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the MIA [Z] and the ICA [7] are model independent in the 
sense that no apriori knowledge of the underlying physical 
processes is assumed. 

The ICA method assumes that source signals have non- 
overlapping power spectra, which often holds because the 
signals are usually harmonic oscillation with different 
tunes. The assumption assures that the unequal time- 
correlation matrices of the source signals are diagonal. 
The demixing matrix, which transforms the sample data 
vector to the source signal vector is found as the joint 
diagonalizer of the unequal time-correlation matrices of 
the sample data with selected time-lag constants. Since the 
source modes can be isolated, their origin can be identified. 
Some of these modes in accelerator physics are horizontal 
and vertical betatron and synchrotron oscillations. These 
modes enable us to study not only the betatron motions but 
also linear coupling and synchrotron motion from BPM 
data. 

This paper is intended to study the applicability and 
limitations of the ICA method in accelerators. We organize 
this paper as follows. In Sec. 11, we introduce the ICA 
method, and demonstrate the applicability of ICA by ap- 
plying it to analyze simulated data derived from simple 
models, and a model of tracking data obtained by the MAD 
program of the Fermilab Booster. We also explore the 
limitation of all finite data sampling methods. In Sec. 111, 
we apply ICA to experimental data of the FNAL Booster 
taken under the condition of the normal ramping cycle. 
Betatron tunes are measured and compared to model cal- 
culation throughout the cycle [8]. The synchrotron tune is 
also measured and compared to direct measurements (91. 
Beta functions and phase advance are also measured. 
Finally we use the result to correct the Fermilab Booster 
MAD model [lo]. The conclusion will be addressed in 
Sec. IV. 

11. THE ICA DATA ANALYSIS METHOD 

The linear response of a dynamical system is repre- 
sented by the relation between the m-dimensional obser- 
vation vector X(t) and the n-dimensional source signal 
vector s(t) by 

X ( t )  = As(t) + N ( r )  (1) 

where A E BmX" is the mixing matrix with rn 2 n (n is 
unknown apriori) and N ( t )  is the noise vector, assumed 
to be stationary, zero mean, temporally white, and statisti- 
cally independent of the source signal s(t). The task is to 
determine both the mixing matrix A and the source signals 
s(r) from the sample signal X(r). 

For most of the physical processes, the source signals are 
assumed to be mutually independent and temporally corre- 
lated, i.e., the time-lagged covariance matrlx Cs(r) = 
(s(r)s(r + 7)T) is diagonal, i.e., (si(t)sj(t + 7)') = 

S,(r)S,,. Here (. . .) stands for mathematical expectation 
and T is the time-lag constant. The source signal separation 

of the ICA method jointly diagonalizes the covariance 
matrices with selected time-lag constants r and uses data 
whitening as a necessary preprocessing procedure. The 
algorithm that we use is listed as follows [5,7]. 

First, compute the m X m sample covariance matrix 
Cx(0) - (X(t)X(t)'). Perform singular value decomposi- 
tion (SVD) on Cx(0) to obtain 

where A,,  A2 are diagonal matrices with min(diag[A,]) 2 

A, > max(diag[A,]) 2 0, A, is a cutoff threshold set to 
remove the singularity of the data matrix, and A ,  is n X n 
diagonal matrix with eigenvalues Al  2 A2 2 . . . 2 A. 2 
A,. Using the matrix 

we construct an n-component vector as .$ = VX. The 
vector 6 is called white because (.$tT) = I, where I is 
the n X n identity matrix. This step reduces the dimension 
of the data space, reduces the noise in the original data, and 
decorrelates and normalizes the data to facilitate the next 
step. 

For a selected set of time-lag constants {rk} ( k  = 

1,2, . . . , K), compute the time-lagged covariance matrices 
{C,(rk) = (.$(t)&(t + T ~ ) ~ ) } ,  form symmetric matrices - 
Cf(rk) = (C5(rk) + C ( ~ ~ ) ~ ) / 2 ,  and find a unitary matrix 
W that diagonalizes all matrices CC(rk) of this set, i.e., 
- 
CC(rk) = WDkWT, where Dk is diagonal. In practice, 
joint diagonalization can be achieved only approximately. 
Algorithms for approximate joint diagonalization can be 
found in Ref. [I I]. 

Finally, the source signals and the mixing matrix ares = 

WTVX and A = V-'W, respectively, where V = 
A F ' I ~ U T  and V-' = U l ~ l i 2 .  

For digitized sample dataX,(t), the time-lag constants T~ 

are discrete integers. The expectation functional (. . .) IS 

replaced with sample average in practice. Improvements 
on the above algorithm have been studied by using robust 
whitening in Refs. [12,13], or a combination of nonstatio- 
narity and time-correlation algorithms in Ref. [12]. In 
accelerator application, we find that our algorithm is suffi- 
cient to isolate all independent signals. 

The application of ICA to beam diagnosis involves three 
phases: data acquisition and preprocessing, source signal 
separation, and beam motion identification. To gain more 
information of the beam lattice, the beam needs to undergo 
coherent transverse motion in the time when the tum-hy- 
turn data are taken. A pinger or rf resonant excitation 
kicker should he fired once or periodically to excite the 
beam. 

The data sampled by BPMs around the ring are put into a 
data matrix 



where N is the total number of turns, m is the number of 
BPM~.  The element X,(j) is the reading of the ith BPM on 
the jth turn. BPM gains may be applied to correct the BPM 
calibration error if necessary and available. 

ICA algorithm is then applied to extract the mixing 
matrix A and source signals s from the data matrix X. 
Each source signal s, and its spatial distribution A,,  where 
Ai is the ith column of A, is called a mode. The physical 
origin of a mode can be identified by its spatial and 
temporal functions. 

An oscillating signal (e.g., betatron oscillation) that has 
a different phase at each BPM will appear as two modes 
with identical frequency spectrum. Coherent betatron mo- 
tion excited by the pinger should be dampened by deco- 
herence. An important signature of betatron modes is their 
tune. Let u(r) be the betatron oscillation component of the 
transverse motion, then 

where s b l ( f )  and s b 2 ( f )  are sinelike and cosinelike modes, 
respectively. The betatron function and phase advance can 
thus be derived 

where u is a constant depending on initial conditions. The 
fractional part of the betatron tune can be obtained by the 
fast Fourier transform (FFT) of the temporal function. 

The synchrotron mode can be recognized because its 
temporal pattern reflects the synchrotron oscillation of 
momentum deviation A y / p o  = S ( t ) .  The spatial panern 
of the synchrotron mode is dispersion function. Let v( t )  be 
the synchrotron oscillation component in the transverse 
motion: 

Note that there is only one mode because the synchrotron 
tune is much smeller than I .  The dispersion D and the 
synchrotron coordinate 6 ( t )  are related by 

with a constant h. The constant a can be "determined" by 
the calibration of kicker strength and the "modeled" 0 
function at the kicker location through sevcral kicker 

strengths. The constant b can be calibrated through simul- 
taneous phase measurement for the synchrotron motion. 

In the presence of linear coupling, betatron modes have 
two separate eigenfrequencies (u, and u-). Here, Eqs. (6) 
and (7) are still applicable. ~ i ~ h e r  order resonances, if they 
appear, can be recognized by their characteristic frequen- 
cies. Other signals can also occur. For example, ripples of 
magnet power supply can modulate the beam transverse 
motion. BPM cables and electronics may pick up an rf 
signal of nearby equipment. Some BPMs may insert an 
artificial signal to their output due to circuit malfunction. 
These signals can be identified and studied. The unidenti- 
fied remainder of the original sample signals may be 
considered as random noise of the BPM system. 

If transverse motion for both the horizontal (x) and 
vertical (2 )  planes can be recorded simultaneously, one 

can put them together in a matrix y = for analysis. (:) 
Linear coupling, including coupling angle between the 
horizontal and vertical planes, can be measured. The spa- 
tial function can be used to identify the source of linear 
coupling. 

A. The simulation model with linear coupling 

We study an ideal lattice model with known analytic 
solution. Let the equations of motion be 

where v,, v, are betatron tunes, C i s  the coupling constant, 
and 0 = 27rfnt is the orbital angle with revolution fre- 
quency fo. The model assumes continuous, uniform focus- 
ing with linear coupling. The solution of the coupled 
equations is 

where the eigentunes are given by 

The coefficients are determined by initial conditions. For 
x(0) = x,, x'(0) = 0, z(0) = z,, and zi(0) = 0 ,  they are 



I .  The demixing given by 

Czo + (v: - v2)xo 
Al = 

u: - u l  

A2 = - 
Cz, + (v: - v:)xo 

,,Z - 2 + v- 

We generate multiple BPM tum-hy-turn data so that we 
can compare the results of PCA and ICA with the analytic 
solution. We place M BPMs uniformly around the ring, i.e., 
the phase advances at the ith (i = 0, 1, - - . , M - 1) BPM 
are @+,i = 2 n v +  i/M and I / _ , ;  = 2 7 r v  i/M. The readings 
this BPM will record are 

xi(n) = Al cos(u+n + @+,,) + Azcos(v-n + @-,,), (13) 

where n is the revolution index. We can introduce bad- 
BPM modes and add white Gaussian random noises to 
each individual BPM to simulate the effect of noises. 

With the linear coupling model, each BPM detects a 
mixturc of the normal modes ("+" and "-" modes, 
referring to signals with frequency v+ and u-, respec- 
tively). It is desirable to get the pure + modes and - 
modes. Since the betatron phase at each BPM is different, 
there are two + and two - modes. Using the spatial 
function of these modes, we can calculate the coefficients 
AI,  AZ,  I l l ,  B2 and the phase advances of the + mode and 
- mode. The coefficients allow us to derive beta functions 
and the coupling angle. Putting both horizontal and vertical 
data in one matrix is a necessary step in achieving mode 
demixing. 

In our simulation studies we apply both PCA and ICA 
methods to compare their ability in mode separation. We 
find that the PCA method can separate the modes in most 
cases when the singular values (SV) of the + and the - 
modcs are substantially different from each other. 
However, when the SVs approach each other, PCA always 
produces modes with mixing. The closer the SVs are, the 
stronger the mixing is. On the other hand, ICA does not 
show any dependence on the relative magnitudes of the 
SVs. Figure I shows the spatial functions and tunes of 
modes I and 3 derived from the ICA and PCA, respec- 
tively. We note that the SVs of these modes are about equal, 
and the resulting PCA modcs are mixed. 
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FIG. I .  The top and the second row are ICA modes of the linear coupling (LC) model. Model 
parameters are v, = 6.741 49, v; = 6.691 49. C = 0.05, .r,, = y,, = 1.0 A ,  = IOhX2. A2 = 

-0.0682, B ,  = 0.0791, H, = 0.9209. Top row: the spatial lunction and FFT of one of !he + 
mode. The second row: the spatial pattern and FFTof one of the - made. The horizontal (solid) 
and vertical (dash) curves in left plots are spatial functions. The right plots show FFT spectra ol 
the temporal functions. The third and the bottom rows: modes I and 3 of the LC model using the 
PCA analysis. The SVs of the modes 1 and 3 are 122.0 and 98.8. re\pectively. 



What PCA essentially does is to decorrelate the sample s contains only 4 nontrivial components. The source sig- 
data, i.e., to find an orthogonal basis to reinterpret the nals are considered separated if two components of s are in 
sample data. Although there are numerous transformations the + subspace and the other two are in the - subspace. 
that decorrelate the sample data, the result of PCA is However if there is a component which crosses the + and 
unique because PCA make sure the first component has - subspace, the modes are still mixed. 
the largest variance (corresponding to the first SV) and the From the above discussion, we see that PCA does not 
second component has second largest variance and so on. guarantee separation of the source signals. The basis w 
The unique result of pCA is determined by the variances of vectors are orthogonal transformation of the source signal 
the components, or the relative strength of the signals, basis vectors s depending on the strengths of the source 
which obviously does not concern the signals' other prop- signals in the sample data. The result depends on the 

erties such as their power spectra or probability density distribution of the components of x or  in the space 

functions. For example, let s ,  and s, be two normalized Spanned by s. On the other hand, ICA makes use of the 

independent signals with ( s  I I -  ) - ( s  2 2 -  ) - 1,  ( S I S , )  = fact that the power spectra of source signals are distinct and 

( s , s , )  = 0. L~~ he data matrix be given by = 2$, + the antocorrelation covariance matrices are diagonal to find 

s2 and x? = s ,  + 2s2. We can use a set of new basis vectors the 

w ,  = ( l / & ) ( s ,  + s , )  and w2 = (1/&)(s2 - s , )  or any 
orthogonal transform as the basis vectors for the source 2 The effects of bad-BPM signals 
signals. However. we prefer the basis .TI and sa because TO further illustrate the behavior of PCA and ICA, we 
they are independent. The additional condition that we introduce a narrowband bad-BPM harmonic oscillation at a 
impose is the independence of signals S I  and ~ 2 %  i.e., frequency far away from the betatron frequencies. This 
( s l ( t ) s l ( f  + 7 ) )  = S I ( T ) ,  ( s2 ( f ) s~ ( f  + 7)) = S2(7). and signal is added only to one BPM, i.e., the spatial vector 
( s l ( f ) s 2 ( t  + 7 ) )  = ( s d f ) s ~ ( t  + 7)) = 0. The new basis of this mode is localized at a "bad" BPM. By changing the 
will inevitably be found to be s ,  and s2 when the autocor- amplitude of this noise signal we can change the SVof this 
relation condition is imposed. mode. We observed that as the SVof this bad-BPM mode is 

In the linear coupling model, the sample of each BPM is near that of the - modes or + modes, the mode mixing 
a mixture of 4 source signals s j ( t )  (i = 1,2. 3.4) among occurred. However the ICA mode is immune of such mode 
which are two + modes that make a + mode subspace and mixing. The top two rows of Fig. 2 show that the betatron 
the other two make a - mode subspace. The resulting basis and the narrowband noise modes are mixed in PCA, where 
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FIG. 2. PCA modes of the LC model with a localized bad-BPM signal. Model parameters: v, = 6.74149, v; = 6.69149, C = 0 05, 
x, = 1.0, y, = 0.0, A ,  = 0.9945, A, = 0.0055, B ,  = 0.0736, B,  = -0.0736. A harmonic oscillation signal is added to BPM V37 
with tune o = 0.575 45 and amplitude 0 = 0.4. The top row: mode 3 with SV = 9.4. The second row: mode 5 with SV = 7.5. These 
two modes are mixed. the third and the fourth rows are ICA modes of the LC model with a bad-BPM hmonic  oscillation signal. The 
localized "bad-BPM" mode is completely separated. 



the SVs are 9.4 and 7.5 for the betatron and noise modes, 
respectively. The bottom two rows of Fig. 2 show clearly 
that the ICA analysis is immune to mode mixing. 

Another type of bad-BPM signal is white Gaussian 
noise. Applying the noise to a single bad BPM and adjust- 
ing the noise level so that its SVis about the same as that of 
the betatron mode, we find that the PCA modes are mixed 
again. The results for both PCA and ICA are shown in 
Fig. 3, where the mode mixing occurs for PCA if the SVs 
of these two modes are close to each other. In the PCA, the 
betatron mode has leaked into the bad-BPM mode as 
shown in the second row of Fig. 3. The ICA can easily 
isolate these two modes as shown in  rows 3 and 4 of Fig. 3. 

Since the PCA depends on the strengths of the source 
signals, it is sensitive to bad BPMs which arc often noisy 
and strong. Thus it is absolutely necessary to exclude the 
bad BPMs before applying the PCA method. On the other 
hand, the ICA is more robust to bad BPMs. This is an 
advantage, especially for on line applications. 

estimation of PCA in Eq. (17) of Ref. [3]. It turns out 
that PCA and ICA have equal pcrtormances with respect to 
random noises. This is reasonable becausc ICA takcs PCA 
as its first step (whitening) and white noises play little role 
in diagonalization of the unequal-time covariance 
matrices. 

4. The effects of number of turns 

Both PCA and ICA are subject to deficiencies due to the 
finitc sampling points. Both methods assume diagonal 
covariance matrix of the sourcc signals, which is uuc 
only asymptotically, i.e., thc number of sampling points 
goes to infinity. In reality, thc results of both PCA and ICA 
are affccted by the number of sampling points. The off- 
diagonal clements of the covariance matrix of two har- 
monic signals can be estimated by , rv, - I 

(s, (I)s?(~))  = 1 sin(27iu+11) s i n ( 2 ~ v - x )  
,i=u 

3. The effects of low level noises =- I sin.rrAvN, 
COSTA v(N, - 1) 

ZN, sin?rAv 
In reality BPM readings always contain random noises 

which affect the results of data analysis. We insert white where s , ( r )  and s3(r)  are the two signals with tnnc v+ and 
Gaussian noises into the simulation data matrix. The rms v - ,  rcspectively, Av = v+ - u .  and N, is the number of 
errors of the resulting beta functions and phase advances of sampling points. The effccts of N, to PCA and ICA can be 
both the ICA and PCA methods are estimated as shown in simulated. Figure 5 shows the dependence of C,(I, 3) = 

Fig. 4. The result agrees well with the analytic error (s, (t)s,(r)) on the sampling turns N, and the resulting error 

BPM Index tune 

FIG. 3. The top and the second row are PCA modes of the LC model with a localired bad BPM with Gaussian white noise signal. 
Model parameters: v, = 6.741 49, 0; = 6.691 49, C = 0.05, x,, = 1.0. yo = 0.0 A ,  = 0.9cl15. ,4? = 0.0055. B ,  = 0.0736. R? = 

-0.0736. The signal added to BPM V37 is white Gaussian noise. The lop row corresponds to mode 3 with SV = 8.4, and the second 
row is the mode 5 with SV = 6.  I. The two PCA !nodes are mixed. The third and the fourth mwr are ICA mode\ of thc 1.C model with a 
localired bad-BPM Gaussian white noise. The localized "bad-BPM" rnode is co~npletely separatril. 



FIG. 4. Estimation of errors of ICA (cross) and PCA (square) methods with various random noise levels in the LC model. The model 
oarameters are the same as Fie. 2. Data of IMO-turn are used to calculate u,/4 (left d o t )  and u,, (bottom olot). The estimation at each 

?. . . . . . . 
noise level m,,,,, ( X  axis) is made by repeating the measurement of and $ 10 times with white Gaussian random noises added to each 
BPM. 

FIG. 5. Effect of number of the sampled turns (N,) in the LC model with v +  = 6.7447 and v = 6.7372. Top: off-diagonal elements 
of source signals C,II, 3). Bottom: uD/P  vs N, for ICA (solid) and PCA (dashed). 



in up/P with respect to N,. The ICA method is less 
affected by N, because its results are based on diagonaliza- 
tion of several autocorrelated matrices instead of only onc. 

B. Application to tracking data 

To explore the capability of ICA in actual data analysis, 
we employ the ICA technique to process BPM data pro- 
duced by tracking programs such as MAD. In this model 
analysis, we have also compared and verified the salient 
features and limitations of the ICA and PCA mcthods as 
discussed in the previous section of a special solvable 
linear coupling model. 

Since the ICA method can isolatc beam modes, wc 
employ this method to identify nonlinear resonance modes 
in tracking data. We find that higher order rcsonance 
signals can indeed be easily separated. Using the 
Fermilab Booster as an example, including excitation of 
sextupoles and skew quadrupoles, we can easily separate 
modes associated with resonances such as u , ~  + u;, 2v,, 
2v,, 2v, C vz,  and 2vx - v?. Figure 6 shows an example 
of a third order resonance mode corresponding to - v, + 
2v, - 1 = 0. Although the tracking data can be used to 
construct the Poincare surface of section [14], the physical 
meaning of the spatial vcctor has not been fully under- 
stood. Since the signals of higher order resonance in the 
nominal operational condition of the Fermilab Booster are 
usually buried under the noise floor, we will not study its 
importance in this study. The ICA method may provide an 
alternative to the frequency map analysis as suggested in 
Ref. [15]. 

v ,  = 6.7 and u, = 6.8. Wc applied thc ICA analysis to the 
booster tom-by-turn BPM data taken in normal cyclcs, 
from which wc dcrived betatron tunes, bcta functions and 
phasc advances at different stages of the cycle. We also 
separated out synchrotron signals which enable us to see 
the evolution of synchrotron tune in a normal cycle. At the 
normal operation settings, the booster was running with all 
of its correctors (trim dipoles, trim quads and skew quads, 
etc.) on. These settings, including thcir ramping compo- 
nents, were recorded to build a latticc model as realistic as 
possible. 

Four data sets were taken with I turn injection and three 
were taken with 4-turn injection, corresponding to extrac- 
tion intensity 0.5 X 10" and 2.0 X 10" protons per pulse, 
respectively. The horizontal pinger at the section L9 was 
tired periodically every 0.5 ms to excite beam transverse 
motion. The pinging strcngth was rampcd up from 0.6 kV 
at injection to 2.4 kVat extraction to partially compensate 
the momentum incrcase. 

The total 33.3 ms ramping cyclc contains 20000 turns. 
Because the beam momentum changes swiftly, we divide 
the cycle into small pieces so that cach piece (about 250 
turns) contains one burst of transverse motion caused by 
the pinger. 

A. Betatron modes 

The bctatron modes of a typical horizontal modes are 
shown in Fig. 7. Using thc spatial function of the hetatron 
modes in Eqs. (6) and (7). one obtains betatron amplitude 
functions and phasc advances at each BPM. Figure 8 com- 

111. ICA ANALYSIS FOR THE FERMILAB 
pared thc mcasurcd betatron amplitude function with that 

BOOSTER 
obtained from MAD modeling. 

The fractional part of thc bctatron tune can bc derived 
The main task of this paper is to use the ICA method in from thc FFTon the ternporal function, shown in Fig. 9 for 

the study of beam dynamics at the Fermilab Booster. The the entirc ramping cycle. The hetatron tunes calculated 
Fermilab Booster is a fast ramping accelerator at 15 Hz. from the realistic modcl machine paramctcrs are also 
The circumference is 474.2 m. The betatron tunes are about shown as solid and dashed lines for cornwarison. 
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FIG. 6. Third order resowmce signals corresponding to v ,  + 2v, - I = 0 in  tmching data (500 toi-ns) of the hooster. The tune of 
the signals is 0.021 07, while v ,  = 6.65753, u; = 6.83929. The currents in ssxuipale fdlniliec are TSCXl-L = 20A. ISEXTS = 5A. 
Left plot: Amplitude of the resonance signal at horizontal (solid cross) and vertical (dash squarc) BPhls. Right plot: tltc FtT spectrum 
of the two resonance signals. 
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RG. 7. Two modes of horizontal signal are shown on the left plots, and the corresponding FFT spectra are shown as the horizontal 
betatron tune. The ICA extracts a single betatron mode from data of all BPMs. The betatron mode is a ourer sinusoidal sienal and the - " 
tune evaluation method in Ref. [I81 can be used to achieve higher precision. Note that the decoherence is not an independent signal, 
and thus cannot be isolated. 
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FIG. 8. Using the spatial function of two horizontal modes, one can calculate the betatron amplitude function at each BPM and phase 
advance between BPMs. The measured BPM is compared with the MAD model. The error bars were estimated with the standard 
deviation of the betatron function derived from the four data sets. 
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FIG. 9. The horizontal (square) and vertical (cross) betatron lunes 
to measurements (solid and dashed lines). 

B. Synchrotron modes 

Dispersion function can be measured at the beginning 
and near the end of the cycle where large momentum 
deviation naturally occurs. The derived dispersion function 
is compared with the MAD modeling in Fig. 10. Similar 
agreement can be obtained in the orbit response matrix 
analysis [16]. The synchrotron tune is obtained from the 

in a booster cycle. Tunes calculated hy MAD (model are compared 

FFT of the temporal functions. Figure I I shows the evo- 
lution of synchrotron tune in a cyclc, excluding the tran- 
sition crossing zone, where thc synchrotron tune is nearly 
zero. 

In the middle of the ramping cyclc, the observed syn- 
chrotron modes are considcrably weaker. There are two 
synchrotron modes, where thcir tcmporal patterns give the 

" " ~ ' " ' ~ " " ~ " " ~ " "  
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FIG. 10. The measured dispersion function is compared with the MAU ~rtodeling id<lttrd lint) hiiseil on a rcalistlc Fei-milah Booster 
lattice. The elmor bars were estimated with the standard deviation of the dispersion function del-i\ed irom the four data sets. 
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FIG. I I. The synchrotron tune in a booster cycle. The squares are measured from turn-by-turn data with ICA method. The crosses 
are measured from phase signal with synchrotron phase detector (SPD) as in Ref. [9]. Note that the SPD method has difficulty in 
measuring the synchrotmn tune above the transition energy at around the 14.5 ms. 

synchrotron tune as  shown in  Fig. 11. However, their 1 
s ~ a t i a l  functions often d o  not resemble the dispersion Aplp(s .  1) = m ( A , ~ ( s ) s ~ ( l )  + AS~(s)s2(f))  (15) 

finction. To understand these data, w e  show the mode 
function 

from turn 3001 t o  3050 for a total of 50 turns in Fig. 12, 

' " ' ~ " " ~ " ' ' ~ " " ~ " ' '  
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FIG. 12. The turn-hy-turn data, divided by the dispersion function, of the synchrotron mode is plotted at each BPM for a total of 50 
revolutions, starting from the revolution number 3001. The normalized vertical axis is equivalent to the fractional off-momentum 
variable. Each square box represents one revolution. 



where the e:ch square box cbrreiponds to one turn in the 
booster and D(s) is the dispersion function shown in 
Fig. 10. Using the fact the E = 1.855 GeV at turn 3001 
and amplitude of the energy oscillation is about 3.5 X 
as shown in Fig. 12, we estimate that the mode function has 
an amplitude of energy deviation of the order of 4E = 
PZE(4f i /po)  = 50 keV. This agrees well with a recent 
estimate of the one-turn energy gainlloss of about 60 keV 
in the longitudinal damper [17]. The one-turn energy gain 
at turn 3001 is about 340 keV, i.e., the average energy gain 
of each rf cavity is about 20 or 40 keV per pair. 

Figure 13 shows the spatial and temporal functions of 
two synchrotron modes. The behavior of the spatial pattern 
of synchrotron modes could be a consequence of ( I )  beam 
energy gain and loss by the longitudinal damper, (2) mis- 
matched ramping curves of the energy gain in rf cavities 
and the dipole fields. Figure 14 shows the spatial function 
divided by the dispersion function. This can be thought of 
as the amplitude of the off-momentum coordinate at each 
BPM location. Since the beam energy changes rapidly by 
about 340 keV in one revolution, each BPM can see differ- 
ent momentum deviation. 

IV. MODELlNG THE BOOSTER 

The ICA method provides a means to measure the linear 
optics functions such as beta functions, phase advances, 
and dispersion. These functions can be used to correct the 
accelerator model (e.g., MAD) by tuning the model to 
minimize the difference between calculation and measure- 

ment. In thc booster modeling, the available parameters are 
quadrupolc gradients K ,  of the 96 main magnets. 

We define the mcrit function 

where q is a 96 X I vector consisting of the body quads 
corrections (i.c., AKI), p,, A*,. 0,. A*,, D, are all row 
vectors with 48 components at 48 BPM locations, y(q) and 
yd are both 1 X 240 vectors containing the model and 
measured linear optics functions, respectively, uj is the 
corresponding error cstitnation of vf serving as weight in 
the definition. Thc additional weights iv,, i = 1, 2 , .  . ., 5 
are used to account for our confidence over the five cate- 
gories of fitting data. We may set thcm to iv l  = w3 = 

ws = I and w 2  = M'J = 4 to put Inore weights on the 
phase advanccs because thcy are iiidcpendent of BPM 
calibration. 

This nonlinear lcast square problem can be solvcd iter- 
atively by Lcvcnberg-Marquardt method. In each iteration 
we compute the Jacohian matrix defined as 

and solve 

(J7J + AI)Aq = -JTrt, 

BPM index Revolutions 

FIG. 13. Synchrotron modes in the middle of a booqter cycle. The turn range is 3001 to 3-100 (5ce Fis. 12). f i e  telnpoi-al si~nals 
providc us the synchrotron tune shown in Fig. I I .  The spatial pattern does not rescmhle lhc dispcision function. Furthermore, the 
spatial function crosses zero. The effective amplitude of the off-rnornentuln coordinate 1s about 10-'. This 11l;~y resull from the 
longitudinal damper or lnis~natch between the beam energy and the ,rain dipole lield. 



FIG. 14. The spatial function of the synchrotron modes shown in Fig. 13 divided by the dispersion function. The resulting function 
can be thought of as the amplitude of the off-momentum deviation at each BPM location. The locations of rf cavities are shown as dots 
on the horizontal axis 

to obtain a new set of fitting parameters, where I is the 
identity matrix and A is an adjustable nonnegative parame- 
ter to control the behavior of the algorithm. 

This fitting scheme works well with MAD simulation 
data. But the result obtained from the real experimental 
data does not converge to a reasonable model, probably 
because the BPM resolution of about 100 p m  is too large 
so that the measured data contain too much error for 
accelerator modeling (see Figs. 4 and 5). The modeling 
method could be more useful for electron machines where 
the BPM resolution is about I p m .  Combining the ICA 
derivcd optical functions with the orbit response matrix 
modeling, one may be able to provide better constraints on 
accelerator modeling. 

V. SUMMARY 

In this study we carried out simulations to study the 
performance and limitation (BPM noise and the number of 
digitizing turns) of the ICA and PCA methods on data 
analysis. We find that the ICA can resolve coupled modes 
that PCA cannot resolve. We have studied the effect of 
BPM noises and a finite number of sampling points. We 
find that the 1CA method is more robust in mode separation 
and is less affected by the number of sampling points. The 
two methods have a similar behavior undcr low level 
random noises. We showed that ICA has potential in the 

study of nonlinear resonances. The meaning of the non- 
linear spatial function has not been fully studied. 

The main goal of this paper is to use the ICA method to 
analyze experimental turn-by-tum data of the Fermilab 
Booster. The method enables us to measure the betatron 
and synchrotron tunes throughout the fast ramping cycle. 
We observed an interesting phenomenon that the spatial 
function of synchrotron modes crosses zero within one turn 
around the accelerator. The resulting " A p / p o W  is about 

This means that the beam has different fractional off 
momentum at each BPM position. We believe that this may 
have resulted from either the longitudinal feedback system 
or the mismatch between the energy gain in rf cavities and 
the dipole ramping curve of a fast ramping accelerator. 

Finally, the measured beta functions, phase advance, 
linear coupling angle, and dispersion function can be 
used for accelerator modeling in conjunction with the orbit 
response matrix method. The additional constraint on the 
measurcd phase advance and linear coupling angle can he 
incorporated in the orbit response matrix accelerator 
modeling. 
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