Algebraic approach to solve tf dilepton equations

Lars Sonnenschein

FERMILAB-PUB-05-441

LPNHE, Universités Paris VI, VII

(Dated: October 6, 2005. Submitted to Physical Review D)

The set of non-linear equations describing the Standard Model kinematics of the top quark an-
tigark production system in the dilepton decay channel has at most a four-fold ambiguity due to two
not fully reconstructed neutrinos. Its most precise solution is of major importance for measurements
of top quark properties like the top quark mass and #f spin correlations. Simple algebraic operations
allow to transform the non-linear equations into a system of two polynomial equations with two
unknowns. These two polynomials of multidegree eight can in turn be analytically reduced to one
polynomial with one unknown by means of resultants. The obtained univariate polynomial is of
degree sixteen. The number of its real solutions is determined analytically by means of Sturm’s
theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval.
The solutions are polished by seeking the sign change of the polynomial in a given interval through

binary bracketing.

PACS numbers: PACS29.85.4-C

I. INTRODUCTION

In 1992 R. H. Dalitz and G. R. Goldstein have published
a numerical method based on geometrical considerations
to solve the system of equations describing the kinemat-
ics of the ¢t decay in the dilepton channel [1]. The prob-
lem of two not fully reconstructed neutrinos - only the
transverse components of the vector sum of their miss-
ing energy can be measured - leads to a system of equa-
tions which consists of as many equations as there are
unknowns. Thus it is straight forward to solve the system
of equations directly in contrast to a kinematic fit which
would be appropriate in the case of an over-constrained
problem or integration over the phase space of degrees of
freedom in case of an under-constrained problem. Each
of the two neutrinos contributes a two-fold ambiguity to
the solution of the system of equations which end up to an
over-all ambiguity of degree four. On top of those ambi-
guities which dilute the significance of top quark property
measurements in the dilepton channel, reconstructed ob-
jects do typically not coincide with their corresponding
particles which reduces the significance further. Thus it
is not only important to solve the system of equations but
also to compare its solutions to the particle momenta of
simulated events.

Next section the system of equations is introduced, fol-
lowed by a description of the algebraic solution and its
implementation as algorithm. Subsequently the perfor-
mance of the numerical implementation is discussed.

II. ¢ DILEPTON KINEMATICS

The system of equations describing the kinematics of ¢
dilepton events can be expressed by the two linear and

six non linear equations
Ez = Dv, + Do,
By Pv, + Do,
E} = p, +0p, +1..
E} = p} +p}, +15.
myy: = (B + E,)? — (pr +p0.)’
~ ey +1u,)" = (Pgr +p0.)?
miy- = (B~ + E5)? — (9, +p5,)? (1)
—(pg; +p5,)" — (P +p.)?
m; = (BEy+ Epr + B)” — 0y, + Pyt +10.)°
— (o, +pgz +P0,)? = 0o, +Pgr +p0.)?
mi = (B + Er- + Bp)* — (05,04 + pr.)’
—(5, +Pez +95,)" = (05, + Py +P5.)° -

The z-axis is here assumed to be parallel orientated to the
beam axis while the z- and y-coordinates span the trans-
verse plane. The first two equations relate the projection
of the missing transverse energy onto one of the trans-
verse axes (z or y) to the sum of the neutrino and an-
tineutrino momentum components belonging to the same
projection. The next two equations relate the energy
of the neutrino and antineutrino, which are assumed to
be massless in good approximation, with their momenta.
Finally four non linear equations describe the W boson
and top quark (antiquark) mass constraints by relating
the invariant masses to the energy and momenta of their
decay particles via relativistic 4-vector arithmetics.

III. ALGEBRAIC SOLUTION

This system of equations can be reduced to four equa-
tions by simply substituting in the last four equations
the neutrino and antineutrino energies by the third and



fourth equations and substituting the antineutrino trans-
verse momenta by the first two equations solved to these
momenta. In this way the four unknowns p,,, pv,, pv,
and pp, are left. One pair of equations, describing the
t - BWT — blty, parton branch of the event, de-
pends on p,, while the other pair of equations, describing
the £ — bW~ — bl~ 1, parton branch of the event, de-
pends on py.. By means of ordinary algebraic operations
both pairs can be solved to the longitudinal neutrino and
antineutrino momentum p,. and pp, respectively. The
equations can be written in the form

Py, = a1 £4/a? + as
(2)
pv, = by £4/b} + by
for the top quark parton branch and
Do, =C1 /i + ¢
3)

HH

P, = dl + d% + d2
for the anti-top quark parton branch with the coefficients

a1 = Qi1+ a12Py, + G13Py, (4)

G21+ a22Py, + G23Py, + 61241?,2,z + a25Py, Pv, + a%p,z,y

az

and b equivalent for the first pair of equations (2). For
the second pair of equations (3) holds analogically

¢ = ci1 + C12Ps, + Ci3Pp, (5)

a1 + 22D, + C23P5, + C2aPy, + C25Py, Py, + Czeng/y

C2

and d equivalent. The explicit expressions in terms of
the initial equations (1) are given in the appendix. After
equating both equations of each pair there remain two
equations with the two unknowns p,, and p,,.

Again by means of ordinary algebraic operations the
two non linear equations can be transformed into two
polynomials of multi-degree eight. To solve these two
polynomials to p,, the resultant with respect to the neu-
trino momentum p,,, is computed as follows. The coeffi-
cients and monomials of the two polynomials are rewrit-
ten in such a way that they are ordered in powers of p,,
like

f = hp,, + 20}, + fspl, + fapu, + fs
(6)

9 = 1Py, + 92p5, + 93Dy, + 9abu, + 9

where f and g are polynomials of the remaining un-
knowns p,, , py, and the coefficients f,,, g, are univariate
polynomials of p,_ . The resultant can then be obtained

by computing the determinant of the Sylvester matrix

fi g1
fo fi 92 91
§3 ;2 ? f g3 92 01
_ 4 J3 J2 J1 94 93 92 g1
Res(py, ) = Det fs fa f3 f2 95 94 93 92
fs fa f3 95 ga 93
fs fa g5 94
fs g5

which is equated to zero. The omitted elements of the
matrix are identical to zero. Since each element in the
matrix is a polynomial itself the evaluation is very elab-
orative. There are two ways to compute the determinant
in practice. The more elegant way from a programming
technical point of view is to invoke recursively a function
which computes subdeterminants and consists of a very
limited number of lines. Unfortunately it turns out that
this approach is too time consuming. The other way is to
let Maple [2] compute and optimize the determinant as a
function of the unknown p,_ and implement it. This way
the code grows orders of magnitude in size but on the
other hand the evaluation speeds up by orders of magni-
tude.
The resultant is a univariate polynomial of the form

0 = hipld + hopl? + hapt? + hapt® + hspl? + hepl!
hapl® + hspl, + hop}_ + hiopl, + h11pS, (6)

+
+ hi2p) + haspl, + hiapS_ + haspl, + hiepy, + haz
with the remaining unknown p,,_ . It is of degree 16 and
analytical solutions of general univariate polynomials are
only known until degree four. Abel’s impossibility the-
orem and Galois demonstrated that a univariate poly-
nomial of degree five can in general not be solved ana-
lytically with a finite number of additions, subtractions,
multiplications, divisions, and root extractions [3]. Thus
from here on the solutions of the univariate polynomial
(7) have to be obtained by different means. In principle
the problem can be reduced to an Eigenvalue problem.
Unfortunately, in practice it turns out that the implemen-
tation of the Eigenvalue package in Root [4] gives only
reasonable solutions for univariate polynomials of degree
14 and below. Finally the number of solutions is obtained
analytically by applying Sturm’s theorem [5] which con-
sists of building a sequence of univariate polynomi-
als h(py, ), W' (Pv. ), ha(Pv.), b (Pv,), s hin(pu, ) = const.,
where h' is the first derivative of the univariate polyno-
mial h with respect to p,, and the following polynomials
are the remainders of a long division of their immedi-
ate left neighbour polynomial divided by the next left
neighbour polynomial. The sequence ends when the last
polynomial is a constant. In the case the constant van-
ishes, the initial polynomial has at least one multiple real
root which can be splitted by long division through the
last non constant polynomial in the Sturm sequence. In



this case one solution is already known. The sequence
is evaluated at two neutrino momenta p,, , (initially at

the kinematic limits) and the difference between the num-
ber of sign changes of the evaluated sequence at the two
interval limits is determined. The obtained quantity cor-
responds to the number of real solutions in the given
interval.

This means that the theorem of Jacques Charles
Frangois Sturm - which he has proven in 1829 [7] - is
extremely powerful since in the case of no real solutions
no time needs to be spent for the unsuccessful attempt
to find one.

To reduce numerical inaccuracies, all polynomial eval-
uations are applied using Horner’s rule which factors
out powers of the polynomial variable p,_ [6]. Further
the solutions are separated by applying Sturm’s theorem
with varying interval boundaries. Once the solutions are
separated in unique pairwise disjoint intervals they are
polished by binary bracketing exploiting the knowledge
about the sign change at the root in the given interval.
This is possible since it is guaranteed that there is only
one single solution in a given interval per construction

(Now one could turn the way to solve a given Eigen-
value problem the other way around and use the Sturm
sequence to solve the characteristic polynomial to obtain
the Eigenvalues). Once the solutions are found - most
frequently there are two but never more than four (see
fig. 1) - they can be inserted in equations (6). Such that
these equations reduce to two univariate polynomials of
degree four which in turn can be solved analytically to
pv, with a four fold ambiguity. The ambiguities can be
eliminated in requiring the roots of these two polynomi-
als to coincide since both equations have to be satisfied
simultaneously. pp, and pp, can be simply determined
with help of the first two equations in (1). To determine
the longitudinal neutrino and antineutrino momenta p,,
and pp, the equations (2) and (3) can be evaluated re-
spectively. Again the two-fold ambiguity, here due to the
square root sign, can be resolved in requiring the solu-

x10”

Events

6000~ —

4000 .

20001~ —

. ! ! . . | . |
0 2 4 6 8 10 12 14 16

N(solutions)

FIG. 1: Number of solutions per event.

tions to coincide simultaneously for both equations of one
parton branch.

IV. PERFORMANCE OF THE METHOD

The univariate polynomial of p,_ is in general very shal-
low around zero over a broad range of neutrino momenta
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FIG. 2: A typical univariate polynomial of degree 16 whose
real roots in p,, are solutions of the initial system of equations
describing the t# dilepton kinematics. From top to bottom
the plots are zoomed around the interesting p,, range of the
abscissa where two solutions are located.



in comparison to its maximal values in the allowed kine-
matic range as can be concluded from the first two graphs
in fig. 2. Here the kinematic range has been restricted
to a centre of mass energy of 1.96 TeV, assuming the
Tevatron proton anti-proton collider which has been set
up in the Monte-Carlo event generator PYTHIA 6.220
[8] used here. Cross checks at a centre of mass energy of
14 TeV assuming the LHC proton proton collider envi-
ronment confirm that the performance is independent of
particular collider settings. Only when in the graphs the
area of the abscissa is zoomed very close to the solutions
they can be recognised by eye. At this level the ordinate
has already been magnified by 20 orders of magnitude.
This explains why it is in general so difficult to find any
solutions with numerical methods.

In 99.9% of the events a solution can be found which is
shown in the number of solutions per event distribution
of fig. 1. The neutrino momenta p°’ of the solutions are
compared to the generated ones pd¢™ by defining a metric
x through

X = (=P + (i - pi) + (5" — piY')’
(4)

+ L= + P — P + (P - P’

The solutions coincide in 99.7% of cases within real pre-
cision to the generated neutrino momenta. Fig. 3 shows
impressively how accurate and reliably the method is
working. The plots in fig. 4 show the x? distribution
on a linear scale. Since in practice the off-shell masses
of the top quark and W boson resonances are not known
the method has been applied in the following ways: The
distribution in the first plot assumes W boson off-shell
but top quark pole masses. It peaks at zero and its tail
vanishes rapidly. The solution efficiency for this scenario
amounts to 89%. The second plot assumes the pole mass
for the top quarks and the W bosons. The number and
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FIG. 3: Solution x? defined as the difference between solved
and generated neutrino momenta, added in quadrature, for
the closest solution of each event.
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FIG. 4: Minimal solution x? per event. The first two plots
differ in parton information entered into the solving proce-
dure: a) top quark pole and W boson off-shell masses, b) top
quark and W boson pole masses. The two lower plots show x?2
distributions of reconstructed events, considering both b jet
permutations with reconstructed jets in c) and additionally
smearing applied to jets and leptons in d).



Solution
Condition Efficiency| Purity |[Mean x?
W mass known exactly 0.893 |5.21-107°| 417.3
t pole mass assumed
t, W pole mass assumed 0.839 0 911.0
t, W pole mass assumed
’ p . 11
both bb permutations 0-890 0 66
reconstructed b-jets
711 1
(parton matched) 0.7 0 3916
wrong b-jet permutation
(parton matched) 0426 0 5366
both b-jet permutations
.822 404
(parton matched) 08 0 049
both b-jet permutations
(parton matched, 0.761 0 4491
jets + leptons smeared)
both b-jet permutations
(parton matched,
jets + leptons smeared), 0.994 0 2556
reconstructed objects
100 times resolution smeared

TABLE I: Solutions fulfilling x> < 107% are defined as
matched and else unmatched. The purity is determined ac-
cording to this definition. The Mean x? is obtained taking
into account matched and unmatched events.

mean of unmatched solutions increases dramatically and
the efficiency drops to 84%. Further an infrared-safe cone
algorithm [9] with cone size R = 0.5 in the space spanned
by pseudorapidity and azimuthal angle has been applied
to the hadronic final state particles to investigate the ef-
fect of reconstructed objects on the solutions. Requiring
exactly two jets and two leptons and accepting the jets
as b-tagged if they coincide within AR < 0.5 with the b
quarks and antiquarks yields an significant degradation
of the x2 distribution (fig. 4 c)). The efficiency drops
to 43% assuming the right jet quark combination. Ad-
mitting both permutations yields an efficiency of 82%.
The last plot has been obtained from the previous one
in additionally smearing the leptons and jets with the
energy resolution of the D) detector [10]. The x> of
the minimal solution suffers in average another ten per-
cent degradation and the solution efficiency drops by the
same amount. In practice a given event passes the solving
procedure repeatedly to improve the solution efficiency.
FEach iteration the energy of the reconstructed objects
is randomly drawn from a probability distribution de-
scribing the detector resolution and centred around the
measured values. In the case of hundred such iterations
the efficiency can be kept above 99.4% while in aver-
age the x? of the best solution decreases considerably as
expected in comparison to solving the momenta of the
reconstructed objects just once.

In table I the efficiencies and minimal solution y2’s
are summarised. In addition the purity is given. It is
practically zero, which means that no solutions do match
with real precision or even merely with a x? better than
10723 once the off-shell masses of the top quarks and W

bosons are not assumed to be known exactly.

General numerical methods can compare and gauge
their performance in terms of solution efficiency and pu-
rity with the algebraic approach described here.

The time consumption of the method amounts to
about 20% of the time needed for the generation of
the events which means if 5 - 10% events can be gener-
ated in five hours an additional hour is needed to solve
them. The strength of the method is the application of
Sturm’s theorem, such that in the case of no solutions
the time consuming seeking and polishing of solutions
can be saved. The bottleneck of the method is the time
consuming evaluation of the resultant.

V. CONCLUSIONS

An algebraic approach to solve the ¢t dilepton kinemat-
ics has been presented. The system of equations can be
reduced to a univariate polynomial by means of resul-
tants. The number of real roots can be determined by
means of Sturm’s theorem. Once the single roots have
been isolated they can be polished by binary bracket-
ing while seeking for the sign change. In this way a
solution is found in 99.9% of cases. The solutions co-
incide with real precision to the generated neutrino en-
ergies and momenta in 99.7% of cases assuming that the
reconstructible parton momenta inserted in the solving
procedure are known exactly. Little deviations drop the
solution efficiency considerably, at the order of tens of
percent. In this case the solved neutrino momenta dif-
fer already in average by the order of tens of GeV from
the generated parton momenta. The solution efficiency
can be re-established above the 99% level in solving a
given event several times, varying the energy of the re-
constructed objects each iteration randomly according
to the energy resolution of a detector. General numeri-
cal methods can compare their performance in terms of
efficiency and purity to the algebraic approach whose im-
plementation has been described here.
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COEFFICIENTS

Before defining the coeflicients of equations (4) and (5)
it is useful to introduce the following invariant masses

me+ = \/El?+ _p?;" _pz-}q- _pjj-
mg- = \/Ef_ — P — P P
VE - -}, — 1k,
VE -7, 7,

Mg+ = {(Eb + Eg+)” — (b, +pgt)°

E
Il

E
I

Nf=

~ Py, +Pgr)? = (po. +p¢;)2}

mpe- = {(By+ E-)? = (s, +p,2)?

[N

_(pBy + Py )? — (ps. +pe;)2}

The coefficients are then given by

(m%V+ - m%—v— )pg;r

g = 1
=g E;ﬂ_ _pij
a2 = 7‘?:”2
Ej, — Dy
_ DyiDPer
a3 = E3+ _pﬁj-
gy = lm“l,VJr + m§+ — 2m%v+mf+
4 B — b
- (m%/V+2_ m%r)p[;
Ej, — Dyt
y3 = (m%[,;— m%r)P[;
Eg+ — Pyt
B — vy
Q24 = — B, _pi;*
Q25 = 722;0[:1)[;;
B =P
E?+ - pz;-
az = _7E?+ _pij- .

To obtain the coefficients ¢,,,, for the other parton branch
one has to substitute W and ¢T by W~ and £~ respec-
tively. Similar holds

by = 1 (m} _m§e+)(pbz +Pej-)
2 (Ep + Eg+)? = (po. +pyr)?
by — (Pv, + Pyt ) (Do, + Pyt)
(Eb + Eg+)? — (b, + gt )?
bg = (po, +P4;)@bz + Dyr)
(Ep + Eg+)? — (. +pg+)?
by, — 1 mf +my, = 2mimg,,
4(Ey + E+)? — (. +p+)?
(= mi ) +pey)
(Eb + E¢+)? — (pb. +py3)?
bys = (mt2 - mfﬁ)(pby +pej)
(Ep + E¢+)? — (pb. + pp3)?
by — (B + Ep+)” = (P, +Pgr)’
(Ep + Eg+)? — (pv. + Py )?
by — 2(po, + Pez)(Po, + Pt )
(Ey + Eg+)* — (b, +pg3)°
by — (B + Bp)” = (po, +pg5)°

(Ey + Eg+)? = (o, +pg3)?

Again the coeflicients d;,, of the other parton branch
can be obtained in substituting ¢, b and £+ by ¢, b and £~
respectively. The denominators are always of the type

E? —pl=m’+pl >m’.

Thus it is ensured that they never vanish. Running over
1 million Monte-Carlo events does not lead to a division
by zero. In addition, detected objects in collider exper-
iments have always a considerable amount of transverse
momentum which pushes the kinematics of the equations
further away from such singularities. Therefore the theo-
retically possible multiplication of all equations with the
least common multiple of all denominators does not need
to be applied.
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