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Mapping dark matter with cosmic magnification
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We develop a new tool to generate statistically precise dark matter maps from the cosmic mag-
nification of galaxies with distance estimates. We show how to overcome the intrinsic clustering
problem using the slope of the luminosity function, because magnificability changes strongly over
the luminosity function, while intrinsic clustering only changes weakly. This may allow precision
cosmology beyond most current systematic limitations. SKA is able to reconstruct projected matter

density map at smoothing scale ∼ 10
′

with S/N≥ 1, at the rate of 200-4000 deg2 per year, depending
on the abundance and evolution of 21cm emitting galaxies. This power of mapping dark matter is
comparable to, or even better than that of cosmic shear from deep optical surveys or 21cm surveys.

PACS numbers: 98.62.Sb, 98.80.Es

Introduction.— The precision mapping of the universe,
and the accurate determination of cosmological parame-
ters have been enabled by the recent generation of cos-
mic microwave background(CMB) experiments, galaxy
and lensing surveys, and new analysis techniques. Weak
gravitational lensing has emerged with a promising fu-
ture of mapping dark matter directly, which would allow
the inference of the state of the universe, including its
dynamics and the nature of dark energy. Lensing is free
from modeling assumptions, and can be accurately pre-
dicted from first principles. Several major surveys are
underway, under construction or in the planning stage.
Currently, most attention has focused on using the lens-
ing induced cosmic shear[1]. But such an approach is
subject to a series of difficult experimental systematics
[2]. CMB lensing[3] and 21cm background lensing [4] are
promising. But contaminations such as the kinetic Sun-
yaev Zeldovich effect [5] and/or non-Gaussianity may de-
grade their accuracy. In this paper we will address an
alternative approach, the lensing induced cosmic magni-

fication, which is not subject to the known problems, and
could provide a robust statistical signal.

Traditionally, intrinsic clustering had presented a se-
rious problem to measurement of cosmic magnification.
The observable quantity is the surface density of galaxies
above some flux threshold. A variation in this surface
density is then interpreted as lensing. Unfortunately, in-
trinsic clustering is usually larger than the lensing in-
duced signal. By utilizing the redshift information, in-
trinsic clustering can be effectively eliminated in lensing
correlation functions[6, 7]. In this paper, we further show
that, beyond the above statistical lensing measurement,
2D convergence κ maps can be reconstructed with lower
systematics and larger sky coverage than cosmic shear
maps, by utilizing both the redshift and flux informa-
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tion of galaxies. 2D κ maps not only provide indepen-
dent and robust constraints on cosmology, but also are
complementary to traditional shear maps. It allows one
to explicitly and locally solve for non-reduced shear, an
independent mode of checking E-B decomposition, and
break the mass-sheet degeneracy[8].

Cosmic magnification.— Cosmic magnification causes
coherent changes in the apparent galaxy number density.
Let Nij be the observed number of galaxies (including
false peaks) at the i-th flux bin and j-th redshift bin,
falling into an angular pixel centered at direction n̂ with
angular size θ. It can be expressed as

Nij(n̂) = N̄ij + N̄ r
ij [Wijκj(n̂) + δg,ij(n̂)] + δNP,ij(n̂) .(1)

The signal Wκ has unique dependence on galaxy flux
through W = 2(α−1). Here, α = −d ln[dn/dF ]/d lnF −
1 and dn/dF is the mean number of observed galaxies

per flux interval [19] N̄ij = N̄ r
ij + N̄f

ij , N̄ r
ij , N̄f

ij are the
mean number of detections, real galaxies and false peaks,
respectively. δg and δNP are galaxy intrinsic clustering
and Poisson fluctuation, respectively.

Our goal is to recover κ of each angular pixel, given
observables Nij , N̄ r

ij , Wij and N̄ij [20]. We consider

SKA[21], which can detect ∼ 108 high z galaxies through
the neutral hydrogen 21cm emission line. κ has typical
value ∼ 1%. To beat down Poisson fluctuations, >

∼ 104

galaxies per angular pixel are required. Traditionally, ob-
jects are selected at a 5σ cut, where one can neglect the
fraction of false detections. This of course also discards
the majority of the signal. With a 0.5-σ cut, one can re-
duce Poisson noise at θ ∼ 10

′

. To increase lensing signal
while reducing δg contamination, we focus on source red-
shifts z >

∼ 2. After averaging over the full redshift range
z ≥ 2, δg is still several times larger than κ. However,
δNP and δg,ij have different flux dependence to that of
the signal. Weighting each galaxies by some function of
their flux can suppress the prefactors of δg and δNP . In-
tuitively, Eq. 1 implies the optimal estimator to be linear
in Nij .
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The predictions rely on the assumed HI mass func-
tion n(MHI, z). We extrapolate the locally observed
n(MHI, z) = n0(z)(MHI/M∗)

−1.2 exp(−MHI/M∗)[9] to
high redshifts either assuming no evolution in both n0

and M∗ (conservative case) or n0(z), M∗(z) ∝ (1 +
z)1.45 exp(−z/2.6) (realistic case), which is calibrated
against Lyman-α observations (refer to [7] for details).
We adopt a flat ΛCDM cosmology with Ωm = 0.3,
ΩΛ = 0.7, h = 0.7, σ8 = 0.9, the primordial power index
n = 1, BBKS transfer function[10] and Peacock-Dodds
fitting formula for the nonlinear density power spectrum
[11].

The optimal estimator.— Since z >
∼ 2 galaxies are

mainly lensed by matter at z <
∼ 1, κ = A − B/χ(z)

is an excellent approximation, where A and B are two
constants and χ is the comoving angular diameter dis-
tance. Since χ(z) varies slowly at z > 2, one can
approximate κ(χ, n̂) ≃ 〈κ〉 = κ(〈χ〉, n̂), where 〈χ〉 =
∑

N̄ r
ij/

∑

ij χ−1
j N̄ r

ij is the effective distance to lens [22].

In the limit that N̄ij ≫ 1, Poisson fluctuations become
Gaussian. The likelihood function of κ at an angular
pixel, marginalized over p(δg,11 · · · δg,ij), the probability
distribution of δg,ij of this angular pixel, is

L ∝

∫

exp



−
∑

ij

[Nij − N̄ij − N̄ r
ij(Wijκ + δg,ij)]

2

2N̄ij





×p(δg,11 · · · , δg,ij)
∏

ij

dδg,ij . (2)

We choose the redshift bin size ∆z >
∼ 0.2 and angular

pixel size ∼ 10
′

such that δg,ij of different redshift bins
are uncorrelated. For this choice, the matter density dis-
persion of each redshift bin σm

<
∼ 0.1. This verifies the

neglect of high order term δgκ in Eq. 1 & 2.
Since σm

<
∼ 0.1 and galaxy bias bg is unlikely bigger

than several[12], it is reasonable to assume that galax-
ies are Gaussian distributed. Then p(δg,11 · · · ) is com-
pletely determined by the covariance matrix Ci1j1;i2j2 ≡
〈δg,i1j1(n̂)δg,i2j2(n̂)〉. SKA can directly and accurately
measure the correlations of galaxy density fluctuations
between flux bins, which are the sum of Ci1j1;i2j2 , cor-
relations induced by lensing and cross terms. In the in-
teresting range, Ci1j1i2j2 dominates. So one can take the
measured sum as first guess of Ci1j1;i2j2 . Maximizing L,
one obtains the optimal estimator κ̂ of κ. The recon-
structed κ can in turn be applied to subtract the lensing
contribution in the covariance matrix estimation. This
can be done iteratively. Since the lensing contribution
is small, such iteration should be stable and converge
quickly.

The properties of high redshift 21cm emitting galax-
ies are currently poorly known. It is likely that they
trace the underlying dark matter at some level, and that
galaxies of different luminosities are correlated to each
other. We consider this case first, and then the extreme

conservative realistic
n-σ ng , 〈W 〉,〈W 2〉 ng , 〈W 〉,〈W 2〉
0.5 123,-0.44,1.1 419,-0.85, 1.5
1.0 76, -0.21,1.2 290,-0.70, 1.4
2.0 40, 0.11,1.6 184,-0.49,1.4
5.0 13, 0.98,3.7 82, 0.1, 1.8
10.0 3.9, 2.0, 7.7 36, 0.73 2.9

TABLE I: The predicted number of galaxies ng/1
′2 at z ≥ 2,

〈W 〉 and 〈W 2〉 for SKA deep survey with integration time 18
days/deg2.

stochastic biasing limit[13] where galaxies of different flux
are uncorrelated with each other. These two cases corre-
spond to the worst and best cases for the κ reconstruc-
tion, respectively.

Deterministic biasing.— We first consider the case that
δg,ij of different flux bins (but of the same redshift bin)
are linearly correlated, namely, δg,ij = bijδj , where δj is
the dark matter density of the j-th redshift bin. As dis-
cussed above, bij can be measured iteratively. Marginal-
izing over δj , we obtain

L ∝ exp

[

−
(κ − κ̂)2

2(∆κ)2

]

,

κ̂ = (
∑

j

Sj −
BjQj

Aj
)(∆κ)2 ,

∆κ =





∑

j

Tj −
Q2

j

Aj





−1/2

(3)

≤

(

N̄〈W 2〉 − N̄
〈Wb〉2

〈b2〉

)−1/2

.

Here Aj =
∑

i(N̄
r
ijbij)

2/N̄ij + 1/σ2
j , Bj =

∑

i(Nij −

N̄ij)N̄
r
ijbij/N̄ij, Qj =

∑

i N̄ r,2
ij Wijbij/N̄ij , Sj =

∑

i(Nij − N̄ij)N̄
r
ijWij/N̄ij, and Tj =

∑

i(N̄
r
ijWij)

2/N̄ij .

N̄ is the mean number of galaxies in each angular pixel.
〈· · · 〉 are weighted by galaxies with the noise from false
peaks taken into account.

Maximal stochasticity.— Stochasticity eases the sub-
traction of the intrinsic clustering signal. In this case, δg

of different bins are uncorrelated. We have

L ∝ exp



−
∑

ij

[Nij − N̄ij − N̄ r
ijWijκ]2

2σ2
ij



 ,

κ̂ =

∑

ij(Nij − N̄ij)N̄
r
ijWij/σ2

ij
∑

ij [N̄
r
ijWij ]2/σ2

ij

,

∆κ = [∂2 lnL/∂κ2]−1/2 =





∑

ij

[N̄ r
ijWij ]

2

σ2
ij





−1/2

≥ [N̄〈W 2〉]−1/2 ′ =′ when N̄ r
ijσ

2
g,ij → 0 . (4)

Here, σ2
ij = N̄ij + N̄ r,2

ij σ2
g,ij , where the first term is the



3

FIG. 1: Estimated power of SKA to recover the lensing con-
vergence map. Left panels and right panels correspond to the
conservative case and the realistic case. We only use galax-
ies at z > 2 above a 0.5-σ detection threshold and assume
unity galaxy bias. In top panels, we fix the integration rate
as 18 days/deg2 and plot rms of signal (black lines) and noise
(shaded regions) as function of smoothing size. Upper and
lower limits of statistical errors are calculated by Eq. 3 and
4, respectively. Bottom panels show the comparison between

cosmic magnification (µ) and cosmic shear (γ) at 10
′

smooth-
ing scale. The lower and upper limit of shear measurement
error are estimated using 5-σ and 10-σ cut, respectively and
adopting mean ellipticity 〈ǫ2〉1/2 = 0.54, as expected for disk
galaxies. SKA is likely capable of reconstructing the κ map
with S/N > 1 at the rate of ∼ 4000 deg2/year. Cosmic shear
quickly loses power when decreasing the integration time per
deg2 while cosmic magnification is less affected.

shot noise and the second term is the intrinsic fluctu-
ation of galaxy number distribution. The conditions
N̄ r

ijσ
2
g,ij

<
∼ 0.01N̄ij → 0 and N̄ij ≫ 1 (for Gaussian-

ity) can both be satisfied since galaxy bias bg is unlikely
bigger than several[12]. A similar estimator has been de-
rived by [14]. In two estimators, 〈W 2〉 and 〈Wb〉 are two
key ingredients and reflect the key role of flux informa-
tion.

Results.— SKA is able to detect ng
>
∼ 100 arcmin−2

galaxies at z >
∼ 2 (table I). For an integration time

tint = 18 days/deg2, a S/N>
∼ 2 can be achieved at

θ ∼ 10
′

(fig. 1). Deep survey configuration detects more
faint galaxies, which have W → −2, mimic a constant
b and thus do not contribute to the signal, due to the
〈W 2〉 − 〈Wb〉2/〈b2〉 facotr in Eq. 3. An optimal sur-
vey configuration should have 〈Wb〉 → 0, which can be

achieved at tint ∼ 0.2-1 day/deg2 (fig. 1). Since ng

above 0.5-σ decreases much more slowly than tint (for
example, for the evolution model, decreasing tint from
180 days/deg2 to 4 hours/deg2, ng only decreases by a

factor of 9), it is still likely to achieve S/N> 1 at θ ∼ 10
′

and scan rate of ∼ 4000 deg2 per year (fig. 2). This will

produce more lensing information (∝ S/N×f
1/2

sky ) in a one
year SKA survey than SNAP[23] will produce, which will
cover 1000 deg2 sky area with S/N∼ 2 at smoothing scale
θ ∼ 10

′

.

Since the SKA will have ∼ 0.3
′′

resolution at z ∼ 2,
it can resolve galaxies and measure cosmic shear. An in-
trinsic advantage of cosmic magnification measurement
over cosmic shear measurement is that it does not require
galaxies to be resolved. Thus, dwarf galaxies which are
too small and too faint for reliable shear measurement
still contribute to magnification measurement. Cosmic
magnification exceeds cosmic shear at integration rate
<
∼ 0.2-10 days/deg2 (fig.1). We note that this compar-
ison is conservative. We have neglected all systematics
of shear measurement. For magnification estimation, we
only select galaxies above a 0.5-σ detection threshold, or
HI mass above several × 108M⊙h−2. There are numer-
ous galaxies with HI mass ∼ 107M⊙h−2[9], which can in
principle be used to improve the measurement. We do
not explore its potential in this paper since the luminos-
ity function at the faint end is unclear.

Several uncertainties could degrade the signal separa-
tion. (1) The HI mass function, which is the dominant
factor, as can be seen from table I and fig. 1. Here
we further draw the attention on the slope of the HI
mass function. For an extreme case that α → 1 and
W → 0 over a large flux range, the signal disappears.
This effect can be straightforwardly estimated through
the 〈W 2〉 and 〈Wb〉 terms in Eq. 3 & 4, once the HI
mass function is measured. Since HI mass function at
high z is effectively unknown, we postpone the discus-
sion in this paper. (2) The galaxy bias. For the case
of deterministic biasing, if bg ∝ W , flux information is
no longer useful for the separation and our method effec-
tively fails. But since bg > 0, as long as the survey is deep
enough to probe the faint end of galaxies where W < 0,
bg can not always mimic W and the separation is always
possible. (3) The galaxy distribution. When bg is big-
ger than several or smoothing size is smaller than several
arc-minutes, δg is non-Gaussian. In this case, the esti-
mators described above are no longer optimal. Optimal
estimators for non-Gaussian galaxy distribution should
be further investigated.

Applications.—The reconstructed κ map can be ap-
plied to measure many lensing statistics. For this pur-
pose, reconstructed κ can be noisy because these statis-
tics generally average over many angular pixels and
achieve high S/N. Then the optimal estimator derived in
this paper can be applied to each narrow redshift bins and
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allows the lensing tomography. (1)The probability den-

sity function p(κ). p(κ) as a function of κ and smoothing
angular size θ can provide independent constraints on
cosmology. Recently [15] showed that the Wiener filter
reconstruction of p(κ) from noisy convergence map can
go deep into regions where |κ/∆κ| ≪ 1. We thus ex-
pect that p(κ) can be recovered accurately from SKA.
(2) Lensing power spectrum and bispectrum. The recon-
structed κ map barely has S/N>

∼ 5, so it is consistent to
neglect <

∼ 10% higher order terms: O(κ2) terms and δgκ
term neglected in Eq. 1 and κ(χ)−〈κ〉. But these terms
should be taken into account for precision measurement
of lensing power spectrum and bispectrum, since their
statistical errors can reach ∼ 1% accuracy[7]. For the
linear estimator we derived, contributions of these terms
to the power spectrum and bispectrum can be straight-
forwardly and robustly predicted. So, there is no need to
derive a more complicated nonlinear estimator. (3) Clus-

ter finding and cluster density profile. This is a promising
approach to break the cluster mass sheet degeneracy. In
the reconstructed maps, massive clusters at z ∼ 0.2 show
as high peaks with strength κ ∼ 0.1 and size ∼ 10

′

and
can be easily identified. These clusters are excellent ob-
jects to measure the geometry of the universe by the tech-
nique of lensing cross-correlation tomography [16]. Since
S/N is so high, one can choose smoothing size ∼ 1

′

and
measure the projected cluster density profile. Exerting
a prior on cluster density profile, the reconstruction can
be further improved [17]. When κ → 1, the weak lensing
condition breaks and Eq. 1 no longer holds. By utilizing
the exact magnification equation, one can develop new
estimator, in analogy to the reduced shear reconstruc-
tion [18]. We leave this topic for further study.

We summarize our results. Cosmic magnification is
statistically more sensitive than cosmic shear because it
is possible to use the large number of galaxies detected
at low statistical significance. Intrinsic clustering can be
subtracted because (1) magnification depends strongly
on the shape of the luminosity function, which varies sig-
nificantly, while intrinsic clustering depends weakly on
the intrinsic luminosity itself and (2) they have differ-
ent redshift dependence. Cosmic magnification shows
promise as a complementary technique to map the sta-
tistically precise distribution of matter, which is not sub-
ject to most of the systematics of cosmic shear. We have
worked through the specific numbers for the SKA, but
the general formalism would also apply to optical spec-
troscopic or photometric redshift surveys.

Acknowledgments.— We thank Scott Dodelson for
many helpful conversations and careful proofreading. We
thank Albert Stebbins and Martin White for helpful dis-
cussions. P.J. Zhang was supported by the DOE and the
NASA grant NAG 5-10842 at Fermilab.

[1] A. Refregier, 2003, ARAA, 41, 645 and reference therein;
M. Jarvis et al. 2003, AJ, 125, 1014; U. Pen et al. 2003,
592, 664; M. Jarvis et al. 2004, MNRAS, 352, 338; T.
Chang et al. 2004, astro-ph/0408548

[2] C. Harata et al. 2004, MNRAS, 353, 529; H. Hoekstra,
2004, MNRAS, 347, 1337; M. Jarvis et al. 2004, MNRAS,
352, 338; C. Vale et al. 2004, ApJL, 613, L1; L. van
Waerbeke, et al. 2004, astro-ph/0406468; C. Heymans et
al. 2005, astro-ph/0506112

[3] U.Seljak and M. Zaldarriaga, 1999, PRL, 82, 2636; M.
Zaldarriaga and U. Seljak, 1999, PRD, 5913507; W. Hu
and T. Okamoto, 2002, ApJ, 574, 566; C. Hirata and U.
Seljak, 2003, PRD, 68, 083002

[4] U. Pen, 2004, New Astronomy, 9, 417; K. Sigurdson and
A. Cooray, 2005, astro-ph/0502549

[5] A. Amblard et al. 2004, New Astronomy, 9, 687
[6] R. Scranton, et al. , 2005, astro-ph/0504510 and reference

therein
[7] P. Zhang and U. Pen, 2005, astro-ph/0504551
[8] P. Schneider et al, 1992, Gravitational lenses, Springer-

Verlag, Berlin
[9] M. Zwaan, et al. 1997, ApJ, 490, 173

[10] J. Bardeen et al. 1986, ApJ, 304, 15
[11] J. Peacock and S. Dodds, 1997, MNRAS, 280, 19
[12] H. Mo and S. White, 1996, MNRAS, 282, 347; M. Gi-

avalisco et al. 1998, ApJ, 503, 543; V. Springel et al.,
2005, Nature, 435, 629

[13] U. Pen, 1998, ApJ, 504, 601.
[14] B. Ménard and M. Bartelmann, 2002, A&A, 386, 784
[15] T. Zhang and U. Pen, 2005, astro-ph/0503064
[16] B. Jain and A. Taylor, 2003, PRL, 91, 141302; J. Zhang

et al. 2003, astro-ph/0312348
[17] S. Dodelson, 2004, PRD, 70, 023009
[18] U. Pen, 2000, ApJ, 534, L19
[19] The observed dn/dF is convolved with system noise. Be-

cause there are more dwarf galaxies than massive ones,
noise makes the observed dn/dF both larger and steeper,
in the flux range that SKA can probe at z >∼ 2. The over-
all effect is that system noise in flux measurements in-
creases the cosmic magnification signal and strengthens
the result in this paper. For simplicity, we neglect this
complexity.

[20] Cosmic magnification does not change the averaged
galaxy spatial and flux distribution, up to O(κ2) ∼ 10−4

accuracy. The sky coverage of SKA is >∼ 100 deg2.
Thus for each redshift and flux bin, there are >∼ 4000

angular pixels with size θ ∼ 10
′

and >∼ 105 galaxies
across the survey sky, so N̄ij can be measured accu-

rately. N̄f
ij can be accurately predicted, since system

noise is Gaussian and the dispersion Ssys is specified
for each survey. The number of false peaks with flux
above n-σ, or nSsys per redshift interval per beam is
[1.4 Ghz/∆ν(1 + z)2]Erfc[n/

√
2]/2. ∆ν is chosen to be

the frequency width corresponding to 100 km/s veloc-
ity dispersion at redshift z[7]. Thus, one can accurately
predict N̄r

ij and Wij .
[21] SKA:http://www.skatelescope.org/
[22] The approximation κ ≃ 〈κ〉 simplifies the derivation of

the optimal estimator significantly, though its accuracy
can be as bad as ∼ ±20%, at each redshift bins. But after

http://au.arXiv.org/abs/astro-ph/0408548
http://au.arXiv.org/abs/astro-ph/0406468
http://au.arXiv.org/abs/astro-ph/0506112
http://au.arXiv.org/abs/astro-ph/0502549
http://au.arXiv.org/abs/astro-ph/0504510
http://au.arXiv.org/abs/astro-ph/0504551
http://au.arXiv.org/abs/astro-ph/0503064
http://au.arXiv.org/abs/astro-ph/0312348
http://www.skatelescope.org/


5

averaging over many redshift bins, corrections in different
bins effectively cancel. For the optimal estimators derived
(Eq. 3 & 4), one can derive the unbiased expression of
〈κ〉 such that 〈κ〉 = 〈κ̂〉.

[23] SNAP: http://snap.lbl.gov/

http://snap.lbl.gov/

