

BTeV Trigger/DAQ Innovations
Margaret Votava on behalf of the BTeV Collaboration

Abstract—BTeV was a proposed high-energy physics (HEP)

collider experiment designed for the study of B-physics and
CP Violation at the Tevatron at Fermilab. BTeV included a
large-scale, high-speed trigger and data acquisition (DAQ)
system, reading data from the detector at 500 Gbytes/sec and
writing data to mass storage at a rate of 200 Mbytes/sec. The
design of the trigger/DAQ system was innovative while
remaining realistic in terms of technical feasibility, schedule
and cost. This paper will give an overview of the BTeV
trigger/DAQ architecture, highlight some of the technical
challenges, and describe the approach that was used to solve
these challenges.

Index Terms—Data acquisition, large-scale systems, real
time systems, triggering.

I. INTRODUCTION
T the heart of the BTeV experiment [1] was an
ambitious and innovative online trigger and data

acquisition (DAQ) system. The design of this system
resulted from nearly a decade of research and development.
Three phases of R&D occurred during this time. The first
phase involved extensive physics and detector simulations
to establish trigger and DAQ requirements and a baseline
design. This was followed by prototyping of hardware
components and software algorithms to establish trigger
and DAQ performance metrics, and provide a basis for cost
estimates. The third phase was characterized by several
design changes that resulted from optimizations to achieve
reductions in cost of construction and maintenance, while at
the same time improving online performance and
addressing the commissioning and operational needs of the
experiment.

The primary purpose of BTeV R&D was to design a
dedicated B-physics experiment that would make precision
measurements of beauty and charm decays to challenge the
Standard Model and perform an exhaustive search for
physics beyond the Standard Model. It was designed to find
B events at high rate and with high efficiency while
operating in a harsh hadron-collider environment. An
important feature that distinguished BTeV from other
experiments with similar goals was that it was designed to
find these B events in the first stage of triggering (referred

to as Level 1 or L1) by taking advantage of the key
property that differentiates B (and charm) particles from
other types of particles, namely their characteristic long
lifetime. BTeV was to have begun data taking at the end of
this decade, but was cancelled due to HEP budget
constraints.

Manuscript received June 5, 2005. This work was supported in part by

Universities Research Association Inc. under Contract No. DE-AC02-
76CH03000 with the United States Department of Energy.

M. Votava is with the Fermi National Accelerator Laboratory, Batavia,
IL 60510 USA (phone: 630-840-2625; e-mail: Votava@fnal.gov).

II. OVERVIEW
BTeV based its trigger and DAQ design on four design

principles: a consistent trigger strategy that was based on
finding detached vertices at all stages of triggering, a
thorough analysis of every Tevatron bunch crossing to
search for evidence of B decays, use of high-resolution
three-dimensional tracking data even at the first trigger
stage to maximize the number of B decays for physics
analyses, and deployment of fault tolerant and fault
adaptive computing at all stages of the trigger and DAQ.

The trigger was designed to analyze multiple interactions
in every Tevatron bunch crossing by reconstructing tracks
and vertices to search for evidence of a particle-decay
within a few hundred microns to a few centimeters away
from a primary interaction vertex. This was done by
calculating impact parameters for tracks relative to a
primary vertex, and selecting those events that satisfied a
“cut” requiring a minimum number of large impact-
parameter tracks. Typical hadron-collider experiments use a
fairly simple “first level” trigger with very low fixed
latency. This is done to reduce input data rates to
subsequent trigger levels to a “manageable rate,” allowing
sufficient time to perform a detailed analysis of events. The
drawback to this approach is that it limits the types of final
states that can be selected, thereby limiting B-physics
analyses. Trigger strategies that require the presence of
specific final-state particles, such as muons, or demand the
presence of a few high-pt hadrons, are examples of this. By
avoiding these restrictive trigger strategies at L1 and by
exploiting the characteristic lifetimes of B particles at the
first and all subsequent trigger levels, the BTeV trigger was
able to maintain high efficiency for B events throughout the
entire event selection process. To accommodate the greatly
increased and variable latency at L1, BTeV used a large
system of memory buffers.

The BTeV trigger was a three-level hierarchical trigger
system (shown in Fig. 1). Each level was designed to
contribute to the reconstruction of events, and successive
levels imposed more and more refined selection criteria to
select B events and reject light-quark background events.

A

FERMILAB-CONF-05-227-CD-E

The trigger was designed to run at an initial (peak)
luminosity of 2 × 1032 cm-2s-1 with a 132 ns, 264 ns, or 396
ns bunch crossing interval, corresponding to an average of
2, 4, or 6 interactions per crossing, respectively. The L1
trigger operated at the Tevatron bunch-crossing rate, and
was considered to be the most demanding part of the trigger
system. L1 subsystems included the L1 pixel trigger, L1
muon trigger, and Global Level 1 (GL1). The primary
trigger for BTeV was the pixel trigger, while the muon
trigger was to be used as an independent verification of
pixel trigger performance. GL1 collected results from both
subsystems and imposed the L1 trigger decision.

The three-level trigger system shown in Figure 1 shows
the BTeV detector, front-end electronics, L1 and Level-2/3
trigger systems, Level-1 and Level-2/3 buffers, DAQ
highway switch, and data-logging system. With data read
out from front-end electronics at the Tevatron bunch-
crossing rate and a variable L1 trigger latency of order 1
ms, the buffers for detector data had to be able to
accommodate a large amount of data while trigger
calculations were being performed. The data rate from the
detector was estimated to be ~500 Gbytes/s for a crossing
rate of 2.5 MHz, an average of 6 interactions/crossing, and
an average event size of 250 Kbytes. The concept of an
eightfold “highway” architecture was introduced to reduce
the full data rate to 62.5 Gbytes/s into each highway, and to
enable the use of low-cost components in the DAQ, such as
commercially available Ethernet switches. The Level-1
buffers, which held the detector data, were designed to
buffer approximately 2 × 106 bunch crossings in total,

corresponding to 800 ms of L1 trigger decision time and
corresponding to approximately three orders of magnitude
more than the average L1 processing time. The DAQ
highway switch was designed to route data to a combined
Level-2 and Level-3 trigger system, referred to as the “L2/3
trigger”, for bunch crossings that satisfied L1 selection
criteria, as determined by GL1. Data for bunch crossings
that satisfied L2 and L3 selection criteria were to be logged
on archival media such as disk drives.

In our baseline design, the L1 trigger reduced the data
rate by a factor of 50 by rejecting background events while
retaining B events for L2 processing. L2 improved the track
and vertex reconstruction by reviewing tracking data used
at L1, and by including additional tracking data if
necessary. L2 reduced the data rate by rejecting at least
90% of events accepted by L1. At L3 all of the data for a
particular bunch crossing was available, which would
permit a complete analysis, much like an offline analysis, of
the data. L3 imposed the final trigger selection criteria and
reduced the data rate by 50% producing an output rate of
2.5 KHz and an estimated 200 MB/s, which was achieved
by data compression and the elimination of data not needed
for physics analyses, including some of the raw event data.
See Table 1 for the data rates at each trigger level.

The primary trigger for BTeV was the L1 pixel trigger,
also referred to as the “L1 vertex trigger.” It consisted of
four stages: pattern recognition, track reconstruction, vertex
reconstruction, and impact-parameter calculations to find
detached vertices that were the basis for the L1 trigger
decision. In the baseline design the bulk of the pattern

recognition was performed by field-
programmable gate arrays (FPGAs),
which are ideal for performing large
numbers of rudimentary calculations
in parallel. The remaining L1
calculations were performed by
commodity general-purpose
processors, referred to as “L1 farm
processors” or “L1 worker nodes”.
Subsequent trigger levels, L2 and L3,
also relied on general-purpose
processors to perform trigger
calculations.

Figure 1. BTeV three-level trigger architecture..

Due to the flexibility of the trigger
and DAQ system, design changes
were relatively easy to accommodate,
although such changes were not
approved without considerable
simulation and analysis effort and
detailed reviews. For example, we
investigated two alternatives for
pattern recognition that significantly
reduced the processing time in the L1
worker nodes, thereby reducing the
cost of this subsystem. The first
alternative, a “hash sorter” [2] was

implemented in an FPGA, thereby reducing the load on L1
worker nodes. The second alternative reduced the load on
the worker nodes by moving calculations that completed
the pattern recognition for pixel data from the worker nodes
to FPGAs. The first of these alternatives was included in
the baseline design, while studies for the second alternative
were underway when BTeV was terminated in February,
2005.

Table 1. Event Rates
 Frequency Event Size Data Rate

Into L1 2.5 MHz 200 KB 500 GB/sec
Into L2/3 50 KHz 250 KB 12.5 GB/sec
Archived 2.5 KHz 80 KB 200 MB/sec

The design of the BTeV trigger and DAQ evolved over
time. Many of the changes were introduced to
accommodate changes that were made to the pixel detector,
and in some cases a change to a trigger algorithm enabled
significant improvements in the design of the pixel detector
system, thereby demonstrating the importance of
concurrent development of the two systems [3]. The BTeV
trigger and DAQ designs were also influenced by
technology changes as new hardware became available. For
several trigger and DAQ subsystems we abandoned custom
hardware in favor of commodity hardware, which
contributed to a significant savings in material costs and
labor costs that would have been required to maintain the
trigger and DAQ during operations of the BTeV
experiment.

The proposed BTeV detector consisted of 6 separate
subdetectors: pixel, silicon strips, straw tubes, RICH,
EMCAL and muon, with the pixel detector dominating the
channel count (see Table 2).

Table 2. Channel Count
Subsystem Channels DCB Subsystems
Pixel 23M 10
Strips 118K 2
Straws 54K 6
RICH 144K 4
EMCAL 10K 2
Muon 37K 4

Several features of the DAQ are noteworthy. First, the
architecture of the detector readout was unique in that all
the data for every crossing was brought off the detector,
digitized in subdetector-specific front-end boards, and
stored in the L1 buffers. These data were sent via point-to-
point copper connections to data combiner boards (DCBs)
before being sent to the first level trigger over optical links.
The DCB design was common across subdetectors. Two
variants were designed, one to be used with pixel and strip
detector front-end boards and another to be used with all
other front-end boards. This architecture enhanced the
trigger/DAQ design in that 1) much of the trigger could be
done in software, which made it possible to use many
commodity components in the system; and 2) the DCBs

provided a single type of data entry hardware into the
trigger/DAQ system, making it possible to have a unified
design that would ease maintenance tasks and reduce long-
term support of the system.

A second advantage of the architecture was that data
collected in the DCBs could be routed to several
independent, parallel data paths, which were called
highways. This reduced the control overhead on each
individual highway and grouped data coming out of the L1
buffers into larger packets for better network performance.

The following sections will outline some of the features
of the online system.

III. DATA FLOW
Data highways were a key feature of the BTeV
trigger/DAQ architecture. The concept of routing data
through parallel and independent paths, either via “round
robin” or some other mechanism, originated with the desire
to eliminate custom switches from the architecture, thereby
reducing the cost of the BTeV DAQ. With the highway
scheme, an individual highway had a lower data rate and a
larger event fragment size compared to a monolithic
trigger/DAQ system. These two aspects of the architecture
made a commodity implementation viable.

BTeV was able to capitalize on other more subtle
benefits of the highway architecture. In particular, the
highway architecture was important because it allowed for
a flexible construction schedule for the trigger/DAQ
system. We could build the trigger and DAQ in two stages
– four highways to be purchased in one fiscal year, and the
remaining highways to be purchased at a later time. The
highway scheme allowed for future expansion in capacity
with no additional cost other than the cost of more
commodity components and the effort to reconfigure the
system. No redesign of the trigger/DAQ system would be
necessary for future upgrades.

A. DCBs
 The data combiner boards were a custom component

and the sole interface between the subdetectors’ front-end
electronics and the common data readout system. A given
DCB was connected to 8 highways and would route data to
the appropriate highway based on internal routing tables.
The highways remained independent through all levels of
the trigger until data was pushed out of the L3 trigger farm
and into mass storage.

Fig. 2 shows the data and control flow in/out of a DCB.
Each board contained a commercial CPU and fast Ethernet
interface for control, and low speed data readout for
diagnostics and commissioning. The DCBs received precise
clock information from the timing system. A possible
feature that was being considered for the DCBs was to use
the timing information to dynamically reset and reconfigure
all DCBs in response to a certain condition. When a
change to the DCB configuration was needed, the dynamic
reset/reconfiguration could be enacted for a specified point
in time, such as a specific bunch crossing number. For

CP U

Input FPGA

Ti
Sy

ming
stem

Output FPGA

O)
8 fi
ea

utput Data to L1 Buffer (Fiber
ber optic channels, one for

ch highway

2.0

Li
hos

nux
t DCB Fa

Et
10

st
hernet
0Mbps/s

I
E

144 l

nput Data from Front
nd Boards (Cu)

inks (ie, boards)

140 M
600 M

C
front

ontrol links to
 end boards
(Cu)

bps/link fpix
bps/link nonfpix

Figure 2: DCB I/O (data and control).

example, if a catastrophic highway failure occurred, a
command could be sent to the DCBs telling them to route
to 7 highways instead of 8 starting at crossing number “N.”

We were investigating the possibility of routing data to a
different highway for each “Tevatron turn” (approximately
20 microseconds of data), as opposed to routing each bunch
crossing to a different highway. This approach would
simplify the routing, but increase the length of time the data
would remain in a DCB, exposing it to a higher single-
event-upset rate. It would also mean that data from pixel
detector sources would need to be time ordered, a
functionality that was being designed into the pixel L1
trigger. Turn routing also had the advantage of load
balancing, since the data carried over a single highway was
the same on average for each of the highways. This was
true no matter how many highways were in service. If a
highway dropped out, the remaining highways would
absorb the load evenly.

B. L1 Trigger
The BTeV L1 trigger was a key feature of the

experiment, and was considered crucial to the success of
BTeV. Detector data from the DCBs were sent to two
locations, the L1 trigger and Level-1 buffers. Data from the
pixel and muon detectors were sent to the L1 trigger, since
these were the data that were used at L1 to select B events
for subsequent trigger processing in L2 and L3. Since all
data had to be buffered in Level-1 buffers for subsequent
trigger processing, the L1 trigger also wrote the pixel and
muon data, as well as intermediate and final L1 trigger
results, to Level-1 buffers.

Before being sent to Level-1 buffers, the pixel detector
data were sent to FPGA pixel preprocessors that performed
several operations on the data such as time-stamp
expansion (adding additional timing data to individual pixel
hits); pixel hit clustering; and x, y, and z coordinate

determination for pixel hits. The processed data were then
sent to Level-1 buffers and to an FPGA-based segment
tracker that executed the track-segment finding stage of the
L1 trigger algorithm [3]. Track segments that were found at
this stage were routed by a network switch to a single
worker node in the L1 trigger farm, where the track and
vertex finding stage of the trigger algorithm was performed.
Re

isions were
sto
In hich
br so that
da

be required, assuming a 50% duty

nsisted of a total
of 528 8.0 GHz IBM 970 PowerPC CPU's, or equivalent.
For example, a dual-core 4.0 GHz processor was
considered equivalent to an 8.0 GHz single-core CPU.
Compared to a 2.0 GHz Apple PowerMac G5 (available in
2005), we were assuming a factor of four increase in
processing power by the time we needed to purchase the L1
worker nodes in 2008.

C. Event Building
Details of the event building design were under

development when BTeV was terminated in 2005. We were
investigating an implementation in which the L2 trigger
would receive complete events by sending all data for a
particular bunch crossing to a single L2/3 worker node. It
was estimated that 40% of the data were needed to make an
L2 decision. We concluded that it would be more cost
effective to add the extra network capacity to send all data

sults from this stage of the calculation were written to
Level-1 buffers, and summarized results were sent to a GL1
(Global Level 1) processor that was responsible for making
the L1 trigger decision. Individual trigger dec

red as a list of accepted bunch crossing numbers in the
formation Transfer Control Hardware (ITCH), w
oadcasted "accept messages" to all Level-1 buffers
ta could be sent to the L2 trigger.
The L1 muon trigger was going to be built with the same

hardware that was going to be used for the L1 pixel trigger.
The GL1 trigger would then receive the summarized trigger
results for both the pixel trigger and the muon trigger to
produce the L1 trigger decision. For the L1 pixel trigger,
the worker nodes that were to perform the track and vertex
finding stage of the L1 trigger were estimated to require
200 microseconds on average per bunch crossing for a
processor purchased in 2008. For an interaction rate of 2.5
MHz a total of approximately 500 CPUs (or 250 dual-CPU
worker nodes) would
time on each CPU.

We measured the execution time of the L1 trigger
algorithm on several general-purpose processors that are
commonly used in commercial desktop and server PCs. The
processors we considered were the following:

• 3.2 GHz Intel Pentium 4 with 800 MHz front-side bus
• 2.4 GHz Intel Xeon with 400 MHz front-side bus
• 2.2 GHz AMD Opteron on a Sun Sunfire V20z
• 2.0 GHz IBM970 PowerPC on an Apple PowerMac G5
The L1 code was compiled with the Intel C/C++

compiler version 8.0 on Linux for the x86 platforms, and
the IBM XL C/C++ compiler on Mac OS X for the
PowerPC platform. Our baseline design co

Figure 3. Design Time and Runtime aspects of RTES.
Multiple domain-specific languages are used at the
Design and Analysis level, to represent system
organization and behavior. Synthesis produces runtime
artifacts (codes, scripts). Runtime middleware (VLAs,
ARMORs) provides detection and mitigation of faults.

for a bunch crossing at once, and reduce the complexity of
th

ut control commands, collecting
, caching database information such as

ve

ysis process. We
believed ility of
ha
im

pr
ar

, computer
sci

elect error handling policies. A detailed record of
ob

c monitoring tasks at L2/3, and GME for system
m

e handshaking that would be involved in sending the data
fragments over several discrete intervals.

D. L2/3 Trigger
From the L1 buffers, data were sent over Gigabit

Ethernet links to the to the L2/3 processor farm, which had
worker nodes that were used to execute both the L2 and L3
trigger algorithms. The L2/3 farm consisted of commodity
processors that were subdivided into highways. Highways
were self-contained, with lower bandwidth communications
channels connecting the highways. Each highway consisted
of 96 worker nodes, each with dual CPUs.

To reduce the control overhead and complexity of the
DAQ software, we designed the event-building switch with
enough capacity to send a complete event to each L2
worker node. Worker nodes would notify the ITCH when
they were ready for data. The ITCH would assign them a
particular crossing number. All data from that crossing
would be sent to that worker node.

Worker nodes themselves were grouped into manageable
units in a highway. Each group was controlled by a regional
manager consisting of 12 worker nodes. A regional
manager was responsible for configuring its associated
worker nodes, fanning o
status information

rsions of trigger algorithms used in the trigger, and
handling regional faults.

E. Mass Storage
One of our goals for mass storage of data was to operate

a “tapeless” archiving system. However, the choice of
storage media that would be used by BTeV was deferred
due to the ever-changing price/capacity/performance matrix
of disk storage versus tape storage.

In the baseline design, the online system would write to
disk and not to tape. Fermilab is already successfully
running large disk caching farms as front-ends to the mass
storage tape farms using a dCache [4] framework.
“Backup” copies of the original data would be kept on
university disk farms as part of the anal

this to be a viable model as the capab
 multip ofndling le persistent copies data was being

plemented in the dCache project.

IV. FAULT TOLERANCE AND MITIGATION
The BTeV Real Time Embedded Systems (RTES)
oject was born from a need to address concerns that
ose from a project review that was conducted in 2000:
“Given the very complex nature of this system where
thousands of events are simultaneously and
asynchronously cooking, issues of data integrity,
robustness, and monitoring are critically important and
have the capacity to cripple a design if not dealt with
at the outset… BTeV [needs to] supply the necessary
level of “self-awareness” in the trigger system.”

The RTES project group was formed and funded through a

5-year NSF ITR grant. This research group is a
collaborative effort between electrical engineers

entists and high energy physicists. The group is
researching ways to increase the reliability of high-
performance, heterogeneous, real-time systems.

 The BTeV trigger was used as a model system for
RTES. In order to satisfy the requirements of this trigger
and address the problems associated with it, RTES was
assembling a fault handling subsystem to be used by all
components in the trigger and DAQ. This subsystem would
accurately identify problems and compensate for them,
including application related activities such as changing
algorithm thresholds and overall system activities such as
load shifting. As many recovery procedures as possible
were to be automated. Operators and system developers
must be able to easily incorporate new procedures or
policies into the system. The operators must be able to
easily s

servations and actions must be kept to facilitate
reproduction of analysis results and to identify long-term
trends.

The RTES approach employs both design-time modeling
and run-time capabilities. Fig. 3 shows the overall project
perspective. The technologies introduced by RTES and
discussed below are ARMORs for L2/3 nodes and overall
management nodes, VLAs for the embedded processors
and specifi

odeling and configuration. Each of these apply to
different aspects of the trigger and all of them must work
together.

A graphical modeling tool called the Generic Modeling
Environment (GME) was used to apply model integrated
computing methods to the specification and analysis of the

http://www-btev.fnal.gov/public/hep/detector/rtes/personnel.shtml

system. GME supports domain-specific languages for
re

 ARMOR per node, acting as a gateway for
A

ications, or acting as
in

ng farm, using digital signal processors
(D

 easy to create, and that package
or

l-CPU P3's and P4's; at least 4
di

 "16 node"
(1

remapping between configurations
exposed scale-dependent behaviors and system bugs that
might not otherwise only by the testing
of

fused with the highway concept which
w

 trigger farm. The BTeV L2/3
fa

logical concept of partitioning needed to support
ru

ensus on many details regarding

presenting differing dimensions of the system
organization and behavior, as well as the meta-modeling
capabilities for defining new domain-specific languages

Adaptive Reconfigurable Mobile Objects for Reliability
(ARMORs) are multithreaded processes internally
structured around objects ("elements") which provide
functions or services. Every ARMOR process contains a
basic set of elements that provide core functionality, e.g.,
reliable point-to-point inter-ARMOR messaging, and
ARMOR-state checkpointing. A modular, event-driven
architecture permits developers to customize an ARMOR
process's functionality and fault-tolerance services
(detection and recovery) according to the application's
needs. The self-checking ARMOR runtime environment
includes: one fault-tolerance manager (FTM) to initialize
the ARMOR-based system configuration, to maintain
registration information on all ARMORs and applications,
and to initiate recovery from ARMOR and node failures;
one heartbeat ARMOR (HB) to detect failures in the FTM;
one daemon

RMOR-to-ARMOR communication; and any number of
execution ARMORs, which launch and monitor application
processes.

Very lightweight agents (VLAs) are responsible for
providing a lightweight, adaptive layer of fault detection
and mitigation. Agents consist of a relatively few lines of
code embedded within appl

dependent processes, which monitor hardware and
software integrity. VLAs can be proactive or reactive,
depending on their scope.

As a first exercise in demonstrating their methodologies,
the RTES group developed a prototype for the BTeV Ll
trigger processi

SPs) of the type being studied by BTeV at that time. This
prototype was demonstrated at the Super Computing 2003
conference [5].

A formal review of the project software was conducted
after the conference. In response to this review, it was
recognized that GME would need to serve a large number
of domains and submodels: system description, message
modeling, fault mitigation behavior, run control behavior,
user interface definition, etc. For the ARMOR software, it
was recognized that custom (application-specific) ARMOR
elements needed to be

ganization and version control were vital. These
recommendations were incorporated prior to our second
demonstration project.

As a next effort, the RTES project undertook to
prototype the L2/3 trigger commodity processor farm.
Hardware for this farm was accumulated by BTeV,
recycled from other computing farms at Fermilab. The farm
was heterogeneous (dua

fferent speeds), and several exhibited hardware problems.
It was an excellent setting for demonstrating reliable
software infrastructures.

Several different test configurations were developed,
employing variously 3, 12, and 54 worker nodes
(performing L2/3 processing), with additional regional and
global control nodes. As each node was a dual-CPU
machine, these configurations allowed the testing of
ARMORs, VLAs, and GME-derived communications and
control to be applied to over 120 processors. The

2 workers) and "65 node" (54 workers) systems were
demonstrated at the Real Time and Embedded Technology
and Applications Symposium, March 2005 [6].

Developing and supporting both "16 node" and "65
node" configurations had several beneficial effects.
Effective software engineering was vital to minimize the
number of instances where the “same change” needed to be
applied. And rapid

 have been detected
 one configuration.

V. PARTITIONING
Partitioning of the BTeV detector consisted of running

multiple independent data acquisition systems in parallel.
This is not to be con

as the physical implementation of parallel data streams. A
partition is a logical concept and would have spanned
multiple highways.

The value of partitioning, and the decision when one
should partition the detector are different depending on the
phase of the project. For example, the partitioning needs
during commissioning (testing the subdetectors in parallel)
were expected to be different than the needs for testing new
L3 trigger algorithms while taking physics quality data.
Partitioning allowed spare cycles on the online trigger farm
to be used for offline processing when the beam would be
off or luminosity low enough so as not to require all of the
computational power in the

rm contained significant processing power, and
partitioning could provide a means to increase the
utilization of this resource.

Partitioning was strictly a logical concept which needed
to be mapped onto the physical implementation of the
online system. The online trigger/DAQ was to be
constructed in two stages. The first stage consisted of four
highways, and the second stage consisted of the remaining
four highways, but installed one year later. Even within a
stage, individual highways were commissioned one at a
time. The

nning multiple partitions on a single highway (when only
1 was constructed) as well as the final system with eight
highways

The parallel highway architecture and dynamic reloading
of DCB routing tables allowed for much flexibility in
configuring partitions, and rules were being established to
limit the scope, function, and definition of partitioning. We
had not reached a cons

pa

2) defining
ho

DCBs; 3) a
w

was the responsibility of the run
co

a given crossing passed the L1 trigger for
bo

o migrate nodes between
partitions would be influenced by metrics measured by
RTES as well as an o rofile that would be
lo

ject reviews, the
D

odel that supports offline processing on the
online farms during idle periods with plans for dynamic
load balancing, and (d dent parallel highway

[1] TDR. Available:

rtitioning at the time of BTeV’s termination. What we
present here are some of the ideas and the directions in
which we were headed.

Running a partition involved: 1) selecting and reserving
a subset of electronics hardware to be read out,

w much L2/3 trigger processing power was needed and
reserving those resources, 3) initializing the hardware, 4)
collecting the data, and 5) freeing the resources.

One of our original ideas for a possible scenario was for
a user to select specific front-end crates, request 50 Mflops
of L2/3 nodes for processing, and then let the partitioning
software map the request onto a physical implementation.
Depending on how many nodes might be needed, the layout
may require a single highway, or route data to n highways.
We rejected this idea because it could have been confusing
to the user to understand where data was flowing in the
system. We ultimately developed a proposal that struck a
balance between flexibility and ease of use. This approach
imposed the following constraints: 1) the hardware for the
L1 trigger on a particular highway could not be partitioned,
but could hold trigger tables for multiple partitions; 2) the
smallest source unit that could be reserved was a single L1
buffer which corresponded to as many as 24

orker node could belong to one and only one partition;
and 4) L2 worker nodes connected to the same regional
manager could not span multiple partitions.

Because of the large number of electronics modules in
the trigger/DAQ, we were developing a concept in which
the L1 trigger and all active highways could be available as
a shared resource. A run coordinator could then establish
the overall online configuration for a period of time (days
or weeks) and coordinate the data taking runs during this
period. This person would have the understanding of which
configurations would support multiple overlapping runs,
and a stable configuration period would have a fixed and
predefined set of allowable highways. Subdetector groups
would be able to select specific electronics to read out, and
front-end electronics could be reserved for read/write or
readonly access. It

ordinator to schedule the detector so that users could get
write access as needed, and partitions could be created or
deleted as necessary.

For example, the run coordinator could make four
highways available for the next two days. The pixel group
could reserve the pixel front-end electronics and associated
L1 buffers for read/write, and load the pixel trigger table.
Bunch crossings would then be distributed to all four
highways. The online software would assign specific L2/3
nodes to this partition as specified by the run coordinator.
The silicon strip group could request and reserve silicon
electronics for read/write and pixel electronics for read only
access, and load a second set of trigger tables. Again, the
software would assign L2/3 worker nodes specifically to
this partition. If

th partitions, it could be routed to worker nodes in both
partitions or split data between two partitions based on a

prescale value.
Partitioning became an obvious solution when discussing

the problem of how to utilize spare online cycles for offline
analysis. The computer scientists involved in RTES
promoted real time scheduling on the worker nodes to
maximize CPU utilization, but this was countered by the
opinion that a particular worker node should only perform a
single task to make operation of the system easier to
understand and more manageable. Nodes could manually
be moved between online and offline partitions, but would
be automatically shifted to offline partitions as the
luminosity in the Tevatron decreased during the course of a
run. The automatic decision t

verall luminosity p
aded at the start of a run.

VI. CONCLUSION
When BTeV was first proposed, the online system was

considered to be a high risk component of the experiment.
Thanks to the efforts of many talented people in the
collaboration and at the lab as well as extremely helpful
comments from the many external pro

AQ and trigger groups in BTeV developed a low risk
online architecture that was well understood, and was
feasible in terms of cost and schedule.

At the time of termination in early 2005, the experiment
had just passed its baseline review. Although not fully
implemented, many of the architecture choices, design, and
prototype work for the online system (both trigger and
DAQ) were well on their way to completion. Other large,
high-speed online systems may have interest in some of the
BTeV design choices, including (a) a commodity-based
tracking trigger running asynchronously at full rate with
variable latency even at L1 (b) hierarchical control and
fault tolerance in a large real time environment, (c) a
partitioning m

) an indepen
architecture.

REFERENCES
BTeV Collaboration, BTeV Proposal and
http://www-btev.fnal.gov/public/hep/general/proposal/index.shtml
J. Wu, “The Application of[2] Tiny Triplet Finder (TTF) in BTeV Pixel

EE Real Time Conference 2005,

[3]

[4]

Trigger”, Proceedings of the the IE
Stockholm, Sweden, June 2005, to be published.
E.E. Gottschalk, “BTeV Detached Vertex Trigger”, Nucl. Instrum.
Meth. A473, 2001, p. 167.
Available: http://www.dcache.org
D. Messie, M. Jung, J. C. Oh, S. She[5] tty, S. Nordstrom, M. Haney,

Systems, 4-7 April 2005, pp 498-505.
[6] S. Ahuja, et al., "RTES Demo System 2004", ACM SIGBED Review,

Special Issue on High Performance, Fault Adaptive, Large Scale
Embedded Real-Time Systems, July 2005, Volume 2, Number 3.

"Prototype of Fault Adaptive Embedded Software for Large-Scale
Real-Time Systems", Proceedings of the 12th IEEE International
Conference and Workshop on the Engineering of Computer-Based

	I. Introduction
	II. Overview
	III. Data Flow
	A. DCBs
	B. L1 Trigger
	C. Event Building
	L2/3 Trigger
	E. Mass Storage

	IV. Fault tolerance and Mitigation
	V. Partitioning
	VI. Conclusion

