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Abstract. Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate 
for Tevatron Run II. Good understanding and characterization of the cooling is important for the 
optimization. The paper is devoted to derivation of the Fokker-Planck equations justified in the 
case of near or full Schottky base overlap for both longitudinal and transverse coolings.  
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INTRODUCTION 

The Schottky band overlap compromises the performance of stochastic cooling. 
Therefore all practical cooling systems are designed and built to avoid the band 
overlap. Nevertheless, operating cooling systems are frequently used in a regime when 
bands are close to overlap or slightly overlapped. In this case the band overlap needs 
to be taken into account if detailed description of the cooling is required. The 
stochastic cooling theory with no band overlap is well developed [see Ref. 1 and 2 and 
included bibliography]. In this paper we extend this theory to the case of arbitrary 
band overlap. First, we derive expressions for the beam permeabilities of the 
longitudinal and transverse coolings and, then, proceed to derivation of the Fokker-
Planck equations describing transverse and longitudinal coolings. 

BEAM PERMEABILITY FOR LONGITUDINAL COOLING 

Usually, a calculation of the beam permeability is based on azimuthal harmonics. It 
does not work well if bands are close being overlapped because the amplitudes of the 
harmonics are changed within one revolution. In this paper we limit ourselves to the 
case of the beam with sufficiently small intensity so that the beam interaction with 
vacuum chamber could be neglected. That allows us to reduce the problem from one 
of finding the entire ring distribution function to one of finding the local distribution 
functions in the pickup and kicker. Let ( )txf ,1  be the distribution function 
immediately after the kicker, ( )txf ,2  be the distribution function in the pickup, and 

( )txf ,3  be the distribution function just before the kicker. Taking into account that the 
particle momentum is changed only in the kicker one can write the equations binding 
up these functions: 
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Here 00 /)( pppx −=  is the relative momentum deviation, T1, T2 and 210 TTT +=  are 
the kicker-to-pickup, pickup-to-kicker and revolution times for the reference particle, 

2/1 γαη −=  is the slip factor, 1η  and 2η  are the partial kicker-to-pickup and pickup-
to-kicker slip factors so that 22110 TTT ηηη += , and )(tpδ  is the particle momentum 
change by the kicker. Expressing the distribution function through its equilibrium 
value and the perturbation, 3,...1),,(~)(),( 0 =+= ktxfxftxf kk ,  and leaving only the 
first order addend in the Taylor expansion of the third equation in Eq. (1) one obtains: 
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Looking for a solution in the form ti
kk exftxf ω
ω )(~),(~

= , tieptp ω
ωδδ =)(  and excluding 
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3 xf ω  from the resulting equations we obtain: 
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Let the momentum kick be determined by the sum of amplified pickup signal and 
an external harmonic perturbation so that: 
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Here the term 2Tie ω−  takes into account the delay in signal propagation from the pickup 
to the kicker, 2)(~),(~
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−→− . The total system gain, ( )[ ]0)(1, TieAxG ωωω −− , 

is chosen so that it would describe both Palmer and momentum cooling. For Palmer 
cooling A(ω) = 0 and the pickup signal depends on the particle momentum due to non-
zero dispersion in the pickup. For filter cooling the pickup signal does not depend on 
particle momentum, ( ) ( )ωω GxG →, , and the cooling signal is formed by the notch 
filter, 1)( ≈ωA . Its delay is equal to the revolution time for the reference particle, T0. 
Taking into account the distribution function normalization, ∫ = 1)(0 dxxf , and 
introducing the impedances of pickup, Zp , and kicker, Zk , so that the pickup voltage is 
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and the energy gain in the kicker is 
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we obtain that the system gain is: 
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Here I0 is the beam current, Zampl = 50 Ω is the impedance of power amplifier, K(ω) is 
the total electronic amplification of the cooling system, c is the speed of the light, e 
and m are the particle charge and mass, and β and γ are the relativistic factors. 

Substitution Eq. (4) into Eq. (3) yields: 
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Dividing both addends by  )1()1( 2211 xTixTi ee ηωηω +−+ − , multiplying them by ( )ω,xG  and 
integrating we obtain: 
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where ( )∫ ′′′= ωωω ,)(~
2 xGxfxdS . Solving Eq. (9) relative to Sω we finally obtain the 

system response at the pickup location due to the external harmonic perturbation: 
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where ε(ω) is the beam permeability   
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In the above equations the rule to traverse the poles, +→ 0δ , follows from the fact 
that for the complex Laplace transform ω is shifted to the lower complex plane.  

Far away from Schottky band overlap the exponent in the denominator of Eq. (11) 
can be expanded near revolution harmonic, δωωω += 0n , 00 /2 Tπω =  and we arrive 
to the standard formula for the permeability[1].  

BEAM PERMEABILITY FOR TRANSVERSE COOLING 

Similar to the method used above for the longitudinal cooling the beam evolution is 
considered at three points: (1) after kicker, (2) in the pickup, and (3) before the kicker. 
The beam dipole moment at each point is  
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Here f0(x) is the distribution function over momentum, and yk(x) is the average 
transverse beam displacement for particles with relative momentum deviations equal 
to x. Normalizing the beam displacements, yk(x), and angles, θk(x), by the beta-
functions so that kkk yy β/~ =  and kkkkkk x βαβθθ /~

+= one can write the 
system of equations binding up the beam displacements after and before the kicker:  
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Here ( ))(2cos)( xxc ξνπ += , ( ))(2sin)( xxs ξνπ += , ν is the betatron tune, and ξ is 
the tune chromaticity. Passing the kicker changes the beam angle but does not change 
beam coordinate so that 
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We look for a solution in the form ti
kk exytxy ω
ω )(~),(~ =  and tiet ω

ωδθδθ =)( . 
Substituting it into Eqs. (13) and (14) and solving obtained equations relative to 

)(~
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Taking into account the relationship between coordinates and angles of points 1 and 2,  
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and transforming the time dependent values in Eq. (16) to their Fourier harmonics we 
obtain for the beam displacement in the pickup 
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Here ( ))(2cos)( 2,12,12,1 xxc ξνπ += , ( ))(2sin)( 2,12,12,1 xxs ξνπ += , 2πν1 and 2πν2 are the 
betatron phase advances between pickup and kicker so that ννν =+ 21 , and ξ1 and 
ξ2  are the partial tune chromaticities so that ξξξ =+ 21 .  

Similar to Eq. (4) the beam kick is determined by the sum of amplified pickup 
signal and an external harmonic perturbation so that: 
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We introduce the impedances of pickup, Zp⊥, and kicker, Zk⊥, so that the pickup 
voltage is 
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and the transverse angle obtained by a particle in the kicker is 
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That yields that the system gain is: 
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where βp and βk are the beta-functions in the pickup and kicker.  



Substituting Eq. (18) into Eq. (17) we obtain: 
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The solution is similar to the solution carried out in the previous section. The result is:  
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where the beam permeability is: 
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FOKKER-PLANCK EQUATIONS 

Evolution of the beam longitudinal distribution function is described by: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

+
∂
∂

x
fxD

x
fxF

xt
f )(

2
1)(   .        (25) 

The drag force is created by the particle self-interaction and therefore is not directly 
affected by the band overlap but is affected by screening of the particle signal. The 
result is well-known[1]: 
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Here G1(x,ω)=G(x,ω)/N is the single particle gain, N is the particle number in the 
beam and ε(ωn) in the denominator takes into account particle screening[3]. 

The diffusion is created by noise in the kicker voltage:  
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where PU(ω)  is the spectral density of kicker voltage consisting of two contributions. 
The first one is related to the noise of the electronics, PUnoise, and the second one is 
related to the particle shot noise. Note that we normalize all spectral densities so that 
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Combining Eqs. (27) and (28) and simplifying one obtains: 
( )

( )
( )( )

( )
( )∑ ∑

∞

−∞=

∞

−∞=

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
+=

n kn

Ti
nnnUnoise

k
knxf

k
eAxG

T
N

mcT
PexD

n

η
η

ηωε
ωω

γβ

ωπ ω 111),(2)(
2

1

0
2222

0

2 0

 . (29) 

Natural variables for transverse cooling description are the action-phase variables 
(I, ψ). We determine the action so that ( )( ) 2//12 222

yyyy yyI βαθαθβ +++= , where 
βy and α y are the beta- and alpha-functions of the ring. We assume that there is no x-y 
coupling in the lattice, and the cooling is linear in betatron amplitude. That yields that 



the beam distribution function can be described by the following equation: 
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Here ),,( tIxff ⊥⊥ ≡  is the distribution function normalized so that 

∫ =⊥ )(),,( 0 xfdItIxf  and the same as above ∫ = 1)(0 dxxf , λ⊥(x) is the cooling 

decrement, and D⊥(x) is the diffusion coefficient.  λ⊥(x) and D⊥(x) do not depend on I 
because of system linearity in the transverse plane. 

Similar to the longitudinal cooling the transverse cooling is created by the particle 
self-interaction and therefore is not directly affected by the band overlap but still 
affected by screening. The result is[1]: 
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where ( ) ( ) NGG /1 ωω ⊥⊥ =  is the single particle gain. 
 The diffusion coefficient is: 
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where ( )ωθP  is the spectral density of the angle kicks produced by the kicker. ( )ωθP  
consists of two contributions: the spectral density of amplifier noise, P⊥Ua(ω), and the 
amplified shot noise of the beam. The shot noise of the beam at the pickup is 
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Substituting Eq. (33) into Eq. (32) and using definition of the single particle gain we 
obtain: 
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where ∫ ⊥= IdItIxfxI ),,()( is the average action for given momentum deviation x.  
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