
0.122 0.359 | 0.368 | 0.364 | 0.359 | 0.354
0.123 0.353 | 0.363 | 0.359 | 0.354 | 0.348

Table 1: The parameter P.(X) in NNLO approximation for various values of as(M,) and
e In quoting the numerical values for P.(X) we have set A = 0.2248, m;(m;) = 163.0 GeV,
me(m.) = 1.30 GeV, uy = 80.0 GeV, and py, = 5.0 GeV.

have to be resummed to all orders in a, using RG techniques. Keeping terms to first order
in ag, the perturbative expansion of P.(X) has the following general structure

PLX) = L PO + POC) + 22 P x). (13)

where we have suppressed the dependence of the expansion coefficients Pc(k) (X) on the
involved physical and unphysical mass scales for simplicity. The leading term prY (X) has
been worked out in [14] while the NLO correction Pc(l)(X ) has been calculated in [9,10].

The main goal of the present paper is the calculation of the NNLO term P (X). As
indicated by the theoretical error in Eq. (3), the sum of the first two terms in Eq. (13) still
exhibits sizable unphysical scale dependences, in particular the one on p.. Besides, the NL.O
value of P.(X) depends in a non-negligible way on the method used to compute ag(p.)
from o, (M) [15]. The observed numerical difference is due to higher order terms in a; and
has to be regarded as part of the theoretical error. This source of uncertainty has not been
taken into account in previous NLO analyses of the charm quark contribution [3,9, 10].

As we will demonstrate in Sec. 9, the inclusion of r® (X)) removes essentially the entire
sensitivity of P.(X) on u. and on higher order terms in «a; that effect the evaluation of
as(pe) from ag(My). As aresult, the final theoretical error in P.(X) is reduced from £9.8%
at NLO down to £2.4% at NNLO. After our calculation the theoretical accuracy on the
charm quark contribution to K+ — 7t is thus also satisfactory.

9



Pe(X)

(M) \ me(me) [GeV] | 1.15 | 1.20 | 1.25 | 1.30 | 1.35 | 1.40 | 1.45
0.115 0.307 | 0.336 | 0.366 | 0.397 | 0.430 | 0.463 | 0.497
0.116 0.303 | 0.332 | 0.362 | 0.394 | 0.426 | 0.459 | 0.493
0.117 0.300 | 0.329 | 0.359 | 0.390 | 0.422 | 0.455 | 0.489
0.118 0.296 | 0.325 | 0.355 | 0.386 | 0.417 | 0.450 | 0.484
0.119 0.292 | 0.321 | 0.350 | 0.381 | 0.413 | 0.446 | 0.480
0.120 0.288 | 0.316 | 0.346 | 0.377 | 0.409 | 0.441 | 0.475
0.121 0.283 | 0.312 | 0.342 | 0.372 | 0.404 | 0.437 | 0.470
0.122 0.279 | 0.307 | 0.337 | 0.368 | 0.399 | 0.432 | 0.465
0.123 0.274 | 0.303 | 0.332 | 0.363 | 0.394 | 0.426 | 0.460

Table 2: The parameter P.(X) in NNLO approximation for various values of as(M,) and
me(m.). In quoting the numerical values for P.(X) we have set A = 0.2248, my(m;) =
163.0 GeV, uy = 80.0GeV, up = 5.0GeV, and p. = 1.50 GeV.

The analytic formula for the sum of the first two terms in Eq. (13) can be found in [9,10].
The formula for P? (X) is given in Secs. 6 to 8. Setting A = 0.2248, m;(m;) = 163.0 GeV,
= 80.0GeV, py, = 5.0GeV, and p. = 1.50 GeV, we derive an approximate formula for
P.(X) as a function of m.(m.) and as(M,). It reads

mc(mc) 2.155 CYS(Mz) —1.417
P(X)=0.379 [ —2 Selrz) , 14
(X) 0379<1.30Ge\/) 0.1187 (14)

and approximates the exact NNLO result with an accuracy of better than £1.0% in the
ranges 1.15GeV < m.(m.) < 1.45GeV and 0.1150 < a,(M,) < 0.1230.

The dependence of P.(X) on m.(m.) and as(M,) can be seen in Fig. 2, while in Tabs. 1
and 2 we present the exact values for P.(X) for different values of a (M), ., and m.(m.).
We observe that the p.-dependence is almost negligible and the dependence on as(M,) is
small. On the other hand the dependence on m.(m,) is sizable. A reduction of the error
in m.(m.), which is dominated by theoretical uncertainties, is thus an important goal in
connection with K+ — wtuvw.

Employing the central values of the input parameters summarized in Tab. 4, the depen-
dence of B(Kt — wtvw) on m.(m,) is described by

1.19
Kt ) = 8.1 M 10~ 41 1
B(K" — ntup) =38 5(1.30G6V x 107, (15)

10
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Figure 3: The branching ratio B(Kt — ntvw) at NNLO as a function of m.(m,.) (upper
plot) and M, (lower plot). In obtaining the numerical values for B(K™ — ntvi) we have
used py = 80.0GeV, up = 5.0GeV, and p. = 1.50 GeV, and set all input parameters to
their central values as given in Tab. 4.

11



which approximates the exact NNLO result with an accuracy of almost +0.6% in the range
1.15GeV < m.(m.) < 1.45GeV. Similarly, the dependence on M, is given by

B(K* — ntwp) = 8.11 M N x 1071 (16)
T\ 172.7GeV ’

which approximates the exact NNLO result with an accuracy of better than +0.1% in the
range 165.0 GeV < M,; < 180.0 GeV. The dependences in Eqs. (15) and (16) are exhibited
in Fig.3. We remark that the present analysis of the UT is practically independent of
the exact value of the top quark mass. In obtaining both Egs.(15) and (16) we have
therefore set for simplicity ImA;, Re);, and Re). to their central values as given in Tab. 4.
Furthermore we have used the numerical value of P.(X) evaluated at g, = 80.0GeV,
wp = 5.0GeV, and p. = 1.5GeV. A detailed numerical analysis of various uncertainties in
B(K* — ntvp) will be presented in Sec. 9.

2.3 Branching Ratio for K; — n%viv

In the case of K — 7vw the charm quark contribution and the long-distance effects are
negligible so that the relevant branching ratio is given simply as follows [9, 10]

Im\ 2
B(KL — 7T07/17) = Ky, < \o tX(CEt)> s (17)
where .
. Tkg 7(Kp) _ —10 A
K = H+TK+ (K = (2.20£0.07) x 10 0.2248 . (18)

Here we have summed over the three neutrino flavors and used 7(Kp)/7(K*) = 4.16+0.04
24]. rg, = 0.944 £ 0.028 is the isospin breaking correction from [4] with x4 given in
Eq. (7). Due to the absence of P.(X) in Eq.(17), B(K;, — 7°v) is plagued only by
small theoretical uncertainties coming from pu; and k. The total parametric uncertainty
stemming from m;(m;) and Im),; is on the other hand sizeable. The latter errors should be
decreased significantly in the coming years, so that a precise prediction for B(Ky — n'vp)
should be possible in this decade.

2.4 Summary

As far as perturbative uncertainties are concerned, with the NNLO correction to the charm
quark contribution to B(K+* — 7tvw) at hand, K™ — ntwr has been put nearly on
the same level as K; — 7wvi. The leftover scale ambiguities are all small, so that the
reached theoretical accuracy is now satisfactory in both decays. Similarly the errors due
to uncertainties in as(M,) and my(m;) are small. The future of precise predictions for

12



B(K* — wtvi) will depend primarily on the reduction of the errors in m.(m.) and in the
CKM parameters, whereas B(Kr — n’vv) is practically only affected by the uncertainties
in the CKM elements. Non-negligible uncertainties arise in both cases also from the the-
oretical error of the isospin breaking corrections and in the case of B(K™ — 7tvw) from
the uncertainty associated with the long-distance corrections.

On the other hand the determination of the CKM parameters and of the UT from the
K — mvo system will depend on the progress in the determination of m.(m.) and the
measurements of both branching ratios. Also a further reduction of the error in |V|, rg+,
Tk, and 0F., would be very welcome in this respect.

3 Guide to the NNLO Calculation

In analogy to many other FCNC processes, perturbative QCD effects lead to a sizable
modification of the purely electroweak contribution to K™ — wtvi by generating large
logarithms of the form L = In(u?/p2,). A suitable framework to achieve the necessary
resummation of the logarithmic enhanced corrections is the construction of an effective
field theory by integrating out the heavy degrees of freedom. In this context short-distance
QCD corrections can be systematically calculated by solving the RG equation that governs
the scale dependence of the Wilson coefficient functions of the relevant local operators built
out of the light and massless SM fields.

As several new features, which were absent in LO and NLO, enter the RG analysis of
P.(X) at NNLO, the actual calculation is rather involved and it is worthwhile to outline
first its general structure. This will be done in this section, whereas the details of the
computation of the different ingredients that are necessary to obtain the NNLO correction
to P.(X) will be described in Secs. 4 to 7.

The key element of the RG analysis of the charm quark contribution to the s — dvw
transition is the mixing of the bilocal composite operators

Q% =i [ T(@40)Q20) - QL)Q(0). (19)
and
Q" — —i [ T(Q5)Qi0) - Q3)QH0)). (20)
where T denotes the usual time-ordering, into
2
Q, = QZL; > Gvds) Ty ves) - (21)

l=e,u,

Here m, is the charm quark MS mass m,.(u), and the inverse powers of g have been
introduced for later convenience, following [9]. One may arbitrarily shift such factors from

13
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Figure 4: One-loop diagrams in the low-energy effective theory that involve a large leading
logarithms. The black squares represent the insertion of the bilocal composite operators
QY (left) and QP (right). The charm quark line is open in the left diagram and in all
subsequent diagrams in which the charm quark couples to Q5.

the Wilson coefficient into the definition of the operator. The factor =3¢ stems from the

relation gy = Z,gu°, where Z, denotes the renormalization constant of g, and the fact
that ), written in terms of bare fields and parameters must be p-independent. All bare
quantities will carry the subscript 0 hereafter. The operators Q%, Q4, and Qf entering
Egs. (19) and (20) will be defined as we proceed.

Interestingly the charm quark contribution to the s — dvv amplitude involves large
logarithms even in the absence of QCD interactions, because QY and QF mix into Q,
through one-loop diagrams containing no gluon. The relevant Feynman graphs can be
seen in Fig.4. Factoring out G and a the charm quark contribution to the s — dvv
amplitude thus receives corrections of O(a”L"*!) at LO, of O(a”L™) at NLO, and of
O(a™L™ 1) at NNLO. This structure of large logarithms explains the peculiar expansion
of P.(X) in Eq. (13) with the leading term being of O(1/a;) rather than O(1).

Since there is no mixing between the bilocal composite operators Qf and @7, the RG
analysis of P.(X) naturally splits into two parts: one for the Z-penguin contribution which
involves QF and one for the electroweak box contribution that brings Q7 into play. As
the structure of the Z-penguin is more complicated than the one of the electroweak boxes
it is useful to discuss the former type of contributions first. This will be done in Sec.6.
After the detailed exposition of the Z-penguin contribution it is straightforward to repeat
the analysis in the analogous, but somewhat simpler case of the electroweak boxes. The
essential steps of this calculation will be discussed in Sec. 7.

The main components of the calculations of Secs. 6 and 7 performed here at the NNLO
level are: 7) the two-loop O(a?) corrections to the initial conditions of the relevant Wilson
coefficients at gy, ) the three-loop O(a?) ADM describing the mixing of the associated
physical operators, #77) the two-loop O(a?) threshold corrections to the Wilson coefficients
at pp, and iv) the two-loop matrix elements O(a?) of the relevant operators at p..

The current-current operators Q% which enters the bilocal composite operator Q% are
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familiar from the non-leptonic |AS| = 1 transitions. As their mixing under renormalization
is not affected by the presence of the other operators, it is convenient to perform their RG
analysis before discussing the Z-penguin contribution itself. This calculation involves the
first three aforementioned steps as we will explain in Sec. 4.

The second ingredient of the bilocal composite operator Qf is the neutral-current op-
erator ()7, which describes the interactions of neutrinos and quarks mediated by Z-boson
exchange. It is a linear combination of the usual vector and axial-vector couplings of the
left-handed neutrino current to quarks, and a Chern-Simons operator that describes the
coupling of neutrinos to two and three gluons. The inclusion of the Chern-Simons operator
is essential to guarantee the non-renormalization of ()7 to all orders in a4, which plays an
important role in the RG analysis of the Z-penguin sector. The subleties arising in con-
nection with @z will be reviewed in Sec. 5.1 before analyzing the Z-penguin contribution
itself.

Finally, we will discuss the operators Q4 and Q7. These operators are the building
blocks of the bilocal composite operator QP and describe the interactions between leptons
and quarks mediated by W-exchange. They will be briefly discussed in Sec.5.2.

In summary, after the three preparatory sections, namely Secs.4, 5.1, and 5.2, that
discuss the dimension-six operators Q%, Qz, Q%, and @i, the actual NNLO calculation
relevant for the charm quark contribution to K™ — wtvw is presented in Secs.6 and 7
for the Z-penguin and the electroweak box contributions, respectively. The result of these
efforts will be summarized in Sec. 8.

4 Current-Current Interactions

4.1 Effective Hamiltonian

As we are only interested in the charm quark contribution to the s — dvv transition,
we can drop the parts of the low-energy effective Hamiltonian that are proportional to
the CKM factor A\;. The unitarity of the CKM matrix then allows one to express all
the relevant contributions in terms of one independent CKM factor, namely A.. P.(X)
receives contributions from Z-penguin and electroweak box diagrams with internal charm
and up quarks. Examples are depicted in Fig. 1. For scales p in the range p. < p < iy
the four-quark interaction mediated by W-boson exchange is described by the effective
current-current Hamiltonian

co _ 4Gr , c_ O
HEF = 5 2 Gl (@ - @) (22)
where 1
Q4 = 5 ((2mar) @y d) = (s3val) (@ dy) ) - (23)

15



Figure 5: Sample diagrams for the O(a?) corrections to the initial values of the Wilson
coefficients of the current-current operators.

Here a and 3 are color indices. At LO the operators in Eq. (23) renormalize multiplicatively.
Beyond LO they mix into so-called evanescent operators, which vanish algebraically in
n = 4 dimensions [27-30], but affect the values of the Wilson coeflicients Cy(p). These
operators can be chosen in such a way that the renormalized matrix elements of QL and
its Fierz transform are the same. For this choice Q% have well-defined and distinct isospin
quantum numbers and do not mix with each other at NLO and beyond. The definitions of
the evanescent operators required to preserve the diagonal form of the NNLO anomalous
dimension matrix (ADM) in the Q% basis can be found in App. A.1.

4.2 Initial Conditions

We now turn our attention to the calculation of the initial conditions of Q1. Dropping the
unnecessary flavor index ¢ we write for i = +

i) = Cp) + S0 (S Y @)

where a,(pyw) denotes the strong coupling constant in the MS scheme for five active quark
flavors. The values of the coefficients C’(ik)(yw) are determined by matching Green'’s func-
tions in the full and the effective theory at py,. In the NNLO approximation this requires
the calculation of one-particle-irreducible two-loop diagrams. Sample SM graphs are dis-
played in Fig.5. For what concerns the regularization of infrared (IR) divergences we
follow the procedure outlined for example in [31,32], which consists in using dimensional
regularization for both IR and ultraviolet (UV) divergences. While the former singularities
are removed by renormalization, the latter poles cancel out in the difference between the
full and the effective theory amplitudes. For detailed descriptions of higher-order matching
calculations of strong and electroweak corrections applying the latter method we refer the
interested reader to [32-34].

Using naive dimensional regularization (NDR) [35] with a fully anticommuting -5, we
obtain for the standard choices of the Casimir invariants Cy = 3, Cr = 4/3, and five active
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quark flavors

1 1 2
CP (py) = £= (1;-) (11+61n“—W> ,

2\ T3 M2
o 1 o W (25)
2 2
1 q 124 L rasners (1T
O () =~ (135677 F 124095) + = (74 51)7 4:2( ¢3) ()
) % 1 %
— — (11 F249)In = + — (7 £51)In* 222,
36 (11T 249)In - + G (7251 In" 7y

The function T'(z;) depends on the top quark MS mass via z; = m?(u,)/M2,. Tt originates
from SM diagrams like the one shown on the left of Fig. 5. Subtracting the corresponding
terms in the gluon propagator in the momentum-space subtraction scheme at ¢*> = 0, which
ensures that () is continuous at the top quark threshold py,? we find

112 20
T(.Tt) = 7 + 321} + (3 + 161'1;) ln Tt

(s 16 V=T (2arn (1)) “

where Cly(z) = Im(Lig(€™®)). As far as the one-loop initial conditions, namely Cil) (1w ) are
concerned, our results agree with those of [27,36]. They also agree with the results obtained
in [37,38] after a transformation to our renormalization scheme specified by Egs. (A.2). The
general formalism of a change of renormalization scheme discussed in detail in [39] can also
be used to verify that our result for the two-loop initial conditions Cf) (ftw) coincides with
the findings of [32]. This is shown in App. A.2.

4.3 Anomalous Dimensions

The Wilson coefficients are evolved from g, down to the relevant low-energy scale p with
the help of the RG equation. In this way, large logarithms of the form In(u?/p;,) are

resummed to all orders in a,. In mass-independent renormalization schemes like MS the
RG equation is given by

u%oiw) = (i) (27)

where «;;(1) is the entry of the ADM describing the mixing of @); into @;. In the case of
Q% we will denote the diagonal entries of §(u) by v+ (u).

2This scheme coincides with MS for u < iy, For details see for example [32,34].
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Figure 6: Sample diagrams for the O(a?) mixing among the current-current operators.
The fermion loop in the right Feynman graph contains f active quark flavors.

In the NNLO approximation the ADM has the following perturbative expansion

() = 2850 4 (O‘S(“))QW + (M)sﬁ(”? (28)

A7 47

where the coefficients 4*) can be extracted from the one-, two-, and three-loop QCD
renormalization constants in the effective theory. The renormalization matrices are found
by calculating amputated Green’s functions with single insertions of Q% up to three loops.
Sample diagrams are shown in Fig.6. The corresponding amplitudes are evaluated using
the method that has been described in [40-42]. We keep the gauge parameter arbitrary
and find it to cancel from 4®, which provides a powerful check of our calculation. To
distinguish between IR and UV divergences, we introduce a common mass M for all fields
and expand all loop integrals in inverse powers of M. This makes the calculation of the
UV divergences possible at three loops, as M becomes the only relevant internal scale, and
three-loop tadpole integrals with a single non-zero mass are known [41,43]. Comprehensive
discussions of the technical details of the renormalization of the effective theory and the
actual calculation of the operator mixing are given in [40,42].

While y(io ) is renormalization-scheme independent, 75_3 ) and Vf ) are not. In the NDR

scheme supplemented by the definition of evanescent operators given in Egs. (A.2), we
obtain for C'y = 3, Cr = 4/3, and an arbitrary number of active quark flavors f

1
vﬁ?’zﬂ(wg)

<1>:(_Ei2>( l)
g fl{1F ,
* 2 73 3 (20)

o 1 !
— (349049 + 201485) — —— (115577 F 9795
7 = 300 ( )~ 1350 FO9795) 1

130 1\ . 1
;2_7(1:F§>f ¢(672+80<1:F§)f>é(3)-
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Here ((z) is the Riemann zeta function with the value {(3) ~ 1.20206. Again, we find
agreement with the one- and two-loop results of [27,36], and therefore also with the findings
of [37,38,42] that were obtained in different renormalization schemes. We also confirm the
three-loop results presented recently [39]. The explicit formulas that allow the conversion
of the latter anomalous dimensions to our scheme can be found in App. A.2.

4.4 Threshold Corrections

In order to compute the Wilson coefficients for scales p much lower than uy a proper
matching between effective theories containing f and f — 1 active quark flavors has to be
performed each time one passes through a flavor threshold. It is achieved by requiring
that the Green’s functions in both effective theories are the same at the point pr = O(my)
where the quark with mass my is integrated out. This equality translates into

(@7 (up)) O () = (QF (ug)) (). (30)

where the labels f and f — 1 indicate to which effective theory the variable belongs.
Including corrections up to NNLO we write

f

3 T ~no1 [+ of T Q QA 2T
(@ )" = (@) <1+ gt )4 () <uf>>, (31)

where (Qf >(0), MO (uyp), and 7@ (up) codify the tree-level, one-, and two-loop matrix

element of the column vector @f containing the relevant physical operators. The other
quantities entering Eq. (30) can be expanded in a similar fashion.

Another subtlety arises when working in mass-independent renormalization schemes,
because the matching conditions connecting the strong coupling constants of the effective
theories with f and f—1 active quark flavors are non-trivial in such schemes. In particular,
in the MS scheme one has in the NNLO approximation [44, 45]?

- of(ps) 2, K5
o Hup) = af (ny) (1— gral U
f

aof (N2 (22 38 pd o4,
S\ f) i P SR A .
+( 4 > o 3 "ma o mi))

where m; = mys(my) denotes the quark MS mass. Of course, the appearance of both
logarithmic and finite corrections can be avoided by adjusting the renormalization scheme

(32)

31t should be noted that the non-logarithmic term in Eq. (32) differs from the result published in [44].
The authors of [44] have revised their original analysis and have found agreement with [45].
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Figure 7: Examples of diagrams that contribute to the O(a;) matrix elements of the
current-current operators.

so that af='(us) = af(us). While this does not affect the physical amplitudes [39], one
leaves the class of mass-independent renormalization schemes with the drawback that the
usual RG equations do not hold below the matching point and the resummation of large
logarithms gets obscured. Hence it is much more convenient to stick to the MS prescription
of ay and to apply Eq.(32) whenever a flavor threshold is crossed. We will follow this
approach below.

In terms of the discontinuities
6CM () = CT W (ug) = CT O (ug) 670 (pg) = B () = 77O (ug), (33)

the solution of Eq.(30) can be written in a relatively compact form. Up to the second
power in the strong coupling constant we obtain

6C O (ug) =0,

§CW () = =67 (1) T O py)

- . 2 /ﬁ -
3C (ug) = - <5T(1)T(Mf) +3n m—J;) CID (1)

(34)

. N . 2. K} .
- (57"(2)T(Mf) — DT () 67O () + 3 lnm—J;Tf(l)T(uf)> CTO(uy)
f

where the second line resembles the NLO result derived in [46]. Note that at NNLO the
logarithmic O(a?) correction entering the right-hand side of Eq. (32) starts to contribute
to the matching conditions of the Wilson coefficients at each flavor threshold.

In the case of Cy(u) the explicit expressions for the threshold corrections turn out to

be much simpler than suggested by Eqgs. (34), because the corrections ord (ff) vanish, as
the O(ay) matrix elements of the current-current operators are identical in the effective

theories. Sample diagrams can be seen in Fig.7. In consequence 5C’$) (f) = 0. Note that
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Figure 8: Sample diagrams for the O(a?) matching corrections to the Wilson coefficients
of the current-current operators at each flavor threshold. At these thresholds the number
of active quarks changes from f to f — 1.

this is in contrast to the case of the QCD and electroweak penguin operators which receive
non-trivial threshold corrections at NLO [46,47]. However, non-vanishing discontinuities
5rf ) (py) arise from the diagrams depicted in Fig.8. For what concerns the calculation of
the graphs itself, we have adopted two different methods to regulate IR divergences and
found identical results for the threshold corrections. The first approach mentioned earlier,
uses dimensional regularization for both IR and UV singularities and calculates on-shell
matrix elements with zero external momenta. The second method uses small quark masses
as IR regulators and computes matrix elements with zero external momenta which are
now off-shell. Useful details on the latter procedure can be found in [48]. The unphysical
coefficients 7#(*) (1) differ in both cases and depend on the IR regulators. However, this

dependence cancels in the combination entering 5Cf ) (pr). The correct implementation of
the discontinuity in ay of Eq.(32) and of similar decoupling relations for the gluon and
quark fields are of crucial importance for this cancellation. In the second method using
off-shell matrix elements another subtlety occurs, as now both sides of Eq. (30) depend on
the gauge parameter, and in order to obtain a gauge-independent and IR-safe result one
has to take into account that the gauge parameter is discontinous across flavor thresholds
as well. We do not give the decoupling relations for the gluon, the quark field, and the
gauge parameter here. They can be found for example in [45].

At the bottom quark threshold scale p; we find for the non-trivial matching conditions
of the Wilson coefficients of the current-current operators in the NDR scheme

2(1FL) [ 2 2 /631 + 9699
sC® _ 55 (1F3) 2 F
C:i: (/“‘Lb) 77b n 6348

N (59 1
15 ) (2 cmfe 2 e ) )
:F(:F?)><36+3nmg+nm§ : (35)

where m, = s (pw ) /s (ps) and my, = my(my,) denotes the bottom quark MS mass. We also
remark that diagrams like the one shown on the right of Figs. 7 and 8, which correspond to

30 (1 —m) + mCi”(uw)>
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QCD corrections to a current operator, do not contribute once all counterterms have been
included. The coefficients (5012) (up) depend on the renormalization scheme chosen for Q% ,
in particular on the specific structure of the evanescent operator defined in the second line
of Egs. (A.2). Choices other than these would lead to operator mixing between QY.

The discontinuities 6C > (11,) at the charm quark threshold scale yi. can be ignored as
it is more convenient to express the final low-energy Wilson coefficient in terms of the ay
of the effective theory with four active quark flavors rather than in terms of the oy of the
effective theory with three active quark flavors, because no RG equation needs to be solved
below .. This will be explained in more detail at the end of Sec. 6.

5 Neutral and Charged Currents

5.1 Neutral Current: Z-boson Exchange

The low-energy effective Hamiltonian describing the interactions of neutrinos and quarks
mediated by Z-boson exchange is given by

T
Ha = 2 S0 Cz(1)Qz, (36)

where
Qz =Y ((I§ = 2¢,5° ) QF — I (Q% + Qo)) (37)

q

and the sum over ¢ extends over all active light quark flavors at the renormalization scale
p, while I? = (+1/2,—1/2) and e, = (+2/3,—1/3) denote the third component of the
weak-isospin and the electric charge of the up- and down-type quarks, respectively. The
appropriate normalization of the electromagnetic coupling a and the weak mixing angle
sin? 0, will become clear after our discussion in Sec. 6.

Removing the Z-boson as an active degree of freedom from the effective theory induces
a vector as well as an axial-vector coupling of the left-handed neutrino current to quarks

QL= > (@) Wuyve). QY= D (@50 (" ver) - (38)

t=e,p,7 t=e,p,m

In the literature on K+ — 7w the operator QF is usually omitted,* as is does not

contribute to the decay rate through NLO. We keep Q. throughout our NNLO calculation.
While individual diagrams are non-vanishing, we verify explicitly that both the two-loop
matching diagrams and the three-loop mixing diagrams with Qf, sum to zero. We will
discuss this issue in more detail in Sec. 6 after presenting our final results for the anomalous
dimensions and matrix elements, respectively.

4To our knowledge the only exception is the recent publication [6].
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Figure 9: The one-loop top quark contribution to the coupling of the Z-boson to two and
three gluons. Diagrams obtained by the interchange of the external gluons are not shown.

As can be inferred from Fig.9, decoupling the top quark generates furthermore an
effective gauge-variant coupling of the left-handed neutrino current to two and three gluons
which can be expressed in terms of the following Chern-Simons operator

2

g a a 1 aoc a C s
Qcs = @ GRS (Gmam Gus + ggf ’ GHl GZzG%) Z (WL%“‘WL) ’ (39)

l=e,p,m

Here g denotes the strong coupling constant, e/*#2#3# is the fully antisymmetric Levi-Civita
tensor defined with €”'?* = +1, G is the gluon field, and f** are the totally antisymmetric
structure constants of SU(3). We remark that the 't Hooft-Veltman (HV) prescription [49]
and dimensional reduction (DRED) [50] lead to the same result for the triangle diagrams, if
the mathematically consistent formulation of the DRED scheme presented recently in [51]
is employed. A description of the HV scheme can be found for example in [27].

The inclusion of Qcs in Eq.(37) is essential to obtain the correct anomalous Ward
identity for the axial-vector current [18] and in consequence to guarantee the vanishing of
the anomalous dimension of ()7 to all orders in perturbation theory. We stress that we do
not add this contribution in an ad hoc way, instead QQcg is generated in an unambigous
way from the diagrams in Fig. 9. Our effective theory is anomaly free, because QQcg cancels
the anomalous contribution from the triangle graph with a bottom quark, just as the
anomalous effects from top and bottom quarks cancel in the SM. Let us illustrate how
the cancellation between the contributions from Q% and Q¢s to the anomalous dimension
of Q)7 occurs at lowest order. As depicted in Fig. 10, the first non-trivial mixing arises
at O(a?) with Q% mixing into itself through two-loop diagrams and Qcs mixing into Q%
through a one-loop diagram. Choosing the operator basis as (Qz, Qcs), we find for the
NLO anomalous dimension matrix®

R 0 0

®The calculation has been performed in the background field gauge for the gluon field [52], which makes
it possible maintain explicit gauge invariance at the level of off-shell Green’s functions [30], keeping the
gauge parameter arbitrary.
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in agreement with [17]. At NNLO one needs further an evanescent operator so that 4 is
enlarged to a 3 x 3 matrix.

In the chosen operator basis the LO contributions to the initial values of the Wilson
coefficients are

(Cz(pw), Ces(pw)) = (1,0). (41)

The particular form of 4 then ensures that the Wilson coefficients up to NLO satisfy
(Cz(p),Ces(p)) = (1,0) at any scale p. In fact, this scale independence is a striking conse-
quence of the Adler-Bardeen theorem [53], which states that the Adler-Bell-Jackiw (ABJ)
anomaly [18] of the axial-vector current is not renormalized in perturbation theory. This
theorem is strictly proven to all orders for the abelian case [30,53], while strong arguments
suggest that it holds true for the non-abelian case [54]. Assuming that the ABJ anomaly
equation survives renormalization, it is easy to show that Cz(u) is scale independent if
and only if Cog(p) does not receive radiative corrections in the chosen operator basis,
where Eq. (41) holds. In a renormalizable anomaly-free theory, such as the SM [55], this
can always be achieved by invoking an additional finite renormalization of the axial-vector
current [17,30,56]. For what concerns Cz(p) this means that one has to perform a fi-
nite renormalization of Q% to obtain the matching condition Cog(pw) = 0 beyond one
loop. The corresponding finite O(a?) correction to the renormalization constant Z44 will
be computed in Sec.6. Also this finite renormalization is not an ad hoc addition to our
calculation, but originates from the loop diagrams in Fig. 17 containing a top quark. In-
stead of absorbing these effects into Z44 one could include them in Cz(uy ). In this case
one would also find a non-zero anomalous dimension of (7. Since both terms combine
to reproduce the effect of Z44 the physical result is however unchanged. Furthermore,
owing to the definition of @7 in Eq. (36), the Wilson coefficient of Qcg does not receive a
matching correction at the bottom quark threshold scale p;,. As the anomalous dimensions
of operators in the effective theory correspond to coefficients of large logarithms in the
full theory, the RG invariance of C'z(u) implies that anomalous subdiagrams involving the
Z-boson do not give rise to logarithms In(m/m?) in the associated SM amplitudes to all
orders in perturbation theory. In contrast, large logarithms proportional to m?2 /M2, which
are relevant to our calculation, may arise. Such terms correspond to higher-dimensional
operators, which are a priori not covered by the Adler-Bardeen theorem. In Sec.6 we will,
however, show by an explicit three-loop calculation that the latter terms are absent in the
O(a?) charm quark contribution to the s — dv transition in the SM.

5.2 Charged Current: W-Exchange

In contrast to the neutral-current case, the discussion of the effective charged-current cou-
plings can be kept rather short. The interactions between leptons and quarks mediated by
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v Q) v v Qcs v

Figure 10: Diagrams describing the mixing of Q% and Q¢s into Q% and E% at O(a?). The
fermion loop containing f quark flavors is anomalous, if f is odd. The Feynman graph in
which the fermion flow in the closed quark line is opposite to the one shown in the left
diagram is not displayed.

W-boson exchange are encoded in the following low-energy effective Hamiltonian

4G R

M = 5 Cwln) D (VisQ5 + ViaQs) (42)
q=u,c
where _
Q% = Z (EL’YM]L)(V_(L’V’%L) ) QZ = Z ((jL’YudL)(gL’YHVZL) . (43)
l=e,p,T l=e,p,T

Since the effective charged-current couplings @3 and @7 do not mix under renormalization
the Wilson coefficient Cy (1) is p-independent. The normalization of Eq.(42) is chosen
such that Cy (u) = 1.

6 Z-Penguin Contributions

6.1 Effective Hamiltonian

After integrating out the top quark and the heavy electroweak gauge bosons we first en-
counter an effective Hamiltonian which is valid for scales p in the range pu. < p < py with
dynamical bottom and charm quark fields. The Z-penguin contribution involves HSE and
HZ,. defined in Egs. (22) and (36) as well as the effective Hamiltonian

Gr T
HEY = — N\, ————C7 v 44
which finally brings the leading dimension-eight operator @, of Eq. (21) into play.
The desired matrix element (7Tvw|7|K™) involves the transition operator 7 = 77 +
T8, where TF and 7% denote the Z-penguin and electroweak box contribution, respec-
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Figure 11: Examples of Z-penguin diagrams that contribute to the initial value of the
Wilson coefficient of the leading dimension-eight operator @, at O(a?).

tively. The Z-penguin contribution to the transition operator takes the following form

~TP =M —i / d*z T(HSE (2)HZ(0))
G TQ (45)
F P P P

=—\N—-+—(C »,+4C 40 7).
NI Gw( 5 (1)Qy + 401 (1)@ +4C_(1)QY)

Notice that in passing from the first to the second line we have used Cz(u) = 1. The last

two terms in Egs. (45) are the bilocal composite operators Q% that involve the effective

current- and neutral-current couplings Q0+ and Q7. The former operator has already been

introduced in Eq. (19). In contrast to [9] we have defined it in terms of chiral and not

“V — A” fermion fields. This results in the factors of 4 multiplying Cy(p) in the above

equation.

As the normalization of « is determined by the short distance interactions at py,,
the Wilson coefficients are appropriately expressed in terms of Gy using the relation
G (pw) /A7 = alpw)/sin? 0y (pw) = V2/7 GpM?2, where all running couplings are de-
fined in the MS scheme. The typical case is that of electroweak box diagrams, to be
discussed in the next section, which are clearly proportional to g*(uw)/M32 o< G%MZ.
After decoupling, all short distance information is encoded in the Wilson coefficients and
in G'r, which does not evolve in the effective theory. Hence the electromagnetic coupling
a and the weak mixing angle sin? 6y, entering Eqs. (45) and (93) are naturally evaluated
at the weak scale [22].

6.2 Initial Conditions

The matching corrections for CF(u) are again found by requiring equality of perturbative
amplitudes generated by the full and the effective theory. Examples of two-loop Z-penguin
SM diagrams can be seen in Fig. 11. Regulating spurious IR divergences dimensionally we
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Figure 12: Diagrams involving the double operator insertions (Q%,Q%), (QL, E%), and

(Q5, Q1)

obtain for the non-zero matching conditions in the NDR scheme

POY, Y iy
C,"(pw)=8(2+1n :

M2
) I I (46)
CF® () = 4Ck (33 + 472 + 34In % 4 121n? —W) ,
" M3, M,

where the first line recalls the NLO result [9], while the second one represents the new
NNLO expression.

6.3 Anomalous Dimensions: Non-Anomalous Contributions

The mixing of lower- into higher-dimensional operators through double insertions leads in
general to inhomogeneous RG equations [29]. In the case of the Wilson coefficient C(u)
introduced in Eq. (45) one has explicitly

pg-CE ) = 2 CE )+ 4 AL )G, (47)

where 7, (11) encodes the self-mixing of @,,, while the anomalous dimension tensor vf (1)
describes the mixing of the bilocal composite operators Qf into Q,. The factor of 4 in the
above relation is of course a direct consequence of the factors of 4 in Eq. (45).

Since the conserved current s;7v,d; in @, is not renormalized, the RG evolution of @,
stems solely from the prefactor m?/¢? in Eq.(21). In terms of the expansion coefficients
of the anomalous dimension of the charm quark MS mass and of the QCD S-function, the
corresponding anomalous dimension reads

Y =2 (v — ) . (48)
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Figure 13: Sample diagrams for the mixing of the double insertion (Q%,Qz) into @, at
O(a?).

S

In the particular case of QCD one has up to the NNLO level®

404 40 4432 320 280
©) — g SO (2) — 92498 — [ 22 + 2270 (3 Ty
Yo A 3 gf, Yo 27+3C() f 81f,
(49)
2 38 2857 5033 . 325
—11-Z7, —102 - 227, el bl
Bo 3f/ B 0 3f, Bo 5 18f+54f

The contributions to the anomalous dimension tensor 7%, (u) stemming from non-
anomalous diagrams can be decomposed in the following way

VI = gt - (5 - Do) LY. (50)
where the superscript A and V' marks the corrections arising from diagrams with a double
operator insertion (Q1,Q%) and (Q%,Q7). In the NDR scheme supplemented by the
definition of evanescent operators given in Egs. (A.2) we obtain after setting C'y = 3 and
Cr = 4/3 the following coefficients

Yol = —4(1£3) 7w =0,

Yy =16 (2F 11) Py =0, (1)
2

Vi) = — g5 (45124 4 484917) + 32 (13 £ 15) ((3) & 144/ . W@ =o0.

The results in the second line agree with the findings for 75332 of the prior NLO calculation [9]

if one takes into account i) a factor of —1/2 arising from the decomposition of vi(k) in

vV

Eq. (50) and i7) a factor of 4 that stems from the fact that our operators Q% and @, are

6% have calculated the anomalous dimension of the quark mass and the strong coupling constant in
the MS scheme up to the three-loop level, finding perfect agreement with the literature [17,57].

28



Figure 14: Sample diagrams for the O(a?) mixing of (Q%,Q7) into Q,.

defined in terms of chiral and not as traditionally done “V —A” fermion fields. The third line
shows our new NNLO results. We stress that also at NNLO the part of the double operator
insertion (Q%,Qz) proportional to Q5Q% — QLQY accounts for the complete mixing. In
order to understand this feature it is important to realize that one can distinguish two
kinds of contributions: i) diagrams in which @7 couples to an up-type quark as on the
left of Figs. 12, 13, and 14, and #i) diagrams in which @z couples to a down-type quark
as on the right of Figs.13 and 14. This classification holds true to all orders in QCD.
Diagrams of type @) containing an insertion of the vector part of @z do not contribute
to the anomalous dimensions. Further diagrams of type i) vanish in LO and are UV-
finite at NLO, but do have UV poles at NNLO. However, their overall contribution is
cancelled by diagrams like the ones shown in Fig. 15, which induce a flavor off-diagonal wave
function renormalization. Of course, this additional wave function renormalization has to
be included in the renormalization of @)z. Finally let us mention that the contributions
from diagrams of type ii) containing an insertion of the axial- and vector part of @z have
opposite signs, which is a consequence of Q% containing only left-handed down and strange
quark fields.

6.4 Anomalous Dimensions: Anomalous Contributions

In order to calculate the O(a?) mixing of the double insertions (Q%,Qz) into Q,, we will
need the renormalization constants of Q% and Qg defined in Egs. (38) and (39) up to
O(a?), because these operators appear as subloop counterterms in the effective theory.
Diagrams involving such subgraphs can be seen in Fig. 16. The renormalized operators Q%
and Qcg defined in Egs. (38) and (39) may be expressed in terms of the bare ones as

Q% = ZaaQ’y o + ZapE}

(52)
QC’S = M_Qe QCS,O —+ ZCAQZX,O + ZCEE‘?%O )

where the unexpected factor p~2¢ stems from the relation between the bare and the renor-
malized strong coupling constant. Note first that Q7 is protected by its gauge invariance
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Figure 15: Sample diagrams for the flavor off-diagonal wave function renormalization at

O(a?).

S

from non-diagonal renormalization involving the gauge-variant operator QJ¢g, and second
that Qcg has no diagonal renormalization due to the factor ¢? in its definition.

Within dimensional regularization the renormalization of Q% is not exhausted by a
multiplicative factor, but involves mixing with the following evanescent operator as well

By = a e (0 Y Vs Q) Z (VerYpver) + 6Q% . (53)

l=e,u,T

In our case the quark fields in Q% and EY% correspond to an open fermion line. We will
calculate the parts of the anomalous dimensions that involve anomalous subloops with
insertions of Q% using three different prescriptions for +5 for this open line, namely NDR,
HV, and DRED. Together with the two possibilities to treat = in the closed fermion
loop, which are HV and DRED, this amounts to six renormalization prescriptions in total.
It is instructive to see how different scheme-dependent pieces combine into a scheme-
independent result for P.(X). Note that diagrams with an insertion E% must be included
not only in the NDR and HV schemes [27-30], but also in DRED, which is unexpected at
first sight. The crucial point here is that a mathematically consistent definition of DRED
involves infinite-dimensional spaces just as NDR and HV: the DRED scheme entails i) a
formally 4-dimensional, but really infinite-dimensional, space for the gauge fields and Dirac
matrices, and 7i) a formally n-dimensional space for the momenta, which is a subspace of
the former one [51]. In consequence, £ is not identical to zero in DRED, as it belongs to
the formally n — 4-dimensional complement of the n-dimensional space.

The renormalization constants Zaa, Zag, Zca, and Zcg entering Egs. (52) are found by
calculating the UV divergent parts of Feynman diagrams in the effective theory. Sample
graphs encoding the first non-trivial mixing of the set (Q%,Qcs) into Q% and Ef% are
displayed in Fig. 10. In the MS scheme we obtain

1
Z(2,1) _ Z(2,1) _ _ = .
an =30k, AB 5CF (54)
Zgj) =—6CFp, Zgjgl) =Cp,

where the symbol Zi(]’-c’l) denotes the coefficient of the 1/¢' pole of the O(a¥) term of the
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Figure 16: Examples of diagrams involving the double operator insertion (Q%,Q%) and
(Q%,Qcs). In the (QL, Q%) case the fermion loop containing f quark flavors is anomalous,
if fis odd.

associated renormalization constant. By taking into account the factor p=2¢ present in
the second line of Eqs. (52) and switching to the basis (Qz, Qcs) one recovers the ADM
given in Eq. (40). All the one-, two-, and three-loop results presented in Egs. (54), (55),
(62) and (63) are again calculated using two different methods. In the first approach, IR
singularities are regulated by introducing a common mass parameter into all the propagator
denominators including the gluon ones [40,41], while in the second one only the mass of
the open quark line is kept non-zero [48]. The two methods give the same results for the
MS renormalization constants.

The aforementioned finite renormalization of Q% is most easily found by insisting that
the O(a?) correction to its initial condition is identical to zero. This matching requires the
calculation of the two graphs shown in Fig. 17. The UV divergences from these diagrams
are canceled by a counterterm proportional to ZEAI). The leftover finite contribution can
be either absorbed into the initial value of the Wilson coefficient of Q9% or into a finite
renormalization constant Zf;lo). The latter possibility is more convenient, as it avoids a
spurious RG running of the effective neutral-current coupling )z, which would otherwise

occur beyond NLO. We find
3
738" = 50, (55)

for both HV and DRED. In the former scheme we reproduce the result of [17]. With
the superscript A we indicate that we have only considered the contributions related to
anomalous graphs. The contributions from all other diagrams, which have only open
fermion lines, can be discussed separately. If the HV scheme is used for the latter diagrams,
an additional finite renormalization constant is needed [17,30, 56].

While we could rely on the Adler-Bardeen theorem to ensure that the contributions
of Q% and Q¢s cancel in the renormalization of @)z, the situation is more complicated
in the case of the transition operator encountered in Eq. (45), because it involves double
insertions of the type (Q%,Q%) and (Q%,Qcs). Typical examples of such graphs are
shown in Fig. 16. Apparently, their renormalization requires counterterms proportional to
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Figure 17: The SM diagrams one has to compute in order to find the O(a?) correction to
the initial value of the Wilson coefficient of QY.

Q.. The associated renormalization constants Z% ;»(1) can be extracted at any given order
in a4 by requiring

(QL; () + Z5; (1) (Quo(1)) . (56)
to be UV finite. Here

QL = =i [ T(Q5)Q)0) - QLn)Q,0)) (57)

and j = A,C,E, while (...) denotes matrix elements which include the proper QCD
renormalization of the coupling, the masses and the fields. Note that since @4 and @Q; are
renormalized operators, all subloop divergences are properly canceled in Eq. (56). Hence
the renormalization constants Zf, (1) are sufficient to achieve a finite result.

The general form of the anomalous dimension tensor for double insertions has been
derived in [29]. In the following discussion we will only need the explicit expression for the
part of vf , (1) related to anomalous diagrams given by

B == (udﬂ (Z% S0+ i 28, ) ) 25 () (58)

k=A,C j=A,C\E

where ; (1) and 7y (@) are the elements of the ADM in the (Q%, Q%) and (Q%, Qcs, EY)
sector, while 7, (1) denotes the renormalization constant of Q.

The renormalization constants ZZI] (1) have the following perturbative expansion

[e'e) k k
I _ (1) I(k) 1) _ 1
Zijow U”‘Z(?) Zijw s Zijw Z—z s (59)
k=1 1=0

for I = P, A. Following the standard MS prescription, Z% (i) is given by pure 1/¢ poles,

ij, v
except when ¢ = 4+ and j = E. In the latter case, the renormalization constant is finite
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to make sure that the matrix elements of double insertions involving evanescent operators
vanish in n = 4 dimensions [27 29).

The finite parts of Eq. (58) in the limit e going to zero gives the anomalous dimension
tensor. Performing an expansion in powers of the strong coupling one recognizes that the
first non-trivial correction to 'yi,,(p) arises at the third order. We obtain

A2 A(3,1 P(3,1 2,1) P(1,0 2,1) »P(1,0 A(2,0) »P(1,1
Vo) = 62250 + 4208 4z 5P 200 - 2250 700 — AZa 3020 (60)

which clearly verifies the impact of the finite renormalization of the evanescent operator E%
and the axial-vector coupling @Q%. Note that in the above equation the superscript A has
been replaced by P whenever possible. The renormalization constants Zi&g’i) and ng5 ’i)
are found by calculating the three- and two-loop diagrams shown in Fig. 16, whereas the
determination of Zﬂi’i) and Zﬁgjg) requires only a one-loop computation. The relevant

Feynman graphs are displayed on the left-hand side of Fig. 12.

On the other hand the pole parts of Eq. (58) must vanish. From this condition one ob-
tains relations between single, double and triple 1/¢ poles of the renormalization constants.
In our case the non-trivial ones read

62~ AZEN I =, o
’ 7 61
42587 22502500 = 0.
These equations constitute a powerful check of our three-loop calculation. For instance,
an erroneous omission of the factor x=2¢ in the second line of Egs. (52) changes Eq. (60) as

well as Eqs. (61), and indeed leads to a failure of the check.

We now give the values of the renormalization constants entering Eq. (60) for the three
possible renormalization prescriptions for the open fermion line. The quantities of Eqs. (54)
and

ZU0Y = 21+ ) | (62)

do not depend on the treatment of 75 in the open fermion line. This is not the case for the
remaining ones. In the MS scheme we find

G _ {—4CF (34 CY) PG _ {BCF (5+Cy) . {36 (14 CY)

+Av —8CF ’ +C,v 3OF (3 - OA) ) +Ev ) (63)
where the expressions in the first line correspond to the NDR scheme, while the second
line shows the HV and DRED results. Amazingly, HV and DRED defined as in [51] give
exactly the same results for all renormalization constants through NNTLO.

Inserting Egs. (54), (55), (62), and (63) into Eq.(60), we see that ’yﬁ’(f) vanishes in
all six renormalization schemes. This non-trivial result implies that anomalous subloops

involving the Z-boson do not give rise to a NNLO logarithm In(mi/m?) proportional to
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m?2/M?2 in the decay amplitude of K™ — 7tvw. We have checked the absence of these
O(a?) terms explicitly by calculating the three-loop SM diagrams containing an anomalous
bottom quark loop and verifying that in the limit m, going to zero no IR divergence appear
in the corresponding amplitude. Beyond NNLO the non-logarithmic pieces of three-loop
diagrams containing anomalous subgraphs will be relevant and it is highly non-trivial
whether the cancellation between the effects from top and bottom quark triangles carries
over to this and higher orders.

6.5 RG Evolution

Since in our renormalization scheme specified by the evanescent operators in Egs. (A.2)
the Wilson coefficients C4(u) evolve independently from each other, Eq. (47) splits into
two inhomogeneous differential equations. Using Eq. (27) the RG evolution of the Wilson
coefficients entering the Z-penguin contribution may then be recast into the following
homogeneous differential equation [9, 58]

d -

uﬁép(u) = 3p(1)Cp(p) (64)
where
) AC, (1) Yl 0 ()
Cp(p) = | 4C_(n) | . Ap(p) = 0 y=(w) Z, ()| . (65)
Cl (1) 0 0 mlw

which can be solved by the standard techniques [36,46,47] introduced for single operator
insertions. Since 4p(p) and a,(p) depend on the number of active quark flavors f, we have
to solve Eq.(64) separately for up < p < pyw and p. < p < pp. At the bottom quark
threshold scale p;, additional matching corrections, which will be discussed later in this
section, have to be taken into account. The Wilson coefficients Cp () are given by

Cp() = Up (. i) Cp(piw) - (66)

Keeping the first three terms in the expansions of 4p(u) and of the QCD [-function, one
finds for the evolution matrix Up(pu, ptyw) in the NNLO approximation [39, 59

Up (i i) = Kp() US (1, 11w ) K5 () (67)

where

47

2
) = 1= S0 g0 (200 (50— (7).

47

. - o) - as(m)\? -
Kp(p) =1+ S“JS”(S—M) T
(68)
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and

ap
T (1, o) = Vi ding [ 220} 7 s 69
P (M? NW) pdlag Ols(,u) P ( )
denotes the LO evolution matrix, which is expressed through the eigenvalues a’ of ’A)/J(DO)T
and the corresponding diagonalizing matrix Vp:
(‘A/P_l’s/](p())TVP> = Qﬁga}'p@j . (70)
ij
In order to give the explicit expressions for the matrices j},” and j](f) we define
R A ™
for k = 1,2. The entries of the matrix kernels 98) and 5'1(32) are given by
A(1)
F 50 728, (1+ap—a))’
A l1+ads—a A(1 &(1) B &(1)
S = 25, P0 + r P( (59, = 28D, 45 (72)
( P )z J ZQ—’—G/P—G/P ( P )z]{;( P )k;] ﬂ()( P )z] ik

where the first line recalls the familiar NLO result [47], while the second and third represent
the corresponding NNLO expression derived in [39,59].

We will now collect the various expressions that enter the RG analysis of the Z-penguin
contribution. The LO evolution from p,, down to p; is described by

U 0 0
U0 = 0 e 0. (73)

12 1 1
(nb —nsz) n°

Adding an extra index for the number of flavors, the corresponding matrices jl(pk) read

5165
3174 0 0
55(1) 2267
Jp = 0 — 7 0 , (74)
_ 15857 15305  _ 14924
1587 3174 1587
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and
—7.35665 0 0

Jo@ = 0 ~54.9107 0 , (75)
17.7699  —1.7514  18.3025

where in the latter matrix we have employed the numerical value of {(3).
The LO evolution from g, down to p. is characterized by
6

nz 0 0
U;(O) _ 0 N ® 0 , (76)

1

6 1 12 1
12 25 325 6 325 325 25
7 (ncb — Ny ) 11 <770b — ey ) Mep

where 7 = as(up)/as(ite). The corresponding matrices j}’” take the following form

6719
ois g 0
fa(1) _
Jp=1 0o B2 g | (77)
15931 5427 15212
1875 1250 1875
and
—10.2451 0 0
Ji® = 0 ~50.3422 0 . (78)

8.0325  —0.3657 4.91177

In the last relation terms proportional to ((3) have not been spelled out explicitly again.
The unbracketed superscripts of the above matrices indicates whether the object belongs
to the effective theory with five or four active quark flavors.

6.6 Threshold Corrections

Since Cp(p1) contains the Wilson coefficients C'i (1) it receives a non-trivial O(a?) matching
correction when passing from the effective theory with five active quark flavors to the one
with only four. The explicit expression for the discontinuities 5C’i2 ) (up) can be found in
Eq. (35). In the case of CF'(p) one has to distinguish two possible sources of discontinuities,
corresponding to the two terms in the first line of Eqgs. (45): i) radiative corrections to @,
alone and ) diagrams with double operator insertions (Q%,Qz). In the first case only a
single one- and a single two-loop diagram similar to the ones shown on the right of Figs. 7
and 8 can be drawn. These contributions are canceled by counterterms and the matrix
elements are zero. Sample diagrams of the second type are displayed on the left of Fig. 12
and in Fig.13. Since none of them contains a virtual bottom quark the discontinuities of
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the corresponding matrix elements vanish identically. By matching the effective theories
at the bottom quark threshold scale 1, we obtain from Egs. (34) in the NDR scheme

2 2 (/284704 694522 \ 1 /1033492 8264 \ <
5OP(2) = —— 1 _b 23 23
v o) = =3 | a0 F ogar ) 7935 m20 )"
3058 18136\ 1 .
+ (@ + Wﬁb) My 2+ (77523 CED (p1ry ) (79)

48 & L 24 1 1
+ = (7753 - 7753> CY () + e (nb " - 775‘”’) C(_l)(uw)» ,

where my, = my(m;) denotes the bottom quark MS mass.

6.7 Matrix Elements

For scales p below p,. the transition operator in the case of the Z-penguin contribution is
simply given by —77% = HE; with
4G F (6]
V2 27 sin? 0y,

Hig = Ae Z Cp(p)(5ryudL) (Tepy"ver) | (80)

l=e,u,m

which is part of the low-energy effective Hamiltonian that we have encountered already in
Eq. (1). The bilocal contribution to 7% in Eq. (45) has disappeared, because the charm
quark field is integrated out and the effect from the charm quark loop is absorbed into
Cp(p.) through the matching calculation at p.. There is still a bilocal contribution from
the up quark loop, but its contribution is suppressed by a factor of A(QQCD /m? with respect
to the one stemming from the charm quark. The former is not included in our formalism.
This power-suppressed contribution contains genuine long-distance effects and has been
computed in [6]. It will be included in our numerical analysis presented in Sec. 9.

The local operator entering Eq. (80) has zero anomalous dimension. Therefore Cp(p)
is p-independent for scales p below p.. Since we do not need to solve a RG equation
for p < pe, there is no need to express the result in terms of the a, of the effective
theory containing three active quark flavors and we can avoid to include the non-trivial
matching corrections of Eq. (32) at the charm quark threshold scale .. In terms of the
a; of the effective theory with four active quark flavors the product Cp(u.) (@, (1)) takes
the following form

(O) o xc(/'LC) 4’/T
Crlue) (@v)™ = —55 as(uc)<

CP(pe) Q)Y +4> "l (o) <@f<uc>>> . (8D

i==%
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Figure 18: Typical diagrams contributing to the matrix elements of QF at O(a,) (left) and
O(a?) (right).

where we have made use of the fact that the renormalized matrix element of (), does not
receive radiative corrections to all orders in a,. Notice furthermore the factor of 4 which
is a result of our definition of Qf and @, given in Eqs. (19) and (21).

In order to complete the evaluation of C'p(fi.) the renormalized matrix elements of the
bilocal composite operators Q% are needed. Including corrections up to NNLO, we write
them in terms of the tree-level matrix element (Q, ) in the following way

(QF () = (— 0(4,) + (%) rf”w) Q). (82)

where ri(l)(,uc) and ri(z) (i) codify the one- and two-loop corrections, respectively. Like

in the case 7{ () it is useful to decompose the coefficients further into

1 1 2
Ti(k)(,uc) = —ETﬁ(k) (Nc) - (5 - g sin’ 9W> Lo (MC) ) <83)

where the superscript A and V' marks the corrections arising from diagrams with a double
operator insertion (Q%, Q%) and (Q%L, Q).

Regulating spurious IR divergences dimensionally we obtain after setting C'4 = 3 and
Cr = 4/3 in the NDR scheme

P () = —2(143) (1 —In 7’;) : ryP(ue) =0,
‘ (84)
2 2
P2 ) = —2(2+9) —8(d+1)In e m2 + 241n? W i@ () =0,

Cc

where m,. = m.(u.) denotes the charm quark MS mass. The first line of the above equations

agrees with the known NLO results [9] if one takes the normalizations of the operators

A(k)

and of 71, in Eq.(83) into account. See the discussion after Eq.(51). The second line

vV
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Figure 19: Typical diagrams contributing to the O(a?) matrix element of Q% (left) and
the O(ay) flavor off-diagonal wave function renormalization (right).

represents the new NNLO expressions. We emphasize that also at the NNLO level only
the part of the double operator insertion (Q%, Q) proportional to Q5 Q% — Q4 QY% gives a
non-zero contribution to the matrix element of Q%. To understand this feature we again
distinguish Feynman graphs with coupling of @)z to up-type quarks as in Fig.18 from
those with down-type coupling of @)z as on the left of Fig.19. The former diagrams do
not contribute to the matrix elements at all. In addition the latter diagrams do not arise
at NLO while at NNLO they give a finite contribution. These terms are again cancelled
by corrections involving a flavor off-diagonal wave function renormalization as shown on
the right of Fig. 19. Finally we remark that diagrams with coupling to down-type quarks
and an insertion of Q% differ only by a sign from those with an insertion of Qf., because
Q% contains only left-handed down and strange quark fields. We recall that in the full
theory electromagnetic gauge invariance requires that terms proportional to sin? 6y, in the
s — dvv amplitude add to zero in the limit of vanishing external momenta. The fact that
the vector part of @z does not contribute to P.(X) is thus nothing else but the realization
of this Ward identity in the effective theory.

6.8 Final Result

Having calculated all the necessary ingredients of the RG analysis at the NNLO level, we
are now in a position to present the final result for the Z-penguin contribution to X*(z.)
that enters the definition of P.(X) in Egs. (2) and (114).

In the NNLO approximation the Wilson coefficient Cp(j,) of Eq. (65) has the following
perturbative expansion

2
~ ~ Os\le) 7 Qs e ~
Oppe) = 09 () + 2 G0 4 (Al ) (85)
i 47
where
(0 ~4 (0) 75 (0) ~(0
P (e) = Up 0RO O ()
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Cp)(pe) = TV TR TR O ()
U (750 = J50) 02O ()
FmaUROTE (0 ) = FOC ()
Cp(ue) = I U2 O () (86)
+ anjj;(l)UP(O) <jlg<1) _ J;‘;(”) [715;(0)5;3) (i)
s JpOORO OO (O () = TV CL () )
+77§b(74(0) (j5(2) _ j;;@) _ j4(1) (j;(l) _ j4(1)> _ 55}(32)(%)) A;(O)@I@)(Mw)
+nwa<®(Lp>_juD> M0<CG( W) — Lgmégxm”>
R UROTR (C8 ) = TV ) = (22 = (B0)7) E0 ) -

The explicit expressions for é}k) (tw ), U }; (0), J };(k), and 56’}@ (1p) have been given in
Egs. (73) to (79). We also recall that n, = as(pw)/cs(e) and ne, = as(ps) /s (pe)-

It is useful to express the running charm quark MS mass m,(u) entering the definition
of the dimension-eight operator @, of Eq.(21) in terms of the input parameter m.(m.).
At the scale . the required NNLO relation reads

2
To(te) = ke (1 + %&1) + (%) §£2)> ze(me) . (87)
Here Kk, = 7724/25 with 7. = a,(pe)/as(m.) and

15212 _
¢ = ﬁ(l—ﬂcl) ,

066066301 231404944 _, 272751559 _, 128
10546875 3515625 ¢ 10546875 5

(88)

&2 = (1—n%) <)

Including corrections up to third order in perturbation theory one finds from Eq. (81):

o) = e 0 (0 + P + 0P )) w9

where

O (1) = CPO(u,)

O (1) = CPO () +4 5" CFO () pF M () + €0 CEO ()

1=+
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O (1e) = CLO () + 437 (CF V) o7 V) + €L ) o7 (1))

1=+

+ &0 (Cf D) +43CPO () pf (1)(uc)) +EPCFO ). (90)
i=%

The factors of 4 are again a result of the definition of Qf and Q, in Egs. (19) and (21).

__ The coefficients pi(k)(uc) are obtained from Ti(k)(uc) by expanding the charm quark
MS mass m.(u.) entering Egs. (84) in ay around m.(m.). Explicitly one finds

P 1) = £ (e me) + (L2 3) Inr,

2 (91)
He
pi@)(uc) = ri(z)(uc, me) —4(4+1)Ink, F12In* K, £ 24In s, In " +(1£3)eW,

Cc
c

Here the additional argument in ri(k) (e, m.) indicates that the expansion coefficients of

Egs. (83) have to be evaluated at m.(m.) and not at m.(p.). Note that the second term
in the first line of the above equations is absent in the analytic NLO formulas of P.(X)
presented in [9,10]. The relevance of this p.~dependent term will be discussed in Sec. 9.

7 Electroweak Box Contributions

7.1 Effective Hamiltonian

Apart from the presence of a non-trivial matching correction at the bottom quark threshold

scale 1 the NNLO correction in the electroweak box sector does not involve new conceptual

features compared to the LO and NLO. This simplifies the following discussion notably.
For scales p in the range pu. < p < py the electroweak box contribution involves H'%

defined in Eq. (42) as well as the effective Hamiltonian given by

Gr 2ma B

C)(1)Qy - (92)

(T -
2 M2 sin? 0, "

In terms of these building blocks the part of the transition operator 7 stemming from
electroweak boxes can be written as

7B gy / d'z T (Ml () H%(0))

GF 2o <93)

== —A _

V2 M2 sin? 0y,

Notice that in passing from the first to the second line we used the fact that the Wilson
coefficients of the effective charged-current couplings @4 and @QF equal one at all scales. In

(CE()Q, +4Q").
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Figure 20: Examples of electroweak box diagrams that contribute to the O(a?) correction
to the initial value of the Wilson coefficient of the leading dimension-eight operator @),,.

particular they do not receive matching corrections at any scale. The last term in Eqs. (93)
is the bilocal composite operators QP which has been introduced in Eq. (20) already. The
factor of 4 originates once again from the use of chiral fermion fields in Q@ and Q,.

7.2 Initial Conditions

The initial conditions of C#(u) are as usual found by matching perturbative amplitudes
in the full and the effective theory. Examples of two-loop electroweak box diagrams can
be seen in Fig.20. Regulating spurious IR divergences once dimensionally and once with
small quark masses we found identical results for the initial conditions. In the NDR scheme
supplemented by the definition of the evanescent operator given in Eq. (A.3), the non-zero
matching conditions read

2
CED (1) = —4 (9 +41In %) ,
v (94)

2 2
B(2 2 a 2
CE® (1) = —8Cp (20+27r +251nM—”V;V+61n M—E) )

where the first line agrees with the literature [9,10], while the second one is the new NNLO
expression.”

7.3 Anomalous Dimensions

In the case of the Wilson coefficient CZ (1) the RG equation takes the following form

u%c,?(m — o (1)CB () + 4P () (95)

"We remark that the logarithmic term in the second line of Eqs. (94) differs from the expression one
would expect from the results published in [9]. The disagreement is due to a subtlety in regulating spurious
IR divergences [10,13]. This mistake has been corrected in [10].
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Figure 21: Typical examples of diagrams that describe the mixing of the double insertion
(Q1, Q1) into the leading dimension-eight operators @, at O(a?) (left) and O(a?) (right).

with v, (u) given in Eq. (48). The anomalous dimension tensor 72 () encodes the mixing

of the bilocal composite structures QF into @,. Sample diagrams are shown in Fig. 21.
The UV pole parts of these Feynman graphs are evaluated using the method that has been
described earlier. The factor of 4 in the above equation is a direct result of the factor of 4
in Eq. (93).

In the NDR scheme supplemented by the definition of the evanescent operator given in
Eq. (A.3) the expansion coefficients of v2(u) read

7% = -8
W =8Cr, (96)
69 458 48 38
B(2) _ 9 "o, — == -
Yo CF (CA 3 CA (CA 960,4) <(3) + 3 f) 5

where the second line differs from the findings for yg) of the original NLO calculation [9]
even after taking into account a factor of 4 stemming from the different normalization of
QP and @, used here and therein. It however agrees with the results of [10] where the
error made in [9] has been corrected. The third line represents our new NNLO result.

7.4 RG Evolution

Obviously the RG evolution of the electroweak box contribution may be recast into the
following homogeneous differential equation

M%éBm) = 55(u)Cp(1) (97)
where
() -G o
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As both 4p(p) and ag(p) depend on the number of active quark flavors f, we have to
solve Eq. (97) separately for p, < p < py and p. < g < pp. At the bottom quark threshold
scale p;, additional matching corrections, which will be discussed in the next subsection,
have to be taken into account.

In the following we will detail the different expressions that enter the RG analysis of the
electroweak box contribution. Our notation derives from Egs. (67) to (72) thereby. The
LO evolution from py, down to py is related to

o 1 0
U2 — 1 1| . 99
B 12 (1 — 771)23> ne° ( )

The corresponding matrices J j(gk) are given by

0 0
75(1)
Jp = (Mﬂ _14924) ’ (100)
1587 1587
and
j153(2) - (1296371522 ! 34624 1776210170 800 > ) (101)
39457581 1081 (3) © 7555707 + 23 (3)
The LO evolution from g, down to p. is induced by
A 1 0
UL = | (102)

_4L L
—12 <1 _ 7781)25) 77cb25

The corresponding matrices J l(a,k) read

0 0
741 _
JpT = (ﬂ _15212) ' (103)

1875 1875
and

(104)

@ _ 0 0
B 7 | 684990354 _ 6976 (3) —272051550 4 138 ~(3) ‘
5

19140625 245 10546875

7.5 Threshold Corrections

In analogy to the case of CT(u) all discontinuities of the matrix elements that could
potentially contribute to the threshold correction of C#(u) vanish identically. By matching
the effective theories at the bottom quark threshold scale p, we obtain from Egs. (34) in the
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Figure 22: Typical examples of diagrams that contribute to the matrix elements of Q at
O(ay) (left diagram) and O(a?) (right diagram).

NDR scheme supplemented by the definition of the evanescent operator given in Eq. (A.3)
the following non-trivial correction

2 /,L2 238784 9608 1 1336 24
5CB®2) _ _ 2 Y _ 2B _ T 23 (1B(1) ] 1

where my, = my(my) is the bottom quark MS mass.

7.6 Matrix Elements

For scales p below p. the transition operator in the case of the electroweak box contributions
takes the form —75 = HE, with

of /2 21 sin? 6y,

Ae D Colp)(5vudn) (e vier) (106)

l=e,u,m

which is part of the low-energy effective Hamiltonian of Eq. (1). Again the bilocal contri-
bution to 77 in Eq. (93) has disappeared, because the charm quark field is integrated out
and the effect from its loop is absorbed into C'5(u.). The leftover contribution from the up
quark loop to T2 is like in 7F power-suppressed. The numerical size of these corrections
has been calculated in [6] and is included in our numerical analysis of Sec. 9.

It is again favorable to express the final low-energy Wilson coefficient in terms of the
a, of the effective theory with four active quark flavors rather than in terms of the a, of
the effective theory with three active quark flavors. Proceeding in this way the product
C%(1e) (Qu(11e)) can be written in the form

) 4w

¢ 0) _ Telpe B 0 B
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where QF denotes the part of QP that contains a lepton of flavor . The factor of 4 is
again a consequence of the definition of Q¥ and @, in Egs. (20) and (21).

The renormalized matrix elements <Qf(,uc)> are found by computing the finite parts
of one- and two-loop diagrams. Examples can be seen in Fig.22. Regulating spurious
IR divergences once dimensionally and once with small quark masses we found identical
results for the matrix elements. In the NDR scheme supplemented by the definition of
the evanescent operator given in Eq.(A.3) the expansion coefficients for the tau lepton
contribution to the matrix element take the following form

4o, 2
rBW () = 5+ . _xw lnx7+4ln%,
9+ 72, 2,3+ 13z, 122, .
TE(Q)(MC) = —QCF ( 11—+ + ((1_$ )2 ) - 1— 2 ng (I—IT) (108)

1 — 13z, 1222 2 2
— < o _ r 2lnx7> ln&—61n2&) .

1 _-/ET (1 _.TT) mg mg

Here z, = m?/m? with m. = m.(u.) denotes the ratio of the tau lepton and the charm
quark MS mass squared. The first line of the above equations agrees with the known NLO
result [9], after including the aforementioned factor of 4, while the second one represents
the new NNLO expression.

In the case of the electron and the muon the lepton mass can be neglected compared
to the charm quark mass. In the limit 2, going to zero Egs. (108) simplify to

2

rfﬁl)(uc) =5+4In % ,

(109)

2
c c

2 2
rey (pe) = —2C (9 —In % — 61n? &) '

7.7 Final Result

The analytic expression for the electroweak box contribution to X*(z.) that enters the
definition of P.(X) in Eq.(2) can be obtained in a straightforward manner following the
detailed exposition presented at the end of Sec. 6.

In particular the perturbative expansion of the Wilson coefficient Cg(sz.) in Eq. (98) is
given by Egs. (85) and (86) after replacing all subscripts P by B. The explicit expressions
for ég“) (tw ), Ué(o), jl’;(k), and 5ég)(ub) can be found in Egs. (99) to (105).

Keeping terms up to third order in the strong coupling expansion Eq.(107) can be
written as

¢ we(me) (AT o) 0(1) as(fhe) ~e2)
) = . ) (O ) + ) + 0] (0
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where k. is defined after Eq. (87) and
C” (1e) = 7O o)
Cse) = CPD () + 407 (1) + €0 7O ) (111)

O (1) = OV (pe) + 497 (o) + €0 CPD () + €2 CPO ().

Here the factors of 4 arise again from the use of chiral fermion fields in Q7 and @, of
Egs. (20) and (21).

_ The coefficients Pe( )(Nc) are obtained from 7, B(k) (e) by expanding the charm quark
MS mass m.(u.) entering Egs. (108) and (109) in ay around m.(m.). Explicitly we find in

the case of the tau lepton
1— c
(KC s, — 2o (L= Fe) mT) |

pf(l)(/%) = Tf(l)(lum mC) +

Ty — Ke 1—a,

32 dx, (1 —K.)
B(2) _ ..B(2) T c
Py (He) = 1777 (phes ) (x; — Ke) ( 3(1—x,)

T, (2, (13 —292,) + ke (3+2922) — k2 (3 + 131x,))

- 5 In .,
12(x; — k) (1 — ;)
172z, — 2 242 —
M Ink. + S W rInk, — Tr 1 SToRe — K In? &,
12 (x; — Ke) Ty — Ke 2 (z; — Ke)

(112)

_%Lig (1—2,) — a, Liy (1 _ %))

. . Ke (1 —x;) (22, — K) .
+(957—/{6)(1—31,})(7(1 o)+ Tr — Ke In z,

2 (1 — ko) (1 — 22, + k) pe
Ink. | In—=
(2 — k) (1 —27) m
4K,
+ " (1 - Inz, + In /{C) fél)
T — K T, — K T, — K

In the limit z, going to zero which is the relevant one in the case of the electron and
the muon one arrives at

PP (pe) = r20P (pe,me) — Al ke
8 2 (113)
PR (pe) = 128D (e ) — 5 In i+ 16 10% kg — 32D s In 26 — 460
m

c

The additional argument in rf(k)(pc,mc) signals that the expansion coefficients of
Egs. (108) and (109) have to be evaluated at m.(m,.) and not at m.(u.). The same applies
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to the variables x, and m, appearing explicitly in Eqgs. (112) and (113). We remark that the
second terms in the first lines of the latter equations are not present in the NLO formulas
of P.(X) given in [9,10]. The importance of this p.-dependent terms will be discussed in
Sec. 9.

8 Final Result for P.(X) at NNLO

The function X*(z.) that enters the definition of P,(X) in Eq. (2) is given in terms of the
contribution of the Z-penguin and the electroweak boxes by

Xxe) = Cplpe) + Cppe) . (114)

where the analytic NNLO expression for Cp(p.) and C4(j.) can be found in Egs. (89) and
(110), respectively. The latter equations together with Egs. (2) and (114) then enable one
to find the analytic formula for P.(X) through O(ay).

The explicit analytic expression for P.(X) including the complete NNLO corrections
is so complicated and long that we derive an approximate formula. Setting A = 0.2248,
mi(my) = 163.0GeV and py = 80.0 GeV we derive an approximate formula for P.(X)
that summarizes the dominant parametric and theoretical uncertainties due to m.(m.),
as(My), pe, and pp. Tt reads

mc(mc) 1.3750 OJS(MZ) 1.9480 . ; -
PC(X) = 0.3832 <m) (m) 1+ Z HiﬂmmeLasL#CLub s (115)

i,5,k,l
where
on () o)
' © ' (116)
He Hb
hen(i) ().
we = M\15Gev m = M50 GeV

and the sum includes the expansion coefficients k;jp; given in Tab.3. The above for-
mula approximates the exact NNLO result with an accuracy of +0.6% in the ranges
1.15GeV < mu(m,) < 1.45GeV, 0.1150 < a,(M,) < 0.1230, 1.0GeV < p, < 3.0GeV,
and 2.5GeV < u, < 10.0GeV. The uncertainties due to my(m;), pyw, and the different
methods of computing a,(p.) from ags(M,), which are not quantified above, are all below
+0.2%. Their actual size at NLO and NNLO will be discussed in the next section.
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K1000 — 0.7432 Ko100 — —3.3790 Koo1o — —0.0001
Rooolr — 0.0028 K1100 = —0.4350 K1010 — 0.1669
Roo20 = —0.0903 Kpo20 = —0.0065 Koo30 — 0.0330

Table 3: The coefficients k;;i; arising in the approximate formula for P.(X) at NNLO.

9 Numerical Analysis

9.1 Theoretical Uncertainties of P.(X) at NLO

Before presenting the numerical analysis of the NNLO correction to P.(X), it is instructive
to display the theoretical uncertainties present at the NLO level. These originate in the
leftover unphysical dependence on p,. but are also due to the dependence on p; and py,, and
to higher order terms that arise in the evaluation of a,(u.) from the experimental input
as(My). The latter uncertainties have not been scrutinized in previous NLO analyses of
the charm quark contribution [9, 10].

The dependence of P.(X) on . can be seen in Fig. 23. The solid red line in the upper
plot shows the NLO result obtained by evaluating as(u.) from ags(My,) solving the RG
equation of a, numerically, while the long- green and short-dashed blue lines are obtained
by first determining the scale parameter Agg from ag(My), either using the explicit solution
of the RG equation of a; or by solving the RG equation of a; iteratively for Ayg, and
subsequently calculating a,(p.) from Ayg. The corresponding two-loop values for ay(g.)
have been obtained with the program RunDec [60]. Obviously, the difference between the
three curves is due to higher order terms and has to be regarded as part of the theoretical
error. With its size of +0.012 it is comparable to the variation of the NLO result due to
e, amounting to £0.020.

In [9,10] values for the latter uncertainty have been quoted that are more than twice
as large. The observed difference is related to the definition of the charm quark mass.
While in the latter publications the value m.(m.) has been employed in the logarithms
In(p?/m?) of the one-loop matrix elements, we consistently apply m.(u.) throughout our

NLO analysis.

Using the MS scheme and integrating out the charm quark field at the scale ., the mass
me(1.) appears in all intermediate steps of the computation. In particular, the bare one-
loop matrix elements computed at NLO are proportional to m?~2¢(u,). After multiplying
this with the 1/e poles and finite parts of the loop integrals, adding the counterterm
diagrams and expanding in € one finds the results given in the first lines of Eqgs. (84), (108),
and (109). Switching by hand to m.(m,) in the argument of the logarithms In(u?/m?)

as done in [9], amounts thus to treating the factors of m2(u.) and m;?*(u,.) differently,
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Parameter Value £+ Error Reference
me(m.) [GeV] 1.30 £ 0.05 [61], our average
as(My) 0.1187 £ 0.0020 [24]

Im), [107%] 14075008 [19]

Re); [1074] —3.137039 [19]

Re), —0.22006"5 0000 [19]

Table 4: Input parameters used in the numerical analysis of P.(X), B(Kt — ntvp), |Vi4l,
sin 23, and .

although they stem from the very same analytical term in n = 4 — 2¢ dimensions. It
is important to realize that such a replacement i) introduces a correction which has no
diagrammatic counterpart at two loops, and i) implies a mass counterterm at NNLO
which is not MS, as it contains an explicit In(p2/m?) term. Using m.(m.) in the In(u2/m?)
terms of the one-loop matrix elements is for these reasons disputable, although it leads to
results that differ from the one obtained with m.(u.) by terms that are formally of NNLO.
These O(ay) terms lead to an artificially large u.-dependence at NLO and are hence not
a good estimate of the size of the uncalculated higher order terms: substituting all factors
m.(p.) entering the one-loop matrix elements in a consistent way by m.(m.) results in an
uncertainty from p. which is close to the one quoted above. In practice this replacement is
achieved by employing m.(m.) in the logarithms In(u?/m?) of Egs. (84), (108), and (109),
and by rescaling the NLO terms stemming from the second terms in Egs. (81) and (107)
by a factor k1. Of course our conclusion is also based on the actual NNLO calculation,
which indeed finds a correction that is much smaller than the theoretical uncertainty at
NLO reported in [9,10].

Finally, while in [9, 10] only p. was varied, the theoretical error given in Eq. (3) in-
cludes also the dependence on p; and py of +0.001 each. The specified scale uncertain-
ties correspond to the ranges 1.0 GeV < pu. < 3.0GeV, 2.5GeV <y < 10.0GeV, and
40.0 GeV < puy < 160.0 GeV, and the quoted theoretical error has been obtained by vary-
ing them independently.

9.2 Branching Ratio for K™ — wtvi at NLO

Using the input parameters listed in Tab. 4, we find from Egs. (3), (6), (7), and (12) at the
NLO level

B(K* — 1tvw) = (7.96 £ 0.76p,(x) & 0.84¢mer) x 10711, (117)
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Figure 23: P.(X) as a function of p. at NLO (upper plot) and NNLO (lower plot). The
three different lines correspond to three different methods of computing o () from a(My)
(see text).



where the second error collects the uncertainties due to k4, 6F.,, X (), and the CKM
elements. Numerically, the enhancement of B(K* — 77 vv) coming from § P, ,, [6] has been
compensated by the suppression due to the decrease of M, [21].

9.3 Branching Ratio for K; — w% v at NLO

Employing the value and errors of Im\; as given in Tab. 4, we obtain from Eqs. (12), (17),
and (18) in the NLO approximation

B(K — mvv) = (2.85 4+ 0.05,, + 0.39¢her) X 1071, 118
e

where the second error collects the uncertainties due to xp, m¢(m;), and the CKM elements.

9.4 Theoretical Uncertainties of P.(X) at NNLO

Having described the details of our calculation in the previous sections, we now present
our results for P.(X). From Egs. (89), (110), and (114) we find at NNLO

Po(X) = 0.375 % 0.009¢cory & 0.031,,, = 0.009,, . (119)

Obviously the error on the charm quark contribution to K+ — 7 vw is now fully dominated
by the uncertainty in m.(m.). Comparing these numbers with Eq. (3) we observe that our
NNLO calculation reduces the theoretical uncertainty by a factor of 4.

As can be nicely seen in Tab. 1 and in the lower plot of Fig.23, P.(X) depends very
weakly on p. at NNLO, varying by only 4+0.006. Furthermore, the three different treat-
ments of a, affect the NNLO result by as little as +0.001. The three-loop values of ag(p.)
used in the numerical analysis have been obtained with the program RunDec [60]. The
theoretical error quoted in Eq. (119) includes also the dependence on py, and puy, of £0.001
each. The presented scale uncertainties correspond to the ranges given earlier, and the
specified theoretical error has again been obtained by varying them independently.

9.5 Branching Ratio for K+ — v at NNLO

Using Egs. (6), (7), (12), and (119) the result in Eq. (117) is modified to the NNLO value
B(K* — 1tvw) = (8.01 £0.49p,x) & 0.84¢mer) x 1071 (120)

As the value of m.(m,) is, besides the CKM parameters, the main leftover parametric
uncertainty in the evaluation of B(K™ — ntwvr), we show in the upper plot of Fig.3,
B(K* — ntvr) as a function of m.(m.). At present the errors from the CKM parameters
veils the benefit of the NNLO calculation of P.(X) presented in this paper. For complete-
ness in the lower plot of the same figure we also show the dependence on M;, which is
significantly smaller, because M, is much better known than m.(m.).
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| Observable | Central £68% CL | 95% CL | 99% CL |
B(Kp — n%vp) [1071] 2.7710% [1.80, 3.82] [1.62, 4.23]
P.(X) 0.3670-0% [0.306,0.427] | [0.293, 0.439]
B(Kt — ntvp) [1071] 7,954 81 5.61,10.50] | [5.28,11.18]
B(Kp — n%w) [10711] 2.56 4 0.30 [2.02, 3.16] [1.88, 3.38]
P.(X) 0.375 + 0.024 [0.333,0.418] | [0.324, 0.429]
B(Kt — ntvp) [1071] 7.68 & 0.58 [6.61,8.87] [6.32,9.26]

Table 5: SM predictions for B(K; — 7°vr), P.(X), and B(K* — wTvwv) at the 68%,
95%, and 99% CL obtained by the CKMfitter Group (upper half) and the UIfit Collab-
oration (lower half) incorporating all constraints on the CKM elements following from a
global analysis of the standard UT.

9.6 Statistical Analyses of the Branching Ratios of K — wvv

The partial uncertainties given in Eqs. (118) and (120) are not statistically distributed. A
very important issue in determining the central SM values and errors of B(K — 7°vv) and
B(K* — 7wtww) is thus the treatment of the experimental and especially the theoretical
uncertainties entering these observables. The increasing accuracy in the global analysis of
the standard UT and the achieved reduction of the theoretical uncertainty of P.(X) clearly
calls for a closer look at the matter in question.

To this end it is of interest to see what results are obtained by the two most devel-
oped statistical methods, namely the Rfit approach used by the CKMfitter Group and the
Bayesian approach employed by the ULIfit Collaboration and to identify those experimental
and theoretical uncertainties for which a reduction of errors would contribute the most to
the quality of the determination of the K' — 7wvv branching ratios. In this context we
would like to caution the reader that a direct comparison of the results obtained by the
two groups in Tab. 5 is quite challenging and the comments given below are hopefully of
help for the reader to make her or his unbiased judgment of the situation. Our final result
is given subsequently in Sec.9.7.

The numerical results for B(K;, — 7°vv), P.(X), and B(K™ — 7tvv) obtained by the
CKMfitter Group and the UILfit Collaboration are summarized in Tab. 5. The corresponding
likelihood and probability density functions are displayed in Figs.24 and 25. Apart from
the CKM elements the employed input agrees with the one that has been used to obtain
the numerical values for B(K; — 7°vv), P.(X), and B(KT — 7tvw) presented earlier in
Egs. (118), (119) and (120).

While the CKMfitter Group and the UIYfit Collaboration find comparable errors at 95%
and higher confidence levels (CL), the ULILfit Collaboration obtains significantly smaller
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errors at the 68% CL. This difference is expected, because both groups treat theoretical
errors differently: the ULILfit Collaboration assigns a probabilistic meaning to them while the
CKMfitter Group scans for a best fit value. It can be most easily understood by discussing
the value of P.(X) at NNLO. Here the dominant error is the parametric uncertainty in
me.(m.), which is treated as a theoretical uncertainty by both groups. By assigning a flat
probability density for m.(m.) within the error range of 1.25GeV < m.(m,.) < 1.35GeV
only 68% of this measure is used by the ULfit Collaboration to compute P.(X) at the 68%
CL. In consequence the error of P.(X) found by the ULfit Collaboration is smaller by a
factor of 0.68 compared to the error one would obtain by treating the uncertainty in m.(m.)
as the 1o range of a Gaussian distribution. On the other hand the CKMfitter Group uses
the whole parameter range of m.(m.) to compute the error on P.(X) independently of
the CL. For a flat probability density the measure is proportional to the CL such that
at the 95% CL nearly the whole range of m.(m.) is used by the UILfit Collaboration.
Correspondingly the difference in the results for the errors of the CKMfitter Group and
the UIfit Collaboration decreases strongly at the 95% and higher CL.

A detailed analysis of the individual sources of uncertainty entering the SM prediction
of B(K;, — 7%vw) and B(K* — 7tvr) using a modified version of the CKMfitter package
leads to the following picture. In both cases residual scale uncertainties are no longer a
dominant source of error as they numerically amount to around 9% and 11% of the total
error only. Hence other intrinsic theoretical errors come to fore. In the case of B(Ky —
7ovw) the error associated with rx, is now the main source of theoretical uncertainty
since the error of these isospin breaking corrections of +3% translates into around 15%
of the total uncertainty. In the case of B(K* — ntvp) the uncertainties associated with
the parameters 0F,, and rx+ become prominent. Numerically the total error introduced
by the long-distance and isospin breaking corrections amounts to about 28% of the final
uncertainty in B(K™ — wtvp). This error is thus slightly larger than the error due to
the charm quark mass which for m.(m.) = (1.30 £ 0.05) GeV amounts to roughly 20% of
the final uncertainty. The remaining errors of about 76% and 41% for B(K; — n'vv) and
B(Kt — wtup), respectively, are due to the uncertainty in the top quark mass, as(M,),
and the CKM elements. The given numbers have been obtained by removing the individual
errors from the fit in the order the have been mentioned in the text. This study makes
clear that if one wants to achieve predictions of B(Ky — 7%vv) and B(K+ — ntvw) at the
level of £5% or below further theoretical improvements concerning the isospin breaking
corrections, long-distance effects, and the determination of the charm quark mass are
indispensable.

9.7 Final Predictions for K; — 7> and KT — wtvw

Given the sizeable difference of the 68% CL error intervals obtained by the CKMfitter
Group and the UIfit Collaboration we base our final predictions on our own analysis of
the charm quark contribution and the branching ratios. To determine our final results for
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B(Ky — 7vw), P.(X), and B(KT — 7tvw) we could in principle add the errors given
in Egs. (118), (119), and (120) linearly. These estimates might be too conservative. On
the other hand adding the errors in quadrature would be probably too optimistic since
the uncertainties are not statistically distributed. Therefore we quote as the final result
the mean of the values obtained by adding the individual errors once linearly and once in
quadrature. In the case of K; — 7% this gives

B(K, — 7vi) = (2.8 £0.4) x 107, (121)
while in the case of KT — 7tvi one has
P.(X) =038 £0.04, (122)

and
B(Kt — ntvp) = (8.04£1.1) x 107, (123)

The given uncertainties represent the ranges in which we believe that the true values of
B(Kp — 7vv), P.(X), and B(K™ — 7Tvv) are located with high probability.

9.8 Impact on the Determination of the CKM Parameters

As seen in Eq. (4) the accuracy of the determination of |V;,4|, sin 23, and of the angle 7 in
the UT depends sensitively on the error in P.(X).

The reduction of the theoretical error in P.(X) from +9.8% down to £2.4% translates
into the following uncertainties

o (Vi) [+4.0%, NLO,
|Vid| +1.0%, NNLO,

+0.024, NLO
{ ’ ’ (124)

+0.006, NNLO,

+4.7°,  NLO,
o(y)= .
4+1.2°,  NNLO,

implying a very significant improvement of the NNLO over the NLO results. In obtaining
these numbers we have used sin28 = 0.724 and v = 58.6° [19], and included only the
theoretical errors quoted in Egs. (3) and (119).

A comparison of sin 23 determined from clean B-physics observables with sin 23 inferred
from the K — 7w system offers a precise and highly non-trivial test of the CKM picture.
Both determinations suffer from small theoretical errors and any discrepancy between
them would signal non-CKM physics. The impact of future accurate measurements of
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Figure 26: Standard UT from future measurements of B(K; — 7’vv) and B(K+ — 7tuvw)
with an accuracy of £10%. Dark (light) areas correspond to the 68% (95%) probability
regions. In the upper (lower) panel the 68% and 95% domains following from the K — wvi
constraint (present global CKM fit) as found by the UILfit Collaboration are overlaid. The
lower plot also shows for comparison the present constraint coming from eg.
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Figure 27: Constraints in the -7 plane arising from future measurements of B(K; — n'vi)
and B(Kt — 7ntvp) with an accuracy of £10%. The upper (lower) panel shows the
likelihood obtained assuming no (optimistic) improvement of both the theoretical and
experimental errors of the input parameters. For comparison the 68% probability region
following from the present global CKM analysis of the CKMfitter Group is also displayed.

29



Kt — 7fvv and K — 7w leading to B(KT — wtww) = (8.0 £ 0.8) x 107! and
B(Kp — n%w) = (3.0 £ 0.3) x 107" is illustrated in Figs.27 and 26. As can be seen in
Fig. 26 the expected precision of the determination of (p,7) from the K — 7vv system
cannot quite compete with the one from the present global CKM fit performed by the UIfit
Collaboration. On the other hand assuming a reduction of the errors in My, m.(m.), T+,
ri,, and 0F,, by a factor of 3 would put the K — 7vi system and the global CKM fit
almost on the same level. The great potential of the K — 7wvv system is clearly visible
in the lower panel in Fig. 27 which shows the constraint in the p—7j plane obtained by the
CKMfitter Group adopting this futuristic scenario.

Obviously, the future of the determination of the standard UT from the K — mwvv
system will depend on the uncertainties in the measured branching ratios, on the value of
me(m.) and also on |V|. Further theoretical improvement concerning the isospin breaking
and long-distance corrections would be desirable in this respect too. A corresponding
numerical analysis can be found in the updated version of [3], where the NNLO correction
to P.(X) presented here, will be soon included.

While the determination of |V4|, sin 23, and ~ from the K — wvv system is without
doubt of interest, with the slow progress in measuring the relevant branching ratios and
much faster progress in the determination of the angle v from B, — DK system to be
expected at LHC, the role of the K — wvw system will shift towards the search for new
physics rather than the determination of the CKM parameters.

Indeed, determining the CKM parameters from tree diagrams dominated K- and B-
decays and thus independently of new physics contributions will allow to find the “true”
values of the CKM parameters and the so-called reference unitarity triangle [62]. Inserting
these, hopefully accurate, values in the formulas for the branching ratios presented here,
will allow to obtain very precise preditions for the SM rates of both decays. A comparison
with future data on these decays will then give a clear signal of potential new physics
contributions in a theoretical clean enviroment. Even deviations by 20% from the SM
expectations could be considered as signals of new physics, whereas it is not possible in
most other decays in which the theoretical uncertainties are at least 10%.

10 Summary

In this paper we have calculated the complete NNLO QCD correction of the charm quark
contribution to the branching ratio for the rare decay K+ — 77vw in the SM. As the charm
quark contribution is essentially unaffected by new physics, our results are also valid in
basically all extensions of the SM.

The main result of our paper is summarized in the approximate but very accurate
analytic expression for the relevant parameter P.(X) as a function of m.(m.) and as(My)
presented in Eq. (14). The remaining scale uncertainties and the uncertainty due to higher
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order terms in the computation of a;(u.) from ag(My), that is sizeable at the NLO level as
seen in Fig. 23, have been drastically reduced through our calculation to a level that they
can basically be ignored for all practical purposes. This can be seen in Tab. 1 and Fig. 23.
Nevertheless, an approximate formula for P.(X) containing the dominant parametric and
theoretical errors due to m.(m.), as(My), pe, and u, has been given in Eq. (115), which
should be useful for future phenomenological analysis of the rare decay K+ — 7w vi.

The values of P.(X) for different m.(m.) and a,(M,) are collected in Tab.2. As
as(M,) is already known with an accuracy of better than +2%, the main uncertainty in
the evaluation of P.(X) resides in the value of m.(m.). Our nominal value for P.(X) =
0.3840.04 used in the NNLO prediction for the branching ratio of K+ — 7w in Eq. (123)
corresponds to m.(m.) = (1.30 £0.05) GeV but the master formulas for P.(X) in Eqgs. (14)
and (115) as well as Tab. 2 allow one to calculate P.(X) and B(Kt — n"vp) for other
values of m.(m.).

With the improved recent evaluation [6] of the long-distance contributions to the charm
component, that can be further improved by lattice calculations [7], and hopefully an
increased accuracy on m.(m.) and g+ in the future, the theoretical computation of the
relevant decay rate will reach an exceptional degree of precision, subject mainly to the
uncertainties in the values of the CKM parameters. As the latter errors will be reduced
to a large extend in the coming years through the B-decay experiments a prediction for
B(K* — 7tvi) with an accuracy significantly below +10% will be possible before the end
of this decade. Such a precision is unique in the field of FCNC processes.

On the other hand, accurate measurements of B(K+ — ntvr), in particular in conjunc-
tion with B(K — 7°vw), will provide a very important extraction of the CKM parameters
that compared with the information from B-decays will offer a truly unique test of the CKM
mechanism both in the SM and some of its extensions. The drastic reduction of the theo-
retical uncertainty in P.(X) achieved by the computation presented in this paper will play
an important role in these efforts and increases the power of the K — 7vv system in the
search for new physics, in particular if B(K™ — w7vr) will not differ much from the SM
prediction.
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Appendix

A.1 Evanescent Operators

The evanescent operators that arise as counterterms for the one-, two- and three-loop
diagrams with insertions of the current-current operators

Qf = (507, Tq) (qy"Tdy) |

Q4 = (5170) (@77dy) D
can be chosen to be
B = (8% T00) (G295 T ) — (16 — 4e — 4¢%) QY
B = (81Yuuops @) (@723 d;) — (16 — 4e — 4€%) Q4
B3 = (51 %upapspaps L qu) (@12 as Td,) — <256 — 224¢ — 5;%62) 1,
(A.2)

10032
Ef = (§L7u1u2u3u4u5qL)(CYL'VMHWSMMdL) - <256 — 224e — o5 52) Q3,
Eg - (§L7u1H2u3u4u5#6#7TQQL)(quVMMMSMMS%MTadL) - (4096 - 76806) Q({

Eg = (§L7H1u2u3,u4u5u6,u7qL)(QLVH1“2H3M4#5H6H7CZL) - (4096 - 76806) Qg .

Here the shorthand notation v, ... = Vu =V, and Y1 Hm = 4H...4Hm has been
used. The above operators have been defined such that i) the ADM of the operators Q%
introduced in Eq. (23) is diagonal through NNLO, and that ii) their particular structure
differs only by multiples of € times physical operators from the evanescent operators of the
“traditional” basis [27,36]. The latter operators can be found by the procedure outlined
in [64]. Up to three loops they have been given in [39]. Of course, the above choice is not
unique in the sense, that there are many schemes that would satisfy i) through NNLO. It
is however not possible to define the set of evanescent operators to be invariant under the
interchange of color structures and to achieve i) simultaneously. Finally, we remark that
the €? terms of the above one-loop evanescent operators E{ and Ej are unambiguously
determined by condition 7).

In the case of the electroweak box contribution only one evanescent operator arises
as a counterterm for the one-, two-, and three-loop diagrams considered in this paper.
Following [9, 10, 13] we chose it as

m2

b= > BrVusuanade) ey ve;) — (16 — 4€) Q. . (A.3)

l=e,u,m
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2

Here m, is the charm quark MS mass m.(u) and the explicit factors g=2 and p=% follow

from the normalization of @, in Eq. (21).

A.2 Change from the “Standard” Basis of Current-Current Op-
erators

Beyond LO the anomalous dimensions and the Wilson coefficients depend on the definition
of the operators in n = 4 — 2¢ dimensions. So far all of the direct NNLO calculations have
been performed in the operator basis introduced in [38], which we will call “standard” basis
from now on. It consists of the following set of physical and evanescent operators

G- @y, B (BB BYLE), (A4
where
= BT ) (@A Tdy)
/2q = (807.q1) (@y"dy)
B = (S5 o T00) (@249 T%d) — 16Q7 (A.5)
B = (8% puona ) (@Y™ 22 d;) — 16Q7 '
Eéq = (EL”YmuzuauwsTGQL)(QL’)’NWWBM”E’T&dL) . 256@’1‘1 — QOEiqa
By = (81Yurpapspas qr) (quy" 21141 d ) — 256Q5 — 20F,! |
while
Q" = (Q4,Q), E" = (E}, B3, FEi, EY), (A.6)

denotes the physical and evanescent operators used in this paper. The operators Ef and
E{ and their primed counterparts have been omitted in the above equations, because they
do not affect the change of scheme up to the order considered here.

In this appendix we demonstrate how the results for the two-loop initial conditions [32]
and the three-loop ADM [39] of the current-current operators can be transformed to our
basis. This will serve as a cross-check of our results for C'j([k) (1w) and 7§Ek ) as given in
Egs. (25) and (29). In all formulas presented below we set C'y = 3 and Cp = 4/3, while

the number of active quark flavors f is kept arbitrary.

The transformations relating the primed with the unprimed sets take the simple form
0=RQ, E:M(E’+EU@’+EQVQ’> , (A7)

where the matrix R (M) describes a rotation of the physical (evanescent) operators, while
the matrix U (V') parameterizes a change of basis that consists of adding multiples of e
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(€?) times physical operators to the evanescent ones. The matrices introduced in Eq. (A.7)
are given by

1 0 00
Ao '3 0o 100
-1 1) 20 0 10 [’
0 20 0 1
(A.8)
4 0 40
. 0 4 X 0 4
U: s V:
144 0 20
0 144 0 52

The change of basis in Eq.(A.7) is p-independent and leaves, apart from a global
rotation, the anomalous dimensions and the Wilson coefficients invariant. It, however,
induces a finite renormalization of the physical operators. In order to restore the standard
MS renormalization conditions these contributions must be removed by a change of scheme.
Hence a e-dependent linear transformation of the operator basis is equivalent to a global
rotation and a change of scheme [39).

The finite renormalization corresponding to the above change of basis can be derived
with simple algebra. Through O(a?) we find

A.9)
5 (2,0) 5 s S22 L a0\ He (
where . .

£1(2,2 21(1,1) A(1,1 ~1(0) (1,1 ~i(1,1

Zy? = 3 (ZgE 25 + 57 28" — BoZgr >) . (A.10)

As always, the matrix M encoding the rotation of evanescent operators does not affect
the residual finite renormalization. Egs. (A.9) and (A.10) agree with the NLO formulas
of [29,38] and generalize the NNLO formulas of [39].

The only feature which has not been discussed in the literature before is the appear-
ance of the e2-dependent transformation characterized by V in Eq.(A.7). It induces a
finite O(a?) renormalization described by the second and third term in the second line of
Egs. (A.9). The former term is analogous to the first line of Egs. (A.9). The latter term
stems from a e-dependent O(as) renormalization. While the e-dependent change of scheme
removes the finite terms, it still leaves the anomalous dimensions and the Wilson coeffi-
cients invariant. Yet it induces a finite O(a?) renormalization. The transformation to the
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standard MS scheme definitions requires the removal of this finite term, which is achieved
by the last term in the second line of Egs. (A.9).

The matrices entering the above equations are found from one- and two-loop matrix
elements of physical and evanescent operators in the “standard” basis. The O(as) ADM
takes the following form [38,39,42]

1(0) —4 3
S — 3
&V = ( 2 0 ) . (A.11)

For the O(ay) mixing into the evanescent operators one obtains [38,39,42]

7 -4 5 2
3 12 9
Z/(l,l)_ ( % % 0 0> Z,(1’1>— —6 0 1 0 (A 12)
eE ’ EE 13 28 :
1 000 o o 2 ==
0 0 -14 -4

At O(a?) only the mixing of physical into evanescent operators is needed. It is given

by [39,42]
- 21) 1531 _ 5 _L_Lf 1 35
) 288 216 72 81 384 864
Zow = | B o® . L) (A.13)
16 18 9 192 72

The general NNLO formulas relating the initial conditions of the Wilson coefficients
and the ADM in two different schemes have been derived recently [39]. They read

2 T
o1 ~  As(Bw) 51, Qs Uw 5 (2, A INT Ay
Clpw) = <1+ fm )ZSQO)+< ( )> zg;>> (R C"(uw) (A.14)

and
3,(0) — }?,3/(0) B! :

~(1) _ par) p-1 >(1,0) ~(0 >(1,0)
0 = RYDR - 255,49 - 26,255
(A.15)

~(2) _ Pan2) H—1 5(2,0) (0 5(1,0) A (1 5(1,0) ~(0)] 4(1,0)
40 = Ry R [ZQQ A4 >] _ [ZQQ 4 >} _ [ZQQ A >} 744

5 - - 2
4B 255 = 261258 +260(255))” -

Egs. (A.8) to (A.15) allow one to transform the results for the initial conditions of the
Wilson coefficients of the current-current operators and their ADM in the “standard”
basis to the basis used in this paper. This enables us to verify that the well-established
NLO results [38,39,42] coincide, after the change of scheme, with the expressions presented
in the second line of Egs. (25) and (29). For what concerns the NNLO we confirm both
the two-loop initial conditions of the Wilson coefficients [32] as well as the corresponding
three-loop ADM [39].
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