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Abstract—BTeV was a proposed high-energy physics (HEP) 

collider experiment designed for the study of B-physics and 
CP Violation at the Tevatron at Fermilab.  BTeV included a 
large-scale, high-speed trigger and data acquisition (DAQ) 
system, reading data from the detector at 500 Gbytes/sec and 
writing data to mass storage at a rate of 200 Mbytes/sec.  The 
design of the trigger/DAQ system was innovative while 
remaining realistic in terms of technical feasibility, schedule 
and cost. This paper will give an overview of the BTeV 
trigger/DAQ architecture, highlight some of the technical 
challenges, and describe the approach that was used to solve 
these challenges. 
 

Index Terms—Data acquisition, large-scale systems, real 
time systems, triggering.  
 

I. INTRODUCTION 
T the heart of the BTeV experiment [1] was an 
ambitious and innovative online trigger and data 

acquisition (DAQ) system. The design of this system 
resulted from nearly a decade of research and development. 
Three phases of R&D occurred during this time. The first 
phase involved extensive physics and detector simulations 
to establish trigger and DAQ requirements and a baseline 
design. This was followed by prototyping of hardware 
components and software algorithms to establish trigger 
and DAQ performance metrics, and provide a basis for cost 
estimates. The third phase was characterized by several 
design changes that resulted from optimizations to achieve 
reductions in cost of construction and maintenance, while at 
the same time improving online performance and 
addressing the commissioning and operational needs of the 
experiment. 

 

The primary purpose of BTeV R&D was to design a 
dedicated B-physics experiment that would make precision 
measurements of beauty and charm decays to challenge the 
Standard Model and perform an exhaustive search for 
physics beyond the Standard Model. It was designed to find 
B events at high rate and with high efficiency while 
operating in a harsh hadron-collider environment. An 
important feature that distinguished BTeV from other 
experiments with similar goals was that it was designed to  
find these B events in the first stage of triggering (referred 

to as Level 1 or L1) by taking advantage of the key 
property that differentiates B (and charm) particles from 
other types of particles, namely their characteristic long 
lifetime. BTeV was to have begun data taking at the end of 
this decade, but was cancelled due to HEP budget 
constraints. 
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II. OVERVIEW 
BTeV based its trigger and DAQ design on four design 

principles: a consistent trigger strategy that was based on 
finding detached vertices at all stages of triggering, a 
thorough analysis of every Tevatron bunch crossing to 
search for evidence of B decays, use of high-resolution 
three-dimensional tracking data even at the first trigger 
stage to maximize the number of B decays for physics 
analyses, and deployment of fault tolerant and fault 
adaptive computing at all stages of the trigger and DAQ. 

The trigger was designed to analyze multiple interactions 
in every Tevatron bunch crossing by reconstructing tracks 
and vertices to search for evidence of a particle-decay 
within a few hundred microns to a few centimeters away 
from a primary interaction vertex. This was done by 
calculating impact parameters for tracks relative to a 
primary vertex, and selecting those events that satisfied a 
“cut” requiring a minimum number of large impact-
parameter tracks. Typical hadron-collider experiments use a 
fairly simple “first level” trigger with very low fixed 
latency. This is done to reduce input data rates to 
subsequent trigger levels to a “manageable rate,” allowing 
sufficient time to perform a detailed analysis of events. The 
drawback to this approach is that it limits the types of final 
states that can be selected, thereby limiting B-physics 
analyses. Trigger strategies that require the presence of 
specific final-state particles, such as muons, or demand the 
presence of a few high-pt hadrons, are examples of this. By 
avoiding these restrictive trigger strategies at L1 and by 
exploiting the characteristic lifetimes of B particles at the 
first and all subsequent trigger levels, the BTeV trigger was 
able to maintain high efficiency for B events throughout the 
entire event selection process.  To accommodate the greatly 
increased and variable latency at L1, BTeV used a large 
system of memory buffers. 

The BTeV trigger was a three-level hierarchical trigger 
system (shown in Fig. 1). Each level was designed to 
contribute to the reconstruction of events, and successive 
levels imposed more and more refined selection criteria to 
select B events and reject light-quark background events. 
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The trigger was designed to run at an initial (peak) 
luminosity of 2 × 1032 cm-2s-1 with a 132 ns, 264 ns, or 396 
ns bunch crossing interval, corresponding to an average of 
2, 4, or 6 interactions per crossing, respectively. The L1 
trigger operated at the Tevatron bunch-crossing rate, and 
was considered to be the most demanding part of the trigger 
system. L1 subsystems included the L1 pixel trigger, L1 
muon trigger, and Global Level 1 (GL1). The primary 
trigger for BTeV was the pixel trigger, while the muon 
trigger was to be used as an independent verification of 
pixel trigger performance. GL1 collected results from both 
subsystems and imposed the L1 trigger decision. 

The three-level trigger system shown in Figure 1 shows 
the BTeV detector, front-end electronics, L1 and Level-2/3 
trigger systems, Level-1 and Level-2/3 buffers, DAQ 
highway switch, and data-logging system. With data read 
out from front-end electronics at the Tevatron bunch-
crossing rate and a variable L1 trigger latency of order 1 
ms, the buffers for detector data had to be able to 
accommodate a large amount of data while trigger 
calculations were being performed. The data rate from the 
detector was estimated to be ~500 Gbytes/s for a crossing 
rate of 2.5 MHz, an average of 6 interactions/crossing, and 
an average event size of 250 Kbytes. The concept of an 
eightfold “highway” architecture was introduced to reduce 
the full data rate to 62.5 Gbytes/s into each highway, and to 
enable the use of low-cost components in the DAQ, such as 
commercially available Ethernet switches. The Level-1 
buffers, which held the detector data, were designed to 
buffer approximately 2 × 106 bunch crossings in total, 

corresponding to 800 ms of L1 trigger decision time and 
corresponding to approximately three orders of magnitude 
more than the average L1 processing time. The DAQ 
highway switch was designed to route data to a combined 
Level-2 and Level-3 trigger system, referred to as the “L2/3 
trigger”, for bunch crossings that satisfied L1 selection 
criteria, as determined by GL1. Data for bunch crossings 
that satisfied L2 and L3 selection criteria were to be logged 
on archival media such as disk drives. 

In our baseline design, the L1 trigger reduced the data 
rate by a factor of 50 by rejecting background events while 
retaining B events for L2 processing. L2 improved the track 
and vertex reconstruction by reviewing tracking data used 
at L1, and by including additional tracking data if 
necessary. L2 reduced the data rate by rejecting at least 
90% of events accepted by L1. At L3 all of the data for a 
particular bunch crossing was available, which would 
permit a complete analysis, much like an offline analysis, of 
the data. L3 imposed the final trigger selection criteria and 
reduced the data rate by 50% producing an output rate of 
2.5 KHz and an estimated 200 MB/s, which was achieved 
by data compression and the elimination of data not needed 
for physics analyses, including some of the raw event data.  
See Table 1 for the data rates at each trigger level.  

The primary trigger for BTeV was the L1 pixel trigger, 
also referred to as the “L1 vertex trigger.” It consisted of 
four stages: pattern recognition, track reconstruction, vertex 
reconstruction, and impact-parameter calculations to find 
detached vertices that were the basis for the L1 trigger 
decision. In the baseline design the bulk of the pattern 

recognition was performed by field-
programmable gate arrays (FPGAs), 
which are ideal for performing large 
numbers of rudimentary calculations 
in parallel. The remaining L1 
calculations were performed by 
commodity general-purpose 
processors, referred to as “L1 farm 
processors” or “L1 worker nodes”. 
Subsequent trigger levels, L2 and L3, 
also relied on general-purpose 
processors to perform trigger 
calculations. 

 
Figure 1.  BTeV three-level trigger architecture.. 

Due to the flexibility of the trigger 
and DAQ system, design changes 
were relatively easy to accommodate, 
although such changes were not 
approved without considerable 
simulation and analysis effort and 
detailed reviews. For example, we 
investigated two alternatives for 
pattern recognition that significantly 
reduced the processing time in the L1 
worker nodes, thereby reducing the 
cost of this subsystem. The first 
alternative, a “hash sorter” [2] was 



 

implemented in an FPGA, thereby reducing the load on L1 
worker nodes. The second alternative reduced the load on 
the worker nodes by moving calculations that completed 
the pattern recognition for pixel data from the worker nodes 
to FPGAs. The first of these alternatives was included in 
the baseline design, while studies for the second alternative 
were underway when BTeV was terminated in February, 
2005. 

Table 1. Event Rates 
 Frequency Event Size Data Rate 

Into L1 2.5 MHz 200 KB 500 GB/sec 
Into L2/3 50 KHz 250 KB 12.5 GB/sec 
Archived 2.5 KHz 80 KB 200 MB/sec 
 

The design of the BTeV trigger and DAQ evolved over 
time. Many of the changes were introduced to 
accommodate changes that were made to the pixel detector, 
and in some cases a change to a trigger algorithm enabled 
significant improvements in the design of the pixel detector 
system, thereby demonstrating the importance of 
concurrent development of the two systems [3]. The BTeV 
trigger and DAQ designs were also influenced by 
technology changes as new hardware became available. For 
several trigger and DAQ subsystems we abandoned custom 
hardware in favor of commodity hardware, which 
contributed to a significant savings in material costs and 
labor costs that would have been required to maintain the 
trigger and DAQ during operations of the BTeV 
experiment. 

The proposed BTeV detector consisted of 6 separate 
subdetectors: pixel, silicon strips, straw tubes, RICH, 
EMCAL and muon, with the pixel detector dominating the 
channel count (see Table 2).   

Table 2. Channel Count 
Subsystem Channels DCB Subsystems 
Pixel 23M 10 
Strips 118K 2 
Straws 54K 6 
RICH 144K 4 
EMCAL 10K 2 
Muon 37K 4 

 

Several features of the DAQ are noteworthy. First, the 
architecture of the detector readout was unique in that all 
the data for every crossing was brought off the detector, 
digitized in subdetector-specific front-end boards, and 
stored in the L1 buffers. These data were sent via point-to-
point copper connections to data combiner boards (DCBs) 
before being sent to the first level trigger over optical links. 
The DCB design was common across subdetectors. Two 
variants were designed, one to be used with pixel and strip 
detector front-end boards and another to be used with all 
other front-end boards. This architecture enhanced the 
trigger/DAQ design in that 1) much of the trigger could be 
done in software, which made it possible to use many 
commodity components in the system; and 2) the DCBs 

provided a single type of data entry hardware into the 
trigger/DAQ system, making it possible to have a unified 
design that would ease maintenance tasks and reduce long-
term support of the system.  

A second advantage of the architecture was that data 
collected in the DCBs could be routed to several 
independent, parallel data paths, which were called 
highways. This reduced the control overhead on each 
individual highway and grouped data coming out of the L1 
buffers into larger packets for better network performance.  

The following sections will outline some of the features 
of the online system. 

III. DATA FLOW 
Data highways were a key feature of the BTeV 
trigger/DAQ architecture. The concept of routing data 
through parallel and independent paths, either via “round 
robin” or some other mechanism, originated with the desire 
to eliminate custom switches from the architecture, thereby 
reducing the cost of the BTeV DAQ. With the highway 
scheme, an individual highway had a lower data rate and a 
larger event fragment size compared to a monolithic 
trigger/DAQ system. These two aspects of the architecture 
made a commodity implementation viable. 

BTeV was able to capitalize on other more subtle 
benefits of the highway architecture. In particular, the 
highway architecture was important because it allowed for 
a flexible construction schedule for the trigger/DAQ 
system. We could build the trigger and DAQ in two stages 
– four highways to be purchased in one fiscal year, and the 
remaining highways to be purchased at a later time. The 
highway scheme allowed for future expansion in capacity 
with no additional cost other than the cost of more 
commodity components and the effort to reconfigure the 
system. No redesign of the trigger/DAQ system would be 
necessary for future upgrades. 

A. DCBs 
 The data combiner boards were a custom component 

and the sole interface between the subdetectors’ front-end 
electronics and the common data readout system. A given 
DCB was connected to 8 highways and would route data to 
the appropriate highway based on internal routing tables. 
The highways remained independent through all levels of 
the trigger until data was pushed out of the L3 trigger farm 
and into mass storage. 

Fig. 2 shows the data and control flow in/out of a DCB. 
Each board contained a commercial CPU and fast Ethernet 
interface for control, and low speed data readout for 
diagnostics and commissioning. The DCBs received precise 
clock information from the timing system. A possible 
feature that was being considered for the DCBs was to use 
the timing information to dynamically reset and reconfigure 
all DCBs in response to a certain condition.  When a 
change to the DCB configuration was needed, the dynamic 
reset/reconfiguration could be enacted for a specified point 
in time, such as a specific bunch crossing number.  For 
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Figure 2: DCB I/O (data and control). 

example, if a catastrophic highway failure occurred, a 
command could be sent to the DCBs telling them to route 
to 7 highways instead of 8 starting at crossing number “N.”  

We were investigating the possibility of routing data to a 
different highway for each “Tevatron turn” (approximately 
20 microseconds of data), as opposed to routing each bunch 
crossing to a different highway. This approach would 
simplify the routing, but increase the length of time the data 
would remain in a DCB, exposing it to a higher single-
event-upset rate. It would also mean that data from pixel 
detector sources would need to be time ordered, a 
functionality that was being designed into the pixel L1 
trigger. Turn routing also had the advantage of load 
balancing, since the data carried over a single highway was 
the same on average for each of the highways. This was 
true no matter how many highways were in service. If a 
highway dropped out, the remaining highways would 
absorb the load evenly. 

B. L1 Trigger 
The BTeV L1 trigger was a key feature of the 

experiment, and was considered crucial to the success of 
BTeV. Detector data from the DCBs were sent to two 
locations, the L1 trigger and Level-1 buffers. Data from the 
pixel and muon detectors were sent to the L1 trigger, since 
these were the data that were used at L1 to select B events 
for subsequent trigger processing in L2 and L3. Since all 
data had to be buffered in Level-1 buffers for subsequent 
trigger processing, the L1 trigger also wrote the pixel and 
muon data, as well as intermediate and final L1 trigger 
results, to Level-1 buffers. 

Before being sent to Level-1 buffers, the pixel detector 
data were sent to FPGA pixel preprocessors that performed 
several operations on the data such as time-stamp 
expansion (adding additional timing data to individual pixel 
hits); pixel hit clustering; and x, y, and z coordinate 

determination for pixel hits. The processed data were then 
sent to Level-1 buffers and to an FPGA-based segment 
tracker that executed the track-segment finding stage of the 
L1 trigger algorithm [3]. Track segments that were found at 
this stage were routed by a network switch to a single 
worker node in the L1 trigger farm, where the track and 
vertex finding stage of the trigger algorithm was performed. 
Re

isions were 
sto  
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be required, assuming a 50% duty 
 

nsisted of a total 
of 528 8.0 GHz IBM 970 PowerPC CPU's, or equivalent. 
For example, a dual-core 4.0 GHz processor was 
considered equivalent to an 8.0 GHz single-core CPU. 
Compared to a 2.0 GHz Apple PowerMac G5 (available in 
2005), we were assuming a factor of four increase in 
processing power by the time we needed to purchase the L1 
worker nodes in 2008. 

C. Event Building 
Details of the event building design were under 

development when BTeV was terminated in 2005. We were 
investigating an implementation in which the L2 trigger 
would receive complete events by sending all data for a 
particular bunch crossing to a single L2/3 worker node. It 
was estimated that 40% of the data were needed to make an 
L2 decision. We concluded that it would be more cost 
effective to add the extra network capacity to send all data 

sults from this stage of the calculation were written to 
Level-1 buffers, and summarized results were sent to a GL1 
(Global Level 1) processor that was responsible for making 
the L1 trigger decision. Individual trigger dec

red as a list of accepted bunch crossing numbers in the
formation Transfer Control Hardware (ITCH), w
oadcasted "accept messages" to all Level-1 buffers
ta could be sent to the L2 trigger. 
The L1 muon trigger was going to be built with the same 

hardware that was going to be used for the L1 pixel trigger. 
The GL1 trigger would then receive the summarized trigger 
results for both the pixel trigger and the muon trigger to 
produce the L1 trigger decision. For the L1 pixel trigger, 
the worker nodes that were to perform the track and vertex 
finding stage of the L1 trigger were estimated to require 
200 microseconds on average per bunch crossing for a 
processor purchased in 2008. For an interaction rate of 2.5 
MHz a total of approximately 500 CPUs (or 250 dual-CPU 
worker nodes) would 
time on each CPU.

We measured the execution time of the L1 trigger 
algorithm on several general-purpose processors that are 
commonly used in commercial desktop and server PCs. The 
processors we considered were the following:  

• 3.2 GHz Intel Pentium 4 with 800 MHz front-side bus 
• 2.4 GHz Intel Xeon with 400 MHz front-side bus 
• 2.2 GHz AMD Opteron on a Sun Sunfire V20z 
• 2.0 GHz IBM970 PowerPC on an Apple PowerMac G5 
The L1 code was compiled with the Intel C/C++ 

compiler version 8.0 on Linux for the x86 platforms, and 
the IBM XL C/C++ compiler on Mac OS X for the 
PowerPC platform. Our baseline design co



 

Figure 3. Design Time and Runtime aspects of RTES. 
Multiple domain-specific languages are used at the 
Design and Analysis level, to represent system 
organization and behavior. Synthesis produces runtime 
artifacts (codes, scripts). Runtime middleware (VLAs, 
ARMORs) provides detection and mitigation of faults. 
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D. L2/3 Trigger 
From the L1 buffers, data were sent over Gigabit 

Ethernet  links to the to the L2/3 processor farm, which had 
worker nodes that were used to execute both the L2 and L3 
trigger algorithms. The L2/3 farm consisted of commodity 
processors that were subdivided into highways. Highways 
were self-contained, with lower bandwidth communications 
channels connecting the highways. Each highway consisted 
of 96 worker nodes, each with dual CPUs.  

To reduce the control overhead and complexity of the 
DAQ software, we designed the event-building switch with 
enough capacity to send a complete event to each L2 
worker node. Worker nodes would notify the ITCH when 
they were ready for data. The ITCH would assign them a 
particular crossing number. All data from that crossing 
would be sent to that worker node.  

Worker nodes themselves were grouped into manageable 
units in a highway. Each group was controlled by a regional 
manager consisting of 12 worker nodes. A regional 
manager was responsible for configuring its associated 
worker nodes, fanning o
status information

rsions of trigger algorithms used in the trigger, and 
handling regional faults.  

E. Mass Storage 
One of our goals for mass storage of data was to operate 

a “tapeless” archiving system.  However, the choice of 
storage media that would be used by BTeV was deferred 
due to the ever-changing price/capacity/performance matrix 
of disk storage versus tape storage.  

In the baseline design, the online system would write to 
disk and not to tape. Fermilab is already successfully 
running large disk caching farms as front-ends to the mass 
storage tape farms using a dCache [4] framework. 
“Backup” copies of the original data would be kept on 
university disk farms as part of the anal

this to be a viable model as the capab
 multip  ofndling le persistent copies  data was being 

plemented in the dCache project. 

IV. FAULT TOLERANCE AND MITIGATION 
The BTeV Real Time Embedded Systems (RTES) 
oject  was born from a need to address concerns that 
ose from a project review that was conducted in 2000:  
“Given the very complex nature of this system where 
thousands of events are simultaneously and 
asynchronously cooking, issues of data integrity, 
robustness, and monitoring are critically important and 
have the capacity to cripple a design if not dealt with 
at the outset… BTeV [needs to] supply the necessary 
level of “self-awareness” in the trigger system.” 

The RTES project group was formed and funded through a 

5-year NSF ITR grant.  This research group is a 
collaborative effort between electrical engineers

entists and high energy physicists. The group is 
researching ways to increase the reliability of high-
performance, heterogeneous, real-time systems. 

 The BTeV trigger was used as a model system for 
RTES. In order to satisfy the requirements of this trigger 
and address the problems associated with it, RTES was 
assembling a fault handling subsystem to be used by all 
components in the trigger and DAQ. This subsystem would 
accurately identify problems and compensate for them, 
including application related activities such as changing 
algorithm thresholds and overall system activities such as 
load shifting. As many recovery procedures as possible 
were to be automated. Operators and system developers 
must be able to easily incorporate new procedures or 
policies into the system. The operators must be able to 
easily s

servations and actions must be kept to facilitate 
reproduction of analysis results and to identify long-term 
trends. 

The RTES approach employs both design-time modeling 
and run-time capabilities. Fig. 3 shows the overall project 
perspective. The technologies introduced by RTES and 
discussed below are ARMORs for L2/3 nodes and overall 
management nodes, VLAs for the embedded processors 
and specifi

odeling and configuration. Each of these apply to 
different aspects of the trigger and all of them must work 
together. 

A graphical modeling tool called the Generic Modeling 
Environment (GME) was used to apply model integrated 
computing methods to the specification and analysis of the 

http://www-btev.fnal.gov/public/hep/detector/rtes/personnel.shtml


 

system. GME supports domain-specific languages for 
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Adaptive Reconfigurable Mobile Objects for Reliability 
(ARMORs) are multithreaded processes internally 
structured around objects ("elements") which provide 
functions or services. Every ARMOR process contains a 
basic set of elements that provide core functionality, e.g., 
reliable point-to-point inter-ARMOR messaging, and 
ARMOR-state checkpointing. A modular, event-driven 
architecture permits developers to customize an ARMOR 
process's functionality and fault-tolerance services 
(detection and recovery) according to the application's 
needs. The self-checking ARMOR runtime environment 
includes: one fault-tolerance manager (FTM) to initialize 
the ARMOR-based system configuration, to maintain 
registration information on all ARMORs and applications, 
and to initiate recovery from ARMOR and node failures; 
one heartbeat ARMOR (HB) to detect failures in the FTM; 
one daemon

RMOR-to-ARMOR communication; and any number of 
execution ARMORs, which launch and monitor application 
processes.  

Very lightweight agents (VLAs) are responsible for 
providing a lightweight, adaptive layer of fault detection 
and mitigation. Agents consist of a relatively few lines of 
code embedded within appl

dependent processes, which monitor hardware and 
software integrity. VLAs can be proactive or reactive, 
depending on their scope. 

As a first exercise in demonstrating their methodologies, 
the RTES group developed a prototype for the BTeV Ll 
trigger processi

SPs) of the type being studied by BTeV at that time. This 
prototype was demonstrated at the Super Computing 2003 
conference [5]. 

A formal review of the project software was conducted 
after the conference. In response to this review, it was 
recognized that GME would need to serve a large number 
of domains and submodels: system description, message 
modeling, fault mitigation behavior, run control behavior, 
user interface definition, etc. For the ARMOR software, it 
was recognized that custom (application-specific) ARMOR 
elements needed to be

ganization and version control were vital. These 
recommendations were incorporated prior to our second 
demonstration project. 

As a next effort, the RTES project undertook to 
prototype the L2/3 trigger commodity processor farm. 
Hardware for this farm was accumulated by BTeV, 
recycled from other computing farms at Fermilab. The farm 
was heterogeneous (dua

fferent speeds), and several exhibited hardware problems. 
It was an excellent setting for demonstrating reliable 
software infrastructures. 

Several different test configurations were developed, 
employing variously 3, 12, and 54 worker nodes 
(performing L2/3 processing), with additional regional and 
global control nodes. As each node was a dual-CPU 
machine, these configurations allowed the testing of 
ARMORs, VLAs, and GME-derived communications and 
control to be applied to over 120 processors. The

2 workers) and "65 node" (54 workers) systems were 
demonstrated at the Real Time and Embedded Technology 
and Applications Symposium, March 2005 [6].  

Developing and supporting both "16 node" and "65 
node" configurations had several beneficial effects. 
Effective software engineering was vital to minimize the 
number of instances where the “same change” needed to be 
applied. And rapid 

 have been detected
 one configuration. 

V. PARTITIONING 
Partitioning of the BTeV detector consisted of running 

multiple independent data acquisition systems in parallel.  
This is not to be con

as the physical implementation of parallel data streams. A 
partition is a logical concept and would have spanned 
multiple highways.  

The value of partitioning, and the decision when one 
should partition the detector are different depending on the 
phase of the project. For example, the partitioning needs 
during commissioning (testing the subdetectors in parallel) 
were expected to be different than the needs for testing new 
L3 trigger algorithms while taking physics quality data. 
Partitioning allowed spare cycles on the online trigger farm 
to be used for offline processing when the beam would be 
off or luminosity low enough so as not to require all of the 
computational power in the

rm contained significant processing power, and 
partitioning could provide a means to increase the 
utilization of this resource.  

Partitioning was strictly a logical concept which needed 
to be mapped onto the physical implementation of the 
online system. The online trigger/DAQ was to be 
constructed in two stages. The first stage consisted of four 
highways, and the second stage consisted of the remaining 
four highways, but installed one year later. Even within a 
stage, individual highways were commissioned one at a 
time. The 

nning multiple partitions on a single highway (when only 
1 was constructed) as well as the final system with eight 
highways 

The parallel highway architecture and dynamic reloading 
of DCB routing tables allowed for much flexibility in 
configuring partitions, and rules were being established to 
limit the scope, function, and definition of partitioning. We 
had not reached a cons
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[1] TDR. Available: 

rtitioning at the time of BTeV’s termination. What we 
present here are some of the ideas and the directions in 
which we were headed.  

Running a partition involved: 1) selecting and reserving 
a subset of electronics hardware to be read out, 

w much L2/3 trigger processing power was needed and 
reserving those resources, 3) initializing the hardware, 4) 
collecting the data, and 5) freeing the resources. 

One of our original ideas for a possible scenario was for 
a user to select specific front-end crates, request 50 Mflops 
of L2/3 nodes for processing, and then let the partitioning 
software map the request onto a physical implementation. 
Depending on how many nodes might be needed, the layout 
may require a single highway, or route data to n highways. 
We rejected this idea because it could have been confusing 
to the user to understand where data was flowing in the 
system. We ultimately developed a proposal that struck a 
balance between flexibility and ease of use. This approach 
imposed the following constraints: 1) the hardware for the 
L1 trigger on a particular highway could not be partitioned, 
but could hold trigger tables for multiple partitions; 2) the 
smallest source unit that could be reserved was a single L1 
buffer which corresponded to as many as 24 

orker node could belong to one and only one partition; 
and 4) L2 worker nodes connected to the same regional 
manager could not span multiple partitions.  

Because of the large number of electronics modules in 
the trigger/DAQ, we were developing a concept in which 
the L1 trigger and all active highways could be available as 
a shared resource. A run coordinator could then establish 
the overall online configuration for a period of time (days 
or weeks) and coordinate the data taking runs during this 
period. This person would have the understanding of which 
configurations would support multiple overlapping runs, 
and a stable configuration period would have a fixed and 
predefined set of allowable highways. Subdetector groups 
would be able to select specific electronics to read out, and 
front-end electronics could be reserved for read/write or 
readonly access. It 

ordinator to schedule the detector so that users could get 
write access as needed, and partitions could be created or 
deleted as necessary.  

For example, the run coordinator could make four 
highways available for the next two days. The pixel group 
could reserve the pixel front-end electronics and associated 
L1 buffers for read/write, and load the pixel trigger table. 
Bunch crossings would then be distributed to all four 
highways. The online software would assign specific L2/3 
nodes to this partition as specified by the run coordinator. 
The silicon strip group could request and reserve silicon 
electronics for read/write and pixel electronics for read only 
access, and load a second set of trigger tables. Again, the 
software would assign L2/3 worker nodes specifically to 
this partition. If 

th partitions, it could be routed to worker nodes in both 
partitions or split data between two partitions based on a 

prescale value.  
Partitioning became an obvious solution when discussing 

the problem of how to utilize spare online cycles for offline 
analysis. The computer scientists involved in RTES 
promoted real time scheduling on the worker nodes to 
maximize CPU utilization, but this was countered by the 
opinion that a particular worker node should only perform a 
single task to make operation of the system easier to 
understand and more manageable. Nodes could manually 
be moved between online and offline partitions, but would 
be automatically shifted to offline partitions as the 
luminosity in the Tevatron decreased during the course of a 
run. The automatic decision t

verall luminosity p
aded at the start of a run.  

VI. CONCLUSION 
When BTeV was first proposed, the online system was 

considered to be a high risk component of the experiment.  
Thanks to the efforts of many talented people in the 
collaboration and at the lab as well as extremely helpful 
comments from the many external pro

AQ and trigger groups in BTeV developed a low risk 
online architecture that was well understood, and was 
feasible in terms of cost and schedule.    

At the time of termination in early 2005, the experiment 
had just passed its baseline review. Although not fully 
implemented, many of the architecture choices, design, and 
prototype work for the online system (both trigger and 
DAQ) were well on their way to completion. Other large, 
high-speed online systems may have interest in some of the 
BTeV design choices, including (a) a commodity-based 
tracking trigger running asynchronously at full rate with 
variable latency even at L1 (b) hierarchical control and 
fault tolerance in a large real time environment, (c) a 
partitioning m

) an indepen
architecture. 
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