HIGH ENERGY H⁻ ION TRANSPORT AND STRIPPING*

W. Chou #
Fermilab, P.O. Box 500, Batavia, IL 60510, U.S.A.

Abstract
During the Proton Driver design study based on an 8 GeV superconducting RF H⁻ linac, a major concern is the feasibility of transport and injection of high energy H⁻ ions because the energy of H⁻ beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

INTRODUCTION
H⁻ injection was invented decades ago and has been successfully employed in many accelerator laboratories. The highest H⁻ energy today is 800 MeV at the PSR at LANL. Soon the SNS will provide 1 GeV H⁻ beams. The proposed Fermilab Proton Driver, which is based on a superconducting RF H⁻ linac, would accelerate H⁻ particles to 8 GeV and inject them into the Main Injector via a charge exchange process. To transport and inject H⁻ at such a high energy is technically a big challenge.

H⁻ has two electrons, one tightly bound (binding energy 13.6 eV), another loosely bound (binding energy 0.75 eV). During transport, both electrons must stay with the proton, whereas at injection both must be stripped immediately. However, when H⁻ energy goes higher, these tasks become harder. On the one hand, the second electron becomes easier to be detached from the ion during transport because of blackbody radiation and magnetic field stripping. On the other hand, the foil stripping becomes more difficult because the electron loss cross-section decreases. It is imperative to make sure that 8 GeV H⁻ from the Proton Driver can indeed be transported and injected. This paper will give a brief discussion of the problems.

A similar paper was published earlier [1]. But this paper has added some new materials. A more detailed description of these problems can be found in Ref. [2].

STRIPPING LOSSES DURING TRANSPORT
Blackbody Radiation Stripping
When an H⁻ ion is moving at luminal velocity, the normally innocuous contribution of beam pipe (“black body”) radiation to the photodetachment rate of electrons can be greatly increased. The large Doppler Effect that one encounters in the situation shifts impotent lab frame infrared photons to energies in excess of the electron affinity of hydrogen where the photodetachment cross section is large. Figure 1 illustrates this effect.

![Figure 1: The brown curve is the photodetachment cross section. The Doppler Effect shifts the 300 °K thermal photon distribution curve from blue (rest H⁻) to pink (8 GeV H⁻) and green (25 GeV H⁻) respectively. The overlapping between the photon distribution and cross section curves gives rise to blackbody radiation stripping.](image)

Ref. [3] gives a comprehensive analysis of this effect. The results are shown in Figure 2. It is seen that both energy and temperature dependences of this effect are strong. The stripping rate is increased by 3 orders of magnitude when the H⁻ energy increases from 800 MeV to 8 GeV. At 8 GeV and 300 °K, the stripping rate is about 0.8 × 10⁻⁶ per meter and is the dominant loss mechanism in the H⁻ transport line.

Although nobody has seen any blackbody stripping of H⁻ at this moment, photodetachment of electron in ions is a well known phenomenon. For example, it was observed that the extra electron in an He⁻ ion can be stripped by thermal photons in a laboratory, because it has very low binding energy (0.077 eV). Figure 3 is adopted from Ref. [4], which shows the lifetime dependence of He⁻ ions on temperature.

One effective way to mitigate it is to employ a cold beam screen inside the vacuum beam pipe, e.g., at gas nitrogen temperature of 150 °K. This would give more than a factor of 10 in loss reduction. Figure 4 is a cartoon drawing of such a cold beam screen, which is similar to the LHC beam screen design but much simpler.

*Work supported by the Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U.S. Dept. of Energy. chou@fnal.gov
Photodetachment of H- Ions from Blackbody Radiation (@ 300 K)

Photodetachment of H- Ions from Blackbody Radiation (@ 8GeV)

Figure 2: Top – energy dependence of blackbody radiation stripping rate; bottom – temperature dependence.

Figure 3: He⁻ lifetime data at eight different temperatures of ELISA: dashed curve - measured data; solid curve - data corrected for blackbody radiation detachment. (Ref. [4])

Figure 4: Illustration of a cryo beam screen inside a vacuum pipe for suppressing blackbody radiation stripping of electrons from high energy H⁻ ions.

Field Stripping

When an H⁻ ion traverses in an electric field \(F \), the electrons and proton tend to go to opposite directions. If the field were strong enough, electrons would be stripped. This field can be the Lorentz transformation of a magnetic field \(B \):

\[
F \text{(MV/cm)} = 3.197 \, p \text{(GeV/c)} \, B \text{(Tesla)}
\]

For the same \(F \) field, higher momentum \(p \) of H⁻ implies lower \(B \) field. This is why field stripping is a concern for high energy H⁻. A seminal theoretical paper on H⁻ lifetime \(\tau \) in a field is by Scherk [5], in which he gives a simple yet commonly used 2-parameter formula:

\[
\tau = \frac{a}{F} \exp\left(\frac{b}{F}\right)
\]

in which \(a \) and \(b \) are two constants to be fitted to experimental data. Table 1 lists three measurements of H⁻ lifetime [6-8].

Table 1: H⁻ ion lifetime measurement

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Energy (MeV)</th>
<th>(a) ((10^{-14} \text{s-MV/cm}))</th>
<th>(b) ((\text{MV/cm}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stinson et al.</td>
<td>50</td>
<td>7.96</td>
<td>42.56</td>
</tr>
<tr>
<td>Jason et al.</td>
<td>800</td>
<td>2.47</td>
<td>44.94</td>
</tr>
<tr>
<td>Keating et al.</td>
<td>800</td>
<td>3.073</td>
<td>44.14</td>
</tr>
</tbody>
</table>

Although the fitted parameters look different, the results are remarkably similar when they are used to calculate H⁻ lifetime at 8 GeV, as shown in Figure 5. This gives us reason to believe that this energy extrapolation to 8 GeV is valid. The design field in the 8 GeV H⁻ transport line is 500 Gauss. Based on the curves in Figure 3, the stripping loss would be negligibly low at \(10^{-9} \) per meter.
Residual Gas Stripping

When H⁻ energy increases, the electron loss cross section for H⁻ incident on residual gas atoms decreases, as shown in Figure 6 [9]. Based on Born approximation, the energy scaling goes essentially as 1/β², where β is the relativistic factor [9-11]. Table 2 lists the cross section scaled to 8 GeV from the measurement data at lower energies.

![Figure 5: Prediction of H⁻ lifetime at 8 GeV using three different sets of parameters in Table 1.](image)

![Figure 6: Energy dependence of electron loss cross section for H⁻ incident on H and He atoms [9].](image)

![Figure 7: Residual gas spectrum measured on Fermilab beam line A-150, which uses the same magnets and similar vacuum system as the 8 GeV H⁻ transport line. (Courtesy by T. Anderson)](image)

Table 2: Energy scaling of electron loss cross section

<table>
<thead>
<tr>
<th>Energy of H⁻ ion</th>
<th>H</th>
<th>He</th>
<th>N</th>
<th>O</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MeV</td>
<td>0.2</td>
<td>0.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>800 MeV</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8 GeV (scaled)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>0.7</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Using the residual gas spectrum (Figure 7) measured on a beam line with similar vacuum system, the estimated stripping rate from residual gas is about 0.1×10^{-6} per meter.

CARBON FOIL STRIPPING EFFICIENCY

Because the new technology of laser stripping has a long way to go, our design uses the conventional carbon foil for stripping H⁻ to H⁺ at injection. However, there is a serious concern about the stripping efficiency of H⁻ at 8 GeV, because the cross section would be small. There are two earlier measurements that serve as valuable references [12,13]. When a 200 µg/cm² foil was used, the reduction of stripping efficiency of H⁻ from 200 MeV to 800 MeV was dramatic: the unstripped H⁰ increased from 0.4% to 11.2%. In order to estimate the efficiency at 8 GeV, we use the cross section method and the same Born approximation as in the residual gas stripping case. Figure 8 shows the results.
The pink curve is a reproduction of the measured unstripped H0 at 800 MeV as published in Ref. [13]. The light blue and dark pink curves, which almost overlap each other, demonstrate the agreement between the measured data at 200 MeV in Ref. [12] (light blue) and the calculation based on energy scaling from the 800 MeV data (dark pink). Such a good agreement shows the energy scaling indeed works. Therefore, we use the same 800 MeV data to calculate the unstripped H0 at 400 MeV (yellow curve, which will be measured at the Fermilab Booster) and 8 GeV (blue curve). The 8 GeV design will use 600 µg/cm2 foil (actually two 300 µg/cm2 foils in series). The predicted unstripped H0 is 0.5%.

CONCLUSIONS

For high energy H$^-$ ions, transport and injection are both technically challenging. During transport, the stripping loss from blackbody radiation and magnetic field are significantly higher than for low energy H$^-$ ions. During injection, the charge exchange from H$^-$ to H$^+$ also becomes significantly more difficult because the cross section of the interaction between the ions and the foil is smaller. This paper gives quantitative analyses to these problems. With a proper mitigation plan (cryo beam screen, weak bend field and appropriate vacuum) the losses in the transport line can be kept under control. The stripping foil must be thicker in order to minimize the unstripped H0 at injection. This brings up a serious issue about the foil lifetime. Based on some preliminary measurements of foil lifetime carried out at BNL and Fermilab, it is believed that for long pulse operation (3 ms) of the Proton Driver, diamond foil would be needed [14]. We are collaborating with ORNL and BNL on this R&D.

ACKNOWLEDGEMENT

This paper is a summary of the work carried out by a group of physicists during the Proton Driver study in 2004-2005, including H. Bryant (Univ. of New Mexico), A. Drozdhin (Fermilab), C. Hill (Fermilab), M. Kostin (Fermilab), R. Macek (LANL), D. Moehs (Fermilab), J.-F. Ostiguy (Fermilab), G.H. Rees (RAL, England), Z. Tang (Fermilab) and P. Yoon (Univ. of Rochester). The author is indebted to these colleagues.

REFERENCES