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Abstract-One of the keystones of the canceled BTeV experiment 
(proposed at Fermilab’s Tevatron) was its sophisticated three-
level trigger. The trigger was designed to reject 99.9% of light-
quark background events and retain a large number of B decays. 
The BTeV Pixel Detector provided a 3-dimensional, high 
resolution tracking system to detect B signatures. The Level 1 
pixel detector trigger was proposed as a two stage process, a 
track-segment finder and a vertex finder which analyzed every 
accelerator crossing. In simulations the track-segment finder 
stage outputs an average of 200 track-segments per accelerator 
crossing (2.5MHz). The vertexing stage finds vertices and 
associates track-segments with the vertices found. This paper 
proposes a novel adaptive pattern recognition model to find the 
number and the estimated location of vertices, and to cluster 
track-segments around those vertices. The track clustering and 
vertex finding is done in parallel. The pattern recognition model 
also generates the estimate of other important parameters such 
as the covariance matrix of the cluster vertices and the minimum 
distances from the tracks to the vertices needed to compute 
detached tracks. 

I. INTRODUCTION 

HE problem of event vertexing requires identifying vertices 
and estimating their position. Generally, both tasks are 

done with the help of data supplied by subdetectors with 
tracking capabilities such as pixel detectors or silicon strips 
detectors (SSD). Before the vertexing stage, track finder 
stages find tracks or track segments for use in the vertexing 
process. Since there may be more than one primary vertex and 
or secondary vertices, identifying the number of vertices is a 
clustering task that associates tracks to vertices. Once the 
tracks and vertices have been sorted out, each group of tracks 
can be used to fit corresponding vertex parameters. We 
observe that this is a “chicken and egg” kind of problem 
because we need good vertex estimations to be able to 
separate the tracks into clusters and we cannot have good 
vertex estimations if we don’t know what tracks belong in 
which cluster. The problem is typical in pattern recognition 
and is usually approached by iterative adaptive methods. In 
these methods the parameters of the cluster representative (e.g. 
vertex coordinates) are allowed to move and the cluster 
members (e.g. tracks) are allowed to change clusters during 
each iteration. Most adaptive clustering algorithms are based 
on models, where the model is a probability distribution 
function. However, most of the time the order of the model is 
unknown (e.g. the number of vertices). This is a serious 
complication because most algorithms are not good at 
detecting the order of the model. Another important problem 
in clustering is finding a good metrics to sort the data out. 
 

Data is clustered based on their distance to the cluster 
representative vectors. Distance is defined by: 

qxD M−= , where M is a certain metric. The two most used 
metrics are the Euclidean and the Mahalanobis metrics. In the 
later case, ( ) ( qxCqxqxD

T
M −−=−= −1 ) , where x and q 

are d-dimensional vectors and C is the covariance matrix of 
the sample data. The Euclidean distance is a special case of 
the Mahalanobis metrics where C=σ2I, being I the identity 
matrix. The Mahalanobis distance is preferred when the 
variance along each dimension of x is different. However, 
neither one of those metrics is able to capture clustering in the 
data. 

II. MODEL AND METRIC SELECTION 

Clustering processes use parametric or non-parametric models. 
For the vertexing process we have chosen the Gaussian 
mixture model due to the clustered structure of the data. The 
vertexing process clusterizes tracks based on their distance of 
closest approach to the vertices, which are the cluster 
representatives. The track distance of closest approach to the 
vertices depends on the detector resolution and errors. It is 
logical to think that the error in measuring distances from 
tracks to an associated vertex is Gaussian distributed, and the 
probability distribution function (pdf) of all the distances 
between tracks and vertices is a sum of Gaussians. Hence, the 
pdf of all the distances to all the cluster centers is, 
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where G(*) is a single d-dimensional Gaussian of mean μj and 
covariance matrix Cj. αj is the probability that data x belongs 
to cluster j, μj and Cj are the mean and covariance matrix of 
the Gaussian associated to cluster j. For the vertexing problem, 
αj is the probability that track x comes from vertex j, μj are the 
coordinates of vertex j, and Cj is the covariance matrix of all 
the tracks associated to that vertex. In principle, αj is model 
free and is one of the parameters that must be estimated. The 
only constrains on αj are: 
αj > 0, and  (i.e. every track must belong to a cluster) ∑
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A natural metric to use in a clustering problem modeled by a 
Gaussian mixture is the Kullback-Leibler divergence. The KL 
divergence measures the divergence between two pdf 
distributions 
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Note that KL(*) meets the conditions to be a metric: 
KL(0)=0 (i.e. KL=0 for p(x|q)=p(x)) 

T 
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KL>0 for p(x|q)≠p(x) because p(x|q) is always greater or equal 
than p(x), hence log(p(x|q)/p(x))>0. 
 
Parameter optimization is done minimizing the KL divergence 
of the parametric distribution for instance 
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usually has unknowns, the later calculations must be turned 
into estimations. 
 

The KL divergence metric leads us to the Maximum 
Likelihood algorithm. The problem of estimating vertex 
coordinates and their covariance matrices becomes a 
Maximum Likelihood estimation. In particular we have 
applied the Expectation-Maximization algorithm (E-M) which 
is a well known variant of Maximum Likelihood. The E-M 
algorithm is an efficient iterative way of computing the 
Maximum Likelihood when the data model has missing 
information. The missing information concept helps the 
estimations of certain parameters in the model that otherwise 
would complicate the algorithm. The missing information 
parameters can be chosen as convenient. 
 

We illustrate the missing information concept in the 
vertexing problem as follow. The data model for the vertexing 
problem is the mixture Gaussian model defined in equation 
(1). For the moment we will assume that we know the number 
of clusters k (i.e. number of vertices). We define the missing 
information as j, the cluster index, which has a probability αj. 
As said, the αj’s are not model constrained. The missing 
information will help us overcome the problem of having this 
unstructured unknown in the model. The αj’s can be added to 
the list of parameters to be estimated by the ML algorithm. 
However, in the derivation of the algorithm we need to 
compute the conditional probability P(j|x) which represents 
the probability of each cluster given a particular sample x. For 
the vertexing problem P(j|x) represents the probability mass 
function that assigns tracks (represented by their distances of 
maximum approach) to each vertex.  
 

Section 3 introduces the EM algorithm, section 4 shows that 
the KL divergence metrics that measures the distance between 
the pdfs of the data (including the missing data) and the 
current estimation of the data leads to the EM algorithm, 
section 5 applies the theory to the vertexing problem section 6 
shows some simulation results. 

III. THE EXPECTATION MAXIMIZATION ALGORITHM 

Let x represent the data sample and θ the unknown vector of 
parameters. Maximum Likelihood estimates θ maximizing the 
likelihood function P(x|θ). Since the distributions are 

Gaussian, ML uses the log likelihood L(θ) = ln(P(x|θ)). The 
EM algorithm is an iterative procedure that finds successive 
estimations of θ (i.e. θ(1), θ(2),.., θ(N)) while guaranties that L(θ) 
increases in every iteration (i.e. L(θ(n+1)) > L(θ(n)), n=1,..,N.  
 

This is equivalent to maximizing the difference  
L(θ(n+1)) - L(θ(n)) = ln(P(x| θ(n+1))) - ln(P(x| θ(n)))        (2) 
 

We incorporate the missing information in the data model 
using the total probability theorem, 
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Then equation (2) can be expressed by 
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Since the –ln(.) is a convex function, we use Jensen’s 
inequality 
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Now we introduce the cluster’s posterior probability P(j|x, 

θn) in equation (3). P(j|x,θn) represents cluster’s j probability 
given a certain data and set of parameters (i.e. during the n-th 
iteration of the algorithm). Then equation (3) becomes 
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Using Jensen’s inequality (4) and defining 
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Equation (6) tells us that Δ(θn+1|θn) is a lower bound of the 

log-likelihood function and that maximizing Δ(θn+1|θn) 
increases the log-likelihood. Figure 1 shows one iteration of 
the estimation process. 



Figure 1: one step in the Maximum Likelihood estimation process 
 
 
We can estimate the vector parameter θ calculating  
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Equation (7) can be simplified eliminating all the terms that 
are constant with respect to θ. 
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Note that equation (8) maximizes the conditional 

expectation Ej|x,θ of the logarithm of P(x, j|θ) with respect to θ. 
That can be expressed as 
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The two steps of the E-M algorithm are now evident in 
equation (9). The first step, E-step, calculates the conditional 
expectation Ej|x,θ using the current estimation of the vector 
parameter θn. The second step, M-step, maximizes the 
expectation with respect to θ. 
 

The convergence properties of the EM algorithm are 
discussed in detail by McLachlan et al. [1]. Every iteration the 
new θn+1 increases the log likelihood function until a local 
maximum is reached. 

IV.  APPLYING E-M TO THE VERTEXING PROBLEM 

In the Gaussian mixture model (equation (1)) 
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the distances of maximum approach from tracks to each 
vertex is represented by a single Gaussian G(x,μj,Cj), where μj 
and Cj must be estimated. Please note that: 
P(j|xi) is the probability that track I belongs to a vertex j. 
p(j,x) is the probability density function of the “complete 
data”. Also, p(j,x) = p(x|j) p(j) 
P(j) = αj is the cluster probability. 
p(x|j) = G(x,μj,Cj) is the data error distribution in each cluster. 

 
The KL divergence function measures the distance between 

the distribution of the “complete data” p(x,j) and the 
distribution of the “complete data” given the current estimate 
of the parameter vector p(x,j| θn). Unfortunately p(x,j) is 
unknown otherwise the problem would be already solved. The 
KL divergence is KL(p(x,j| θn) || p(x,j)). 

θn+1θn

L(θ) Δ(θn+1| θn) 

L(θn) 
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Δ(θn+1| θn) 

θ 

( ) ( )( ) ( ) ( )
( )∑∫

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k

j

n
nn dx

jxP
jxPjxPjxPjxPKL

1 ,
|,ln|,,|||, θθθ

     (10) 

 
The parameter set θ concentrates the unknowns αj,μj,Cj for 

i=1,..k. 
 

We develop an estimation algorithm for the parameter set of 
equation (10) based on the E-M algorithm of equation (9) 
 

( )( )( ){ }θθ θ
θ

|,lnmaxarg ,|1 jxPE nxjn =+
 

( ) (( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑
=

+

k

j
nn jxPxjP

1
1 |,ln.,|maxarg θθθ

θ
)  

Clearly, the E-step must find the expectation Ej|x,θ where 
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αj
(n+1) is readily available from (11) using 
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, where i=1,..,N indexes over all the data set and xi is a d-
dimensional vector. 
 

The maximization step finds a new parameter set estimate  
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the maximization of (13) leads to 
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The Trigger algorithm iteratively calculates equations (11) 

to (15) until convergence. The convergence criteria is chosen, 



as convenience, based on the rate of change of the parameters 
being estimated. We have chosen 1% for simulation. 

V. NUMBER OF CLUSTERS  

The derivation of the E-M algorithm of section 3 assumes 
that the number of clusters k is known. This is not the case for 
vertexing problem. If we define k as a new parameter in the 
model, k represents the order of the model, i.e. the number of 
Gaussians in the Gaussian mixture. We can include k in the 
definition of the KL divergence and make the divergence a 
function of F(θ,k). However, in order to use the E-M approach 
we must keep k constant, otherwise we do not know how 
many Gaussians are in the model and how many parameters 
we need to estimate. A way of finding k is to calculate 
F(θopt,k) as in section 4, r times, running k from 1 to r, and 
using θk

opt the value that minimizes F(θopt,k) for that value of 
k. Then k is the argmink F(θopt,k). So F(θopt,k) has a minimum 
when k is equal to the correct number of clusters in the 
distribution. 
 

The bigger problem in finding k is that if we have no idea 
about the value of k the algorithm may become computer 
intensive. Lei Xu [2] demonstrated that the F(θopt,k) equals to 
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A good heuristic in finding k is to use previous knowledge. 
If after analyzing a sufficient number of events we have a 
reasonable estimate of the μ and C in the distribution of 
number of vertices per event we can start with a value in 
excess and rapidly discard the number of vertices that have no 
tracks associated with them. We show that this approach 
works very well is the simulation. 

VI. DISTANCE OF MAXIMUM APPROACH 

In order to associate tracks to vertices we have used their 
distance of maximum approach. The L1 trigger simulations 
are based on simulations of the BTeV pixel detector. The first 
stage of the L1 trigger, described in [3], finds track segments 
corresponding to the inner most and the outer most section of 
each track. Each segment is represented by a triplet of points 
using (x,y,z) coordinates. For trigger level 1 we have used 
only the inner segment of the track. However, a better fitting 
can be used for other trigger levels or the off-line analysis. It is 
worth to mention that the method to find the distance of 
closest approach is independent of the EM algorithm although 
very important because directly influence the error of the 
measurements and the EM algorithm convergence rate. 
 

Let each track segment be represented by 3 points with 
coordinates P1=(x1,y1,z1), P2=(x2,y2,z2), P3=(x3,y3,z3), and let 

P0=(x0,y0,z0) be the point of closest approach to the vertex 
V=(xv,yv,zv). Then the distance of closest approach between 
the track and the vertex is defined by 
x0 = x1 + mx (z0 - z1) 
y0 = y1 + my (z0 - z1) 
z0 = (zv + mx (xv - x1) + my (yv - y1) + z1 (mx + my)) / (1 + mx

2 
+ my

2 )  
where mx and my are the segment slopes in the xz and yz 
planes respectively. The point of closest approach must be 
recalculated every time the vertex position changes, but this is 
done very fast because it only requires of sums and 
multiplications by constant factors (i.e track slopes are 
constant for all iterations). 

VII. SIMULATIONS 

We have run a simulation with min bias and b flavor events. 
The simulation starts with a guess for number of vertices. 
Once the estimation converges the function F(k) of equation 
(16) is calculated. If there are vertices with no tracks those 
vertices are removed. If all vertices have tracks we increase 
the order of the model and run again. After convergence a new 
value of F(k) is obtained. We chose the model that minimizes 
F(k). 
 

Figure 2 a and b show the X-Z view of a particular event 
with 3 primary vertices. The algorithm is run with a model of 
order 4. The black asterisks represent the estimated position of 
the four the vertices. Since the event only has 3 primary 
vertices, one estimated vertex does not collect any tracks. 
Figure 2 b is a close up of the same event showing in detail the 
tracks associated to two close primary vertices. 

 

 
Figure 2a: Single event simulation for the primary vertex estimation 

algorithm. 



 
Figure 2b: Single event simulation for the primary vertex estimation 

algorithm. 

The algorithm shows to converge and find over 99.5% of 
the primary vertices. The errors are listed in Table I. 

TABLE I 
SIMULATION ERRORS 

 mean (μ) sigma (μ) 
x coordinate 275 65 
y coordinate 1620 481 
z coordinate 1107 280 

 
 

VIII. DISCUSSION 

The proposed algorithm applies an adaptive pattern 
recognition model to find the number and the estimated 
location of vertices, and clusters track-segments around those 
vertices. The track clustering and vertex finding is done in 
parallel. The pattern recognition model also generates the 
estimate of other important parameters such as the covariance 
matrix of the cluster vertices. The cancellation of the BTeV 
experiment left the simulation work unconcluded. It is 
expected that the number of vertices that the algorithm can 
find depends strongly on the data error model which depends 
on the way the distance of closest approach is determined. A 
follow up on this work should be aimed to reduce the 
measurement error in the data model. 
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