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Abstract. The fundamental laws of nature as we now know them are governed the
fundamental parameters of the Standard Model. Some of these, such as the masses of the
quarks, have been hidden from direct observation by the confinement of quarks. They are now
being revealed through large scale numerical simulation of lattice gauge theory.

.

1. The Standard Model and beyond
The Standard Model of particle physics describes the laws of matter at the most fundamental
level currently known.. It contains six quarks (dubbed up, down, charm, strange, top, and
bottom), and six leptons (the electron, muon, and tau leptons, and their associated neutrinos).
They are organized by the weak interactions into three generations:(
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There are three forces in the Standard Model, the strong, the weak, and the electromagnetic
interactions. They are superficially quite different from one another. The W and Z bosons that
mediate the weak interactions are very heavy, unlike the massless photons of electromagnetism.
The gluons of the strong interactions are also massless, but a free gluon has never been observed.
Quarks and gluons seem to be permanently confined in hadrons by the strong interactions.

The parameters of the Standard Model govern its interactions. They are

• the coupling constants of the strong, weak, and electromagnetic interactions, αs, αw, and
αem,

• the masses of the six quarks and six leptons,
– mu,md,mc,ms,mt,mb,
– me,mµ,mτ ,meν ,mνµ ,mντ ,

• the matrices of fermion mixings
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– among the quarks (the Cabibbo-Kobayashi-Maskawa matrix), Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (3)

– and among the leptons,  Veν1 Veν2 Veν3

Vµν1 Vµν2 Veµν3

Vτν1 Vτν2 Vτν3

 , (4)

• the mass of the W or Z boson.

At present, these quantities could simply be decrees of the deity as far as we know for sure.
Where do they come from? Can we predict them with a more fundamental theory.

The strong interactions confine the quarks, such as the up and down quarks of ordinary
matter, into nucleons. The weak interactions are responsible for radioactive decay, such as when
a d quark turns into a u quark by emitting an electron and a neutrino.

The Standard Model is maddeningly successful. It agrees with every particle physics
experiment performed so far, sometimes to great precision. (The anomalous magnetic moment
of the electron, for example, is predicted to a precision of better than one part in a billion.)

Why the word maddeningly? The Standard Model contains many gaps and puzzles. These
have led particle physicists to conclude that there must be a more fundamental theory of particle
physics than the ones yet discovered. We have searched, so far in vain, for evidence of new
particles and interactions.

As a glaring example, consider the phenomena that go under the rubric of “Higgs particle”.
There exist no consistent quantum field theories of heavy vector bosons like the W s and Zs that
do not contain addition scalar particles coupled to the vector bosons. The simplest possibility
is a single additional elementary scalar, called the “Higgs”, but reality is likely to be more
complicated. Consider the force of gravity, which I did not mention earlier. This is because
there exists no quantum theory of gravity. The two pillars of twentieth century physics, the
theory of Relativity (Einstein’s theory of gravity) and quantum mechanics, are inconsistent
with each other at very short distances. At least one of them must be modified significantly in a
more complete theory. Why is there more than one generation of fermions, when all the matter
in the natural world is composed of only particles of the first generation? What is the relation
between the three forces? After quantum field theories were developed for each of them, they
were seem to all be gauge theories with mathematically very similar structures. It was soon
shown how to combine them into a single more fundamental theory, a “Grand Unified Theory”.
So far, though, experiment has not revealed which, if any, of the possible such theories might
be correct.

The list of puzzles and potential clues goes on and on. There is abundant reason to believe
in a more fundamental theory “Beyond the Standard Model”. So far, experiment has cast little
light on which of the many possibilities might be right. Physicists are eagerly searching for any
slight deviation from the predictions of the Standard Model to point them in the right direction.

One element of this search is the quest to pin down the parameters of the Standard. Factories
for mesons containing heavy quark flavors are pouring out data for determining the CKM matrix
elements at accelerators at Stanford, Cornell, and KEK. Another element is the search for new
particles and forces. Proton colliders at Fermilab and, soon, at CERN are extending the search
for the Higgs to higher and higher masses.

Lattice calculations are essential to this program in two ways. First, they are required
to extract properties of quark from properties of hadrons (particles that contain quarks).
Experiments examine hadron processes to discover the properties of quarks, and they examine



neutrino processes to discover the properties of neutrinos. The neutrinos are observed directly,
and can be analyzed using perturbation theory. The quarks are not observed directly, but are
confined permanently within hadrons. Their properties must be inferred using lattice gauge
theory calculations.

Secondly, lattice gauge theory calculations are essential to prepare for possible new
nonperturbative phenomena in coming experiments. Lattice gauge theory is the first and only
general tool for nonperturbative quantum field theory. Of the interactions known to particle
physics, only one (quantum electrodynamics) is known to be described by a perturbative theory,
whose properties can be expressed as a power series in the electromagnetic coupling constant,
αem. Strong interactions are known to be described by a nonperturbative theory, quantum
chromodynamics or QCD. Consider the “Higgs” of the weak interactions. Is it

• an elementary, perturbative Higgs?
• a bound state of a new strong interactions (technicolor, topcolor)?
• accompanied by very high energy gluino condensates (some supersymmetric models)?

QCD provides an excellent test bed to sharpen our nonperturbative tools to prepare for such
questions.

2. Quarks, gluons, and lattice QCD
Quark masses and mixings can’t be directly observed. Quarks are permanently confined inside
hadrons. As evidence for quarks became stronger in the sixties and early seventies, this
nonobservation of quarks became harder and harder to understand in light of another property
of quarks that became clear during that period. In electron-proton scattering experiments at
Stanford, it became clear that at high energies, the protons behaved as if they were bags full
of weakly interacting, almost-free constituents. Why should such almost-free constituents be
permanently confined? This paradox was resolved in 1973 with the discovery of the “asymptotic
freedom” of QCD. The self-coupling of the gluons mediating the strong force caused the effective
value of the strong coupling “constant” to become larger and larger at long distances (long
compared with the proton radius), contrary to the well-known behavior of the electromagnetic
coupling constant. This meant that even though the quarks were indeed weakly interacting
at short distances, the force between them did not die off at long distances, leading to their
permanent confinement. Gross, Politzer, and Wilczek shared the Nobel Prize for this discovery
in 2004.

The consequence for particle physics is that even though perturbation theory may be used
to analyze quark-quark scattering at high energies, to infer the properties of quarks from the
relatively low energy dynamics of hadron constituents, the nonperturbative methods of lattice
QCD are required.

Quantum field theories are defined by their path integrals. For gauge theory, this may be
written schematically as

Z =
∫
d
[
Axµψx, ψx

]
exp

(
−S(A,ψ, ψ)

)
. (5)

The quantum amplitude for a state of quarks and gluons at a given time to evolve into another
state at a later time is obtained by integrating over all possible intervening classical field
configurations. In principle, one integrates over independent fields defined at each space-time
point. A quantum field theory is in principle defined by an infinite dimensional integral (not a
very well-defined object). Quantum field theories must therefore be “regulated”.

A lattice quantum field theory regulates the continuum theory by defining the fields on a four
dimensional space-time lattice. Quarks are defined on the sites of the lattice, and gluons on the



Table 1. Properties of typical sets of gauge configurations for lattice QCD phenomenology
calculations.

Lattice spacing Quark mass Volume Number of CPU time
(fm) configurations (teraflop years)
.15 .03 163 × 48 500 0.003

.02 500 0.005

.01 500 0.011

. . . . . .
.10 .012 283 × 48 500 0.024

.006 500 0.08

.003 500 0.5
. . . . . .

.06 .008 483 × 144 500 0.4
.004 500 1.6

. . . . . . . . .

links. Continuum quantum field theory is obtained in the zero lattice spacing limit. This limit
is computationally very expensive, which is why large-scale computer simulations are required.

Operationally, lattice QCD calculations consist of the following steps. First, sets of gauge
configurations are computed that approximate the integral over classical gauge fields in the
vacuum. They are constructed in long Markov chains with Monte Carlo methods, such
as the venerable Metropolis method, of the more modern Hybrid Monte Carlo algorithm.
Configurations are accumulated at several lattice spacings, and at several values of the masses of
the light quarks in the fermi sea, heavier than the physical light quark masses. The results must
be extrapolated to the continuum and light quark mass limits. An idealized representative set
of gauge configuration parameters is shown in Table 1. To give an idea of the scale of computing
involved, to generate the sets of 500 configurations of 0.06 fm, volume 483 × 144 lattices that is
planned this year will take 0.5–1.5 TF-year each, depending on the light quark mass. This step
consumes most of the CPU power.

Second, the propagation of quarks through the gauge configurations is calculated. This means
solving the Dirac equation on each gauge configuration. On the lattice, this is a sparse-matrix
problem, solved with relaxation methods, such as the biconjugate gradient algorithm. This step
takes perhaps a quarter to a half of the compute power of the first step.

Thirdly, hadron correlators and amplitudes are computed from the quark propagators. This
is a computationally cheap step, consisting mostly of I/O.

State-of-the-art price/performance for computing hardware for this type of calculation is
about $1.3/MF. Larger projects are of order a few Teraflop-years. Our group at Fermilab is
currently involved in a joint effort with the MILC Collaboration to calculate the properties of
heavy flavor mesons with improved staggered light fermions, on a data set something like the
one in Table 1. This year’s computational step will be performed on the purpose-built QCDOC
computer at Brookhaven and on large clusters at Fermilab. A new set of gauge configurations
will be generated on the QCDOC, consuming around 2 TF-years of compute power. These
configurations, a few TB of data, will be shipped to Fermilab for quark and hadron analysis
on clusters, consuming around 0.7 TF-years of compute power. The QCDOC computations are
done with a single, highly optimized program, consist of a few, very long single tasks, and have
moderate I/O needs. The cluster programs have large, heterogeneous code bases, consist of
many small, individual jobs, and have heavy I/O needs. Either piece of hardware, with work,
could have done all the computing jobs required for the entire project. Having both approaches
available makes it possible to optimize the running in a robust way.



Progress in numerical science comes from both larger computers and from improvement
of methods. A methodological improvement that has been particularly important for the
work I’ll discuss is improved discretizations. Numerical analysis tells us that if a derivative
is approximated by a discrete difference, the resulting discretization errors vanish as the square
of the lattice spacing:

∂ψ(xi)
∂x

= ∆xψ(xi) +O(a2), (6)

where ∆xψ(xi) ≡ (ψ(xi + a) − ψ(xi − a))/(2a). By incorporating next-to-nearest neighbor
interactions, we can write down an approximation to the derivative whose errors vanish as a
higher power of the lattice spacing:

∂ψ(xi)
∂x

= ∆xψ(xi)−
a2

6
∆3

xψ +O(a4). (7)

This allows control of discretization errors with far less computing power than the simpler
derivative. A quark action correcting for all quadratic discretization errors is called the improved
staggered fermion “asqtad” action. [1] It is the light quark action used in the calculations of the
next section.

3. Lattice QCD confronts experiment
Progress in unquenched lattice QCD. In the last few years, there has been dramatic progress
in our ability to perform precise calculations of simple quantities. For twenty years after the
first lattice Monte Carlo calculations appeared around 1980, almost all lattice phenomenology
was done in the quenched approximation, meaning ignoring the effects of light quarks loops.
Although computationally much than correct unquenched calculations, this introduced ten per
centish errors into the calculation which supplied an irreducible lower bound on the uncertainties
of lattice predictions, as shown in the left-hand graph of Fig. 1. Recently, unquenched
calculations with improved staggered fermions (called “asqtad” fermions in the jargon) have
matured to the point that these errors can be removed for simple enough quantities. The right-
hand graph of Fig. 1 shows the same quantities as on the left, but unquenched and now showing
good agreement with experiment at the few per cent level. [2] For these calculations, the masses
of some quantities like the pion and kaon masses are used as inputs to fix the fundamental
parameters of QCD, the quark masses and the strong coupling constant. Three different groups
using this method than compared notes on their predictions for the simplest quantities they were
calculating, with the results shown. These results are for the simplest quantities we know how
to calculate, and it will be interesting to extend the calculations to more complicated quantities.
Likewise, the results shown are obtained with staggered fermions, the least computationally
costly of the fermion methods, and it will be interesting to verify that one obtains the same
answers with more costly methods. Nevertheless, the progress is striking.

The Bc. Most of the particle masses and other simple quantities that are to be “predicted”
by lattice QCD have been well known for fifty years, so that real prediction is impossible. An
exception has been the mass of The Bc meson, a meson made of a bottom quark and a charm
antiquark. Bottom quarks were discovered in only in the 1970’s, and since they are rarely
produced in association with charm quarks, Bc mesons were not observed until this past year.
Fig. 2 shows the predictions of unquenched lattice calculations done before the observation of
the Bc. [3] In December of 2004, the CDF experiment at Fermilab announced the discovery of
the Bc. Their result for the mass is shown in the gold bar across the graph, in good agreement
with the lattice prediction.



The strong coupling constant. Asymptotic freedom means that the effective coupling “constant”
of QCD, αs(E), is small at in collisions at high energy, E. This means that perturbation theory
can be used to analyze high energy collisions, and the strong coupling constant can be measured
in a large number of high-energy processes, some of which are shown in the plot in Fig. 3. One
can also obtain the strong coupling constant with lattice methods. One obtains αs on the lattice
by using it as a parameter in particle spectroscopy calculations, as in Ref. [2]. One then converts
it to the form used in perturbation theory analyses; the result is shown in the next-to-bottom
point in Fig. 3. It agrees well with continuum results, as it should. Since the plot was made, a
more accurate result has been produced by the authors of the point just discussed, incorporating
three-loop lattice perturbation theory. The result is αs(MZ) = 0.1170(12), still in agreement
with the world average, but now more accurate than any other result.

The light quark masses. When results can be obtained both with lattice QCD and with other
methods, the results should agree. Many of the parameters of the Standard Model, however,
such as the light quark masses, can only be obtained with lattice QCD. Quark models and other
models gave guesses of around ms ∼ 150 MeV for the strange quark mass, and ml ∼ 6 MeV
for the average of the up and down quark masses. With lattice QCD, we can determine these
masses with first-principles calculations, for example, by tuning the quark masses to obtain the
correct masses for pions and kaons. The result is that the early guesses were simply wrong, the
correct answers are about a factor of two lower. A recent paper from one particular group using
the set of methods discussed here gives [6]

ms = 76(3)(7) MeV, (8)
ml = 2.8(1)(3) MeV. (9)

There is a wide consensus throughout the lattice community that the correct answer for ms is
somewhere in the range 75-105 MeV, and that the earlier guesses were simply wrong.
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Lattice QCD/Experiment (no free parameters!):
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For simple quantities, 
the 10%-ish errors visible in 
the “quenched 
approximation” are 
removed with unquenched 
calculations using improved 
staggered fermions 
(the least computationally demanding 

fermion method). 
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Lattice QCD confronts experiment

Recent progress:

Figure 1. Lattice predictions compared with
experiment for simple quantities in quenched
and unquenched lattice QCD.

Figure 2. Bc meson observed by the CDF
collaboration (gold bar across the figure)
compared with predictions of lattice QCD
made before the observation (rightmost two
data points).
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Figure 9.1: Summary of the value of αs(MZ) from various processes. The values
shown indicate the process and the measured value of αs extrapolated to µ = MZ .
The error shown is the total error including theoretical uncertainties. The average
quoted in this report which comes from these measurements is also shown. See text
for discussion of errors.

extracted [44,45] are consistent with the theoretical estimates. If the nonperturbative
terms are omitted from the fit, the extracted value of αs(mτ ) decreases by ∼ 0.02.

For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ ∼ 3.058(1+0.112+0.064+0.036).
The size (estimated error) of the nonperturbative term is 20% (7%) of the size of the
order α3

s term. The perturbation series is not very well convergent; if the order α3
s term

is omitted, the extracted value of αs(mτ ) increases by 0.05. The order α4
s term has been

estimated [46] and attempts made to resum the entire series [47,48]. These estimates can
be used to obtain an estimate of the errors due to these unknown terms [49,50]. We
assign an uncertainty of ±0.02 to αs(mτ ) from these sources.

Rτ can be extracted from the semi-leptonic branching ratio from the relation
Rτ = 1/(B(τ → eνν) − 1.97256); where B(τ → eνν) is measured directly or extracted
from the lifetime, the muon mass, and the muon lifetime assuming universality of lepton
couplings. Using the average lifetime of 290.6 ± 1.1 fs and a τ mass of 1776.99 ± 0.29
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Figure 3. Determinations of the strong
coupling constant from a variety of high
energy processes, evaluated by convention at
the mass of the Z boson, MZ . [4]
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“Most” of the time,  details of b quark wavefunction 
are unimportant - only averaged properties (i.e.       ) 
matter “Fermi motion”

Theorists love inclusive decays ...
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Figure 4. The decay of a B meson into
leptons plus hadrons X, where X might be
a pion or a D meson. [5]

Table 2. The Cabibbo-Kobayashi-Maskawa matrix elements, with particle processes by which
they can be measured. 

Vud Vus Vub

fπ fK

K → πlν B → πlν

Vcd Vcs Vcb

fD fDs

D → πlν D → Klν B → Dlν

Vtd Vts Vtb

< Bd|Bd > < Bs|Bs > −



Golden quantities and the CKM matrix elements. Most of the results discussed so far are for
a particularly simple kind of quantity for lattice QCD: stable meson processes with a single
meson present at a time. These are golden quantities for lattice QCD, with uncertainties that
are smaller and easier to understand than for most quantities. Although this is a restricted set,
many of the most important tasks of lattice gauge theory can be accomplished with quantities
of this type. In particular, almost all of the CMK matrix elements and quark masses can be
determined with lattice calculations in this category.

CKM matrix elements are measured in decay processes in which a quark of one flavor turns
into a quark of another flavor, as given in Table 2. Fig. 4 illustrates B meson “semileptonic”
decay, that is, decay into two leptons plus one or more hadrons. In the experimentally observed



Table 3. The values (red) of Cabibbo-Kobayashi-Maskawa matrix elements, measured from
semileptonic decay processes (blue). [8]

Vud Vus Vub

Vcd Vcs Vcb

D → πlν D → Klν B → Dlν
0.24(1)(2)(2) 0.97(4)(8)(2) 3.8(1)(1)(6)× 10−2

Vtd Vts Vtb



process, a B meson decays into two leptons. the electron and a neutrino, plus hadrons (labeled
X), for example a pion. The experimental rate depends on a QCD amplitude, which must
be supplied by lattice QCD, and on the CKM matrix element Vub, which is the amplitude
connecting a bottom quark and an up quark. Purely leptonic decays, such as a pion decaying
into an electron plus a neutrino, are parameterized by decay constants such as fπ. Pion leptonic
decay depends on the QCD amplitude fπ and on Vud, the CKM matrix element connecting up
and down quarks. The amplitudes for mesons like K, B, and Bs to mix with their antiparticles
are proportional to other combinations of CKM matrix elements. In all, eight of the nine CKM
matrix elements can be determined from relatively simple lattice QCD calculations combined
with experiment.

Semileptonic decays. In semileptonic decay, the shape of the decay amplitude as a function
of the momentum of the decay products is predicted by lattice QCD and can be measured in
experiment. Fig. 5 shows the decay amplitude for D → Klν semileptonic decay as a function
of t, the square of the four-momentum transfered to the leptons, l and ν. The green points
are lattice QCD predictions, the blue points are from the experiment of the Focus collaboration
which appeared after the lattice predictions. [8] As can be seen, the agreement is excellent.

The shape of a semileptonic decay amplitude is predicted by lattice QCD. The normalization
of semileptonic decay amplitudes is give by a lattice calculation times a CKM matrix element.
The elements of the second row of the CKM matrix can all be measured from semileptonic decay
processes. This makes it possible to determine the entire second row of the CKM matrix from
lattice calculations of a similar type, plus experiment. The results of such a set of calculations is
shown in Table 3. In the Standard Model, the CKM matrix is an SU(3) special unitary matrix.
One component of the search for Beyond the Standard Model physics is checking for evidence
of nonunitarity in the CKM matrix. From Table 3, we can check from lattice calculations alone
that the second row normalizes to one, as required by unitarity:(

|Vcd|2 + |Vcs|2 + |Vcb|2
)1/2

= 1.00(4)(8)(2), (10)

as required by unitarity. More powerful checks of unitarity are obtained by combining lattice
results with those of other methods.

The challenge ahead. To illustrate the challenge ahead, consider the ρ − η plane, shown in
Fig. 6. In the Standard Model, the CKM matrix may be parameterized by four parameters,
two of which are called ρ and η. ρ and η have the form ρ − iη ∝ Vub. They parameterize
the CP violation in the Standard Model. CP is a symmetry relating the properties of particles
to those of their antiparticles. Understanding the source of CP violation in nature is key to



understanding the abundance of matter over antimatter in the visible universe. The plot is one
of the most famous graphs in particle physics at the moment, and reducing its uncertainties is
an important goal of particle physics.

Several of the uncertainties in the plot arise from estimates of the uncertainties in lattice QCD
calculations. For example, the bounds in the purple curves, labeld εK , arise from measuring
the mixing between K mesons and their antiparticles, analyzed with lattice QCD. Similarly,
the bounds in the orange semicircles, labeld ∆M , arise from the mixing between B mesons
and their antiparticles. The experimental errors on the mixings that have been measured are
of order 1%. The 10 or 20 % uncertainties in the quantities shown in the graph are estimates
of the uncertainties of lattice calculations. The current round of calculations aims at reducing
these to something of order 5%. Clearly, to profit fully from the experiments that have been
done, one needs to aim at lattice uncertainties of around 1%, a very long way beyond where we
are today! The progress has been exciting, but the challenge ahead is large.

Figure 5. Figure caption for second of two
sided figures.

Figure 6. Current bounds on ρ and η,
which parameterize CP violation in the CKM
matrix. [9]

4. Summary
There has been terrific progress in understanding the dynamics of quarks and gluon with
quantitative, first-principles calculations. Some simple things are now done, such as the
prediction of the stable meson spectrum and the determination of the strong coupling constant
and quark masses. Many other important things look doable with current methods, including
determinations of almost all the elements of the CKM matrix. A rich array of further challenges
awaits us in QCD and in Beyond the Standard Model physics.
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