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Abstract

We present a Kπ mass spectrum analysis of the four-body semileptonic charm
decay D+ → K−π+µ+ν in the range of 0.65 GeV/c2 < mKπ < 1.5 GeV/c2. We
observe a non-resonant contribution of 5.30 ± 0.74+ 0.99

− 0.51% with respect to the to-
tal D+ → K−π+µ+ν decay. For the K∗(892)0 resonance, we obtain a mass of
895.41 ± 0.32+ 0.35

− 0.36 MeV/c2, a width of 47.79 ± 0.86+ 1.3
− 1.1 MeV/c2, and a Blatt-

Weisskopf damping factor parameter of 3.96±0.54+ 0.72
− 0.90 GeV−1. We also report 90%

CL upper limits of 1.60% and 1.90% for the branching ratios Γ(D+→K∗(1680)0µ+ν)
Γ(D+→K−π+µ+ν)

and Γ(D+→K∗
0(1430)0µ+ν)

Γ(D+→K−π+µ+ν) , respectively.
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Weak semileptonic decays of charm mesons continue to attract interest due
to the relative simplicity of their theoretical description: the matrix element
of these decays can be factorized as the product of the leptonic and hadronic
currents. This makes the D+→K−π+µ+ν decay a natural place to study the
Kπ system in the absence of interactions with other hadrons. Due to Watson’s
Theorem [1,2], the observed Kπ phase shifts in D+ → K−π+µ+ν should be
the same as those measured in Kπ elastic scattering.

It is known that the Kπ final state of D+→K−π+µ+ν decay is strongly dom-
inated by the K∗(892)0 vector resonance [3,4]. The large and clean sample of
D+ → K−π+µ+ν events collected by the Fermilab FOCUS experiment pro-
vides an excellent opportunity to measure the K∗(892)0 mass and width, as
well as the effective Blatt-Weisskopf damping factor parameter discussed in
Ref. [5]. We also search for structures other than the K∗(892)0 resonance in
the mass range of 0.65 GeV/c2 < mKπ < 1.5 GeV/c2.

The first suggestion that the D+→K−π+µ+ν decay proceeds via states other
than the K∗(892)0 resonance comes from the Fermilab E687 experiment [4].
The presence of an additional structure was confirmed by FOCUS in the anal-
ysis of the angular decay distributions, in which the K∗(892)0 form factor
was measured [6,7]. Specifically, significant discrepancies were found between
the data and the predicted D+ →K∗(892)0µ+ν angular decay distributions.
A nearly constant amplitude and phase contribution to the helicity zero am-
plitude of the virtual W+ was required to adequately fit the observed de-
cay angular distributions. The s-wave amplitude, a0e

iδ0 , was measured in the
vicinity of the K∗(892)0 pole with parameters a0 = 0.330 ± 0.022 ± 0.015
and δ0 = 0.68 ± 0.07 ± 0.05. This new component accounts for 5% of the
D+→K−π+µ+ν branching fraction.

Motivated by this earlier FOCUS result, we search for other contributions
in the Kπ spectra. Specifically, we look for possible contribution from the
K∗(1680)0, K∗

0 (1430)0, and κ. We also present a more complete description
of the non-resonant contribution. The existence of the κ, reported in [8], re-
mains controversial due to difficulties in the theoretical treatment of broad
scalar states and the absence of a clear observation of this state in scattering
experiments. Many models predicting the decay width of semileptonic decays,
such as ISGW2 [9] and QCD Sum-Rules [10], indicate the tendency for these
decays to proceed via low mass structures. In [11] it is suggested that if the
κ has a substantial qq̄ component in its wave function, it could account for
more than 10% of the D+→K−π+µ+ν decay rate.

The data were collected in the Wideband photoproduction experiment FO-
CUS during the Fermilab 1996–1997 fixed-target run. In FOCUS, a forward
multi-particle spectrometer is used to measure the interactions of high energy
photons on a segmented BeO target. The FOCUS detector is a large aperture,
fixed-target spectrometer with excellent vertexing and particle identification.
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The FOCUS beamline [12] and detector [6,13–15] have been described else-
where.

To isolate D+→K−π+µ+ν events, we require that the muon, pion, and kaon
candidate tracks have a 5% or greater confidence level to originate from a
common secondary vertex. Background is reduced by requiring the secondary
decay vertex be separated from the production (primary) vertex by greater
than 10 σ�, where σ� is the uncertainty on the separation between the primary
and secondary vertices. Possible backgrounds from higher multiplicity charm
decays are suppressed by requiring the K−π+µ+ vertex be isolated from other
tracks in the event (excluding tracks from the primary vertex). Specifically,
we require that the maximum confidence level for another track to form a
vertex with the secondary vertex candidate to be less than 1%. To suppress
background from secondary interactions the decay vertex candidate must lie
outside any target foil or detector material.

The muon, pion, and kaon candidates are selected in the following way. The
muon track must have hits in at least 5 of the 6 segmented scintillator layers
which comprise the inner muon detector and a muon confidence level exceeding
5% (based on the fit to the hits). The pion and kaon tracks must have a muon
confidence level less than 0.1%. The kaon is required to have a Čerenkov light
pattern more consistent with that of a kaon than that of a pion by 2 units of
log-likelihood, while the pion track is required to have a light pattern favoring
the pion hypothesis over that of the kaon by 2 units [14]. In addition, the
pions and kaons are required to have momenta greater than 5 GeV/c, while
the muon momentum must exceed 10 GeV/c.

To suppress background from D+ → K−π+π+, we require that the invari-
ant mass of the three tracks, where the muon candidate is given the pion
mass, is less than 1.8 GeV/c2. To suppress background from D∗+ →D0π+ →
(K−µ+ν)π+ and D∗+ → D0π+ → (K∗−µ+ν)π+, we require m(K−µ+π+) −
m(K−µ+) > 0.2 GeV/c2.

The charm background, charm decays that are not D+ →K−π+µ+ν, is esti-
mated from more than one billion charm Monte Carlo events that pass through
the entire data analysis chain. Our Monte Carlo is based on Pythia [16] and
incorporates all known charm decays. The charm Monte Carlo sample was
scaled to the data sample size using the fitted yield of the D+→K−π+π+ sig-
nal. To estimate the background contribution coming from non-charm events,
we define a wrong sign sample (WS) formed by K+π−µ+ tracks in the sec-
ondary vertex. We assume that non-charm events populate the wrong sign and
right sign (RS) samples equally. The non-charm background distribution is ob-
tained by subtracting the WS charm background (obtained from the Monte
Carlo sample) from the WS data sample. We estimate the charm and non-
charm background contributions to be, respectively, 17.8% and 3.2% of the
total number of events over our signal region.
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Four-body decays of spinless particles are described by five kinematic variables.
The variables chosen in this analysis are the K−π+ invariant mass (mKπ), the
square of the µ+ν mass (q2), and three decay angles: the angle between the
π+ and the D+ direction in the K−π+ rest frame (θv), the angle between the
ν and the D+ direction in the µ+ν rest frame (θ�), and the acoplanarity angle
between the two decay planes (χ).

The differential decay rate can be represented by a coherent sum of resonant
and non-resonant contributions to the angular momentum eigenstates of the
K−π+ system,

dΓ

dmKπ
=

∫ ∣∣∣∣∣
∑
J

∑
R

aJ,(R) MJ AJ,(R)

∣∣∣∣∣
2

φ dΩ (1)

where dΩ ≡ dq2 dcos θv dcos θ� dχ, MJ is the weak matrix element for a transi-
tion with angular momentum J , AJ,(R) represents the form of the hadronic final
state amplitude contribution of resonance R (or non-resonant) with strength
aJ,(R), and φ is the phase space density.

The possible resonant states that couple to K−π+ are the scalars κ and
K∗

0 (1430)0, the vectors K∗(892)0 and K∗(1680)0, and the tensor K∗
2(1430)0.

The non-resonant contribution is assumed to be scalar. 1 Small amplitude con-
tributions are most likely to be observed through the interference with large
amplitude components. Due to the orthogonality of states with different an-
gular momentum, only amplitudes with the same spin will produce significant
interference contributions to the mKπ mass spectrum, given our reasonably
uniform angular acceptance. Therefore, the small vector K∗(1680)0 and scalar
K∗

0 (1430)0 contributions might produce an observable effect on the mKπ spec-
trum through their interference with the K∗(892)0 and a low mass s-wave
amplitude, respectively. By contrast, the inclusion of a small K∗

2 (1430)0 res-
onance contribution is unlikely to be observed, since it is orthogonal to the
(dominant) K∗(892)0 and low mass s-wave amplitudes. For this reason we
do not include the K∗

2(1430)0 resonance in our fits to the mKπ spectrum in
D+→K−π+µ+ν.

The parametrization of resonant states with angular momentum J is given by
the product of a Breit-Wigner 2 and the normalized R → K−π+ coupling, FJ

AJ,R =
m0 Γ0

m2
Kπ − m2

0 + i m0 Γ(mKπ)
FJ(mKπ) (2)

1 Although the simplest way to obtain the forward backward asymmetry described
in Ref. [6] is to assume an s-wave amplitude interfering with the K∗(892)0 (as was
done in Ref [6]), small spin 2 components cannot be excluded.
2 The Breit-Wigner form used by FOCUS differs by a factor of −1 from the
LASS [17] form.
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where Γ(mKπ) = Γ0 F2
J

p∗
p∗0

m0

mKπ
, p∗ is the magnitude of the kaon momentum in

the resonance rest frame, p∗0 = p∗(m0), F0 = 1, and F1 = p∗
p∗0

B(p∗)
B(p∗0)

. B is the

Blatt-Weisskopf damping factor given by B = 1/
√

1 + r2
0 p∗2 [5]. The damping

factor adds an additional fit parameter, r0, in our fits to the K∗(892)0 line
shape. The line shape of the κ resonance is expected to deviate significantly
from a pure Breit-Wigner, due to its large width and the close vicinity of the
Kπ threshold. In this analysis we use the κ line-shape adopted by E791 [8].

We use an empirical parametrization from K−π+ elastic scattering experi-
ments for the non-resonant amplitude. A partial wave analysis performed by
LASS observed that the s-wave amplitude can be represented as the sum of a
K∗

0 (1430)0 resonance coupled to K−π+ and Kη′ and a smooth, non-resonant
term [17]. 3 LASS fitted the non-resonant component to an effective range
model of the form

cot δLASS =
1

a p∗
+

b p∗

2
(3)

where a = 4.03 ± 1.72 ± 0.06 GeV−1 and b = 1.29 ± 0.63 ± 0.67 GeV−1.
Removing the two-body phase space factor, given by p∗

mKπ
, from LASS non-

resonant amplitude, which is already included in Eq. 1, we obtain the following
parametrization for the non-resonant hadronic final state interaction:

ANR =
mKπ

p∗
sin(δLASS)e

iδLASS. (4)

The weak matrix element for the vector process, M1, and for the scalar pro-
cess, M0, are written as a function of helicity amplitudes, Hi, derived in [18].
Neglecting the mass of the charged lepton the matrix elements are

M1 =
√

q2
[
(1 + cos θ�) sin θve

iχH+(q2, mKπ)

−(1 − cos θ�) sin θve
−iχH−(q2, mKπ) − 2 sin θ� cos θvH0(q

2, mKπ)
]

(5)

and

M0 = −2
√

q2 sin θ� Hs
0(q

2, mKπ). (6)

The three form factors for the vector states and the one for the scalar states
are written assuming the single pole dominance ansatz given by:

fansatz(q
2) =

f(0)

1 − q2/M2
pole

. (7)

3 Charm decays are traditionally fit to a model where the strengths of both resonant
and non-resonant contributions are fit parameters. Hence we will independently
adjust the non-resonant and K∗

0 (1430)0 resonant contributions found by LASS to
best fit our data.
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Fig. 1. The background subtracted distribution of mKπ weighted by cos θv. The
data (squares) show good agreement with the LASS non-resonant parameterization
(solid histogram) but not with a κ model (dashed histogram)

The vector states use the nominal spectroscopic pole masses, MA = 2.5 GeV/c2

and MV = 2.1 GeV/c2, and the recent form factor measurements in Ref. [7].
The scalar states use MV = 2.1 GeV/c2 and the respective zero recoil form
factor is arbitrarily set to one since its value can always be absorbed in the
amplitude parameter a0,(R).

Next we discuss the angular distribution described by Eq. 1. The Kπ spec-
trum described by this equation includes the dominant contribution from the
K∗(892)0 resonance, possible high mass contributions from the K∗

0 (1430)0 and
K∗(1680)0 resonances, and low mass scalar components comprised of a non-
resonant and a possible κ contributions, both populating the region where
relevant discrepancies were found. As discussed in [6,7], the mKπ distribution
weighted by cos θv provides information on the phase of the additional struc-
ture relative to that of the K∗(892)0. It can be used to discriminate different
combinations of low mass states, given the large difference between their phase
shifts. 4 Figure 1 compares the distribution obtained in the data with the pre-
dictions from the non-resonant and κ models in the absence of additional phase
shifts.

Since a simulation using the LASS parametrization of the non-resonant contri-
bution is sufficient to reproduce the data, we exclude a possible κ contribution
from further consideration.

Having excluded the κ, the most general differential decay rate for D+ →
K−π+µ+ν in mKπ is given by Eq. 8 where ε represents the detector acceptance

4 The distribution for a pure D+→K∗(892)0µ+ν decay would be nearly zero.
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and efficiency:

dΓ

dmKπ
=

∫
ε |M1V + M0S|2 φ dΩ (8)

with vector and scalar amplitudes given by

V ≡ aK∗(892)0AK∗(892)0 + aK∗(1680)0AK∗(1680)0 (9)

S ≡ aNRANR + aK∗
0 (1430)0AK∗

0 (1430)0 . (10)

The amplitude coefficients aK∗(892)0 , aK∗(1680)0 , aNR, and aK∗
0 (1430)0 are real, as

required by Watson’s Theorem [2].

Equation 8 can be conveniently factorized as:

dΓ

dmKπ

= |V|2F11 + |S|2F00 + 2�(V∗ S)F01 (11)

where FJJ
′ ≡ ∫

εM∗
JMJ

′ φ dΩ, are real functions 5 that depend only on mKπ.
The FJJ ′ functions are computed from the mKπ spectrum obtained from a
complete simulation of D+→K−π+µ+ν events, generated according to phase
space and weighted by M∗

JMJ ′ and thus represent the intensity modified by
acceptance and efficiency. The three FJJ ′ functions are shown in Figure 2.
The |V|2, |S|2, and �(V∗S) functions depend on mKπ as well as on all fit
parameters. The cross-term, 2�(V∗ S)F01, represents the interference between
the vector and scalar contributions.

The contribution from each decay mode, as well as the K∗(892)0 parameters,
are obtained from an unbinned maximum-likelihood fit. We define the proba-
bility density function as the sum of the probability density for the signal, LS,
and for the background, LB. The signal density is described by Eq. 11. The
background density is given by the sum of charm and non-charm contributions.
The relative contribution of the two background sources as well as the rela-
tive fraction of the background with respect to the selected D+→K−π+µ+ν
sample, fB, are fixed at the estimated values, described previously. We fit the
data by minimizing the quantity ω,

ω ≡ −2 ln
∑

events

[(1 − fB)LS + fBLB] (12)

5 Because of Eq. 5, all imaginary pieces of M∗
JMJ ′ will appear as sinusoidal func-

tions of χ. Hence any imaginary terms vanish when averaged over χ given our nearly
uniform acceptance in this variable.
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Fig. 2. Distributions of the relevant FJJ ′ functions which represent the intensity
modified by acceptance and efficiency and include the effects of phase space and the
weak matrix elements. The F11, F00, and F01 distributions are shown as triangles,
squares, and circles, respectively.

The fit parameters are the magnitudes of each amplitude in the signal prob-
ability density function (ai), the nominal mass and width of the K∗(892)0,
and the parameter r0 of the Blatt-Weisskopf damping factor. The K∗(892)0 is
taken as the reference amplitude (aK∗(892)0 = 1). The parameters of all other
resonances are fixed to the PDG values [19]. Decay fractions are obtained in-
tegrating each individual amplitude over the phase space and dividing by the
integral over the phase space of the overall amplitude.

To account for momentum resolution effects on the K∗(892)0 parameters, we
refit the data fixing all parameters except the K∗(892)0 width and use the
probability density function, LG, given by Eq. 13:

LG(mKπ) =
∫

L(m′
Kπ) G(m′

Kπ − mKπ, σ) dm′
Kπ. (13)

The new probability density function, LG(mKπ), represents the convolution of
the data fit function with a Gaussian distribution, G, with σ = 5.88 MeV/c2,
value obtained from Monte Carlo simulation. The smearing due to momentum
resolution increases the K∗(892)0 width by approximately 2 MeV/c2.

Using the procedure described above, we fit the data assuming only a D+→
K∗(892)0µ+ν process. The confidence level of this fit is 0.21%, indicating the
need for additional contributions in the decay.

The inclusion of a non-resonant scalar component, referred to as the NR model,
significantly improves the confidence level of the fit to 66%. Figure 3 illustrates
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Table 1
Estimated systematic uncertainty obtained for each component.

Cut and Model Vars. Split Sample Mass Scale

mK∗(892)0 (MeV/c2) + 0.13
− 0.16 ±0.11 ±0.30

ΓK∗(892)0 (MeV/c2) + 0.81
− 0.18 ±0.11 —

r0 (GeV−1) + 0.38
− 0.67 ±0.61 —

Scalar fraction (%) + 0.95
− 0.43 ±0.28 —

the contribution of both the D+ → K∗(892)0µ+ν and non-resonant s-wave
process to the observed mKπ spectrum.

We consider several sources of systematic errors. These include variations of
the fit conditions, split sample errors, and the uncertainty on the absolute
mass scale of the experiment, relevant for the K∗(892)0 mass measurement.
Twenty-six variations of the fit procedure are considered. Starting from the
final sample we adopt more stringent selection criteria changing the signifi-
cance of the separation between secondary and primary vertices, the secondary
vertex isolation requirement, and the cut on the muon confidence level. In ad-
dition, we vary the relative fractions of the different background components.
We also vary by ±1σ the values of the parameters from the LASS effective
range parametrization (Eq. 3). Errors from this source are asymmetrical: we
take the difference between the central and highest/lowest values of each fit
parameter and scaled by 0.68 to obtain the contribution to the systematic
error.

The split sample component takes into account systematic effects introduced
by residual differences between data and Monte Carlo. This component is
determined by splitting the data into five pairs of independent subsamples,
according to the D± charge, data taking conditions, primary vertex multiplic-
ity, muon momentum, and the momentum of the Kπ system. The treatment
used for the split sample is known as Unconstrained Averaging, described
in [19, pg. 14].

The total systematic error is given by the sum in quadrature of the uncer-
tainties from the independent sources. Table 1 presents the results of the
systematic uncertainty evaluation for the measurements.

Table 2 summarizes the results obtained from the fits using the two mod-
els. The values of the fit parameters are compared to the world average val-
ues [4,7,17,19]. Our measurements of the K∗(892)0 mass and width are both
more than 1 σ below the PDG average values. Figure 4 shows a comparison
between our standard NR model with free K∗(892)0 parameters and a NR
model with K∗(892)0 parameters fixed at the world average values [17,19].
With the inclusion of a non-resonant contribution, the value we obtain for
the Blatt-Weisskopf parameter is consistent with LASS [17]. The fraction of
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Table 2
Fit results for two models compared to the current world averages.

K∗(892)0 only NR Model Current values

mK∗(892)0 (MeV/c2) 895.61 ± 0.32 895.41 ± 0.32+ 0.35
− 0.36 896.10 ± 0.27 [19]

ΓK∗(892)0 (MeV/c2) 50.26 ± 0.81 47.79 ± 0.86+ 1.3
− 1.1 50.70 ± 0.60 [19]

r0 (GeV−1) 14.1 ± 5.7 3.96 ± 0.54+ 0.72
− 0.90 3.40 ± 0.67 [17]

Scalar fraction (%) 5.30 ± 0.74+ 0.99
− 0.51

∼ 5 [7]
8.3 ± 2.9 [4]

Confidence level (%) 0.21 66.0
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Fig. 3. Fit to the mKπ data using the NR model. The error bars, the solid lines, the
dashed lines, and the dotted lines correspond to the data, the model, the background
contribution, and the scalar contribution, respectively. The upper right plot shows
the same information and the cross-term (dot-dash line) with a limited y-axis to
allow more detail to be seen.

the scalar component is compatible with the value obtained previously in the
analysis of the cos θv asymmetry [7].

Finally, we consider possible D+ →K∗(1680)0µ+ν and D+ → K∗
0(1430)0µ+ν

contributions to our model. Since the data is already well described by a
model having only the K∗(892)0 and non-resonant components, we do not
expect large contributions from these modes. Including both decays we find
mK∗(892)0 = 895.0 ± 1.1 MeV/c2, ΓK∗(892)0 = 47.63 ± 0.91 MeV/c2, r0 =
5.7±4.8 GeV−1, aNR = 0.287±0.073, aK

∗
(1680)0 = −0.16±0.36, and aK

∗
0(1430)0 =

−0.048 ± 0.19. The K∗(1680)0 and K∗
0(1430)0 amplitudes are consistent with
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Table 3
Summary of results on K∗(892)0 parameters and contributions from non-K∗(892)0

sources in the decay D+→K−π+µ+ν. Limits on K∗
0(1430)

0 and K∗(1680)0 contri-
butions account for unseen decay modes.

mK∗(892)0 = 895.41 ± 0.32+ 0.35
− 0.36 MeV/c2

ΓK∗(892)0 = 47.79 ± 0.86+ 1.3
− 1.1 MeV/c2

r0 = 3.96 ± 0.54+ 0.72
− 0.90 GeV−1

Γ(D+→K−π+µ+ν)NR

Γ(D+→K−π+µ+ν)
= 5.30 ± 0.74+ 0.99

− 0.51 %

Γ(D+→K∗(1680)0µ+ν)
Γ(D+→K−π+µ+ν)

< 1.60% @ 90% CL

Γ(D+→K∗
0(1430)

0µ+ν)
Γ(D+→K−π+µ+ν)

< 1.90% @ 90% CL

zero and we find Γ(D+→K∗(1680)0µ+ν)
Γ(D+→K−π+µ+ν)

< 1.60% and
Γ(D+→K∗

0(1430)0µ+ν)

Γ(D+→K−π+µ+ν)
< 1.90% at

90% CL. The upper limits are calculated using the method described in [20]
and assume BR(K∗(1680)0 →K−π+) = 0.62 and BR(K∗

0(1430)0 →K−π+) =
0.258 [19]. When the K∗(1680)0 is included, we observe a strong correlation
between r0 and aK

∗
(1680)0 , inflating the errors on both quantities. To study

the statistical significance of these new amplitudes, we use a hypothesis test
based on the maximum-likelihood ratio method [21]. This method compares
two hypotheses and points out unnecessary degrees of freedom. As a result,
we obtain a confidence level of 80% in favor of the simple NR model. Our final
results are summarized in Table 3.

In conclusion we have measured the K∗(892)0 parameters using a large sample
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of D+ →K∗(892)0µ+ν signal events over a wide mass range. The absence of
high mass resonances as well as the small background contribution provides
a unique environment to study the K∗(892)0 mass and width. The K∗(892)0

mass and width measurements are stable with respect to model variation. Our
measurements of the mass and width are more than 1σ below the present
world average value. We obtain a Blatt-Weisskopf parameter consistent with
the value obtained by LASS [17]. We also limit possible new Kπ resonances
present in D+ →K−π+µ+ν semileptonic decays. Our angular distribution is
consistent with the effective-range scalar non-resonant phase shift obtained by
LASS [17] as expected by Watson’s Theorem given the absence of other final
state interactions.
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