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Abstract 

 Beam-beam tune spread in hadron colliders usually is 
small enough to avoid most dangerous low-order betatron 
resonances. However, even weak high-order resonances 
can be detrimental due to cooperative effect of the 
external noise. Mechanisms of such cooperation are 
considered, simple analytical estimates of the diffusion 
rate being verified with numerical simulations. The 
developed theory is used to evaluate the beam-beam 
resonance contribution to the emittance growth in the 
Tevatron. 

INTRODUCTION 
 Experience with the Tevatron collider shows that the 
beam-beam interaction affects the lifetime of both proton 
and antiproton beams and under certain conditions may 
cause the antiproton beam emittance blow-up [1]. 
 The classical mechanism of dynamical stochasticity 
due to resonance overlap [2] (including the overlap of the 
synchrotron sidebands for particles with large synchrotron 
amplitudes [3]) can not explain the effect of high order 
(and correspondingly weak) resonances since their width 
is not sufficient to overlap.  
 There are external sources of noise (ground motion, 
microphonics due to helium flow etc.), as well as 
scattering processes (residual gas, IBS) which can provide 
particle transport between the resonance islands (Fig. 1). 
 Since the motion inside the resonance islands is much 
faster than the characteristic time of the extrinsic 
diffusion, for a crude estimate of the average diffusion 
rate the area of these islands can be simply excluded from 
the available phase space, leading to a multiplicative 
diffusion enhancement [4]. A refined theory of such 
enhancement was presented in Ref. [5]. However, since 
the resonance width is relatively small this effect is not 
very significant. 
 In the discussion of the resonance overlap it was tacitly 
assumed that the betatron oscillations keep their phase 
long enough for the synchrotron sidebands to develop, 
which may be not true in the presence of sufficiently strong 
external noise.  
 Since the synchrotron tune in hadron colliders is low, 
the external noise can destroy the betatron phase 
correlation between subsequent resonance crossings. In 
the result all phase space area of betatron oscillations  
which is swept by the resonance in the course of 
synchrotron oscillations becomes the region of enhanced 
diffusion. 
 In the present report analytical estimates are given of 
the diffusion rate due to multiple crossing of an isolated 

resonance [6] in different regimes. But before that, the 
dynamic diffusion across the immobile resonance islands 
is studied and shown to substantially exceed the naive 
estimates. 
 Finally, the obtained formulas for the diffusion 
coefficient are used to compute emittance growth in the 
colliding beams. 

BASIC RELATIONS 
 Assuming the synchrotron tune Qs to be low we may 
consider the longitudinal coordinate z and relative 
momentum deviation δp as slow varying parameters. Now 
let a particle with action variable values Ix0, Iy0, cross a 2D 
betatron resonance at some value of δp: 
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Q0= {Qx0, Qy0}, C = {Cx, Cy} being vectors of on-
momentum tunes and chromaticities, m being the 
resonance vector. 

Introducing new variables 
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where θ = s/R  is generalized azimuth and ∆Ix,y = Ix,y - Ix,y0 
we may write for the Hamiltonian  
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and Rm is the resonance driving term (RDT) which may 
depend on the instant value of z due to finite crossing 
angle and the betatron phase variation over the interaction 
length and on δp due to finite dispesion.   
 For head-on colliding round beams RDT can be 
factorized [7],  

Rm =Tm(Ix, Iy)⋅Lm(z),           (5) 
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Figure 1. Schematic picture of the diffusion 
enhancement by immobile resonances (left) and 
configuration for the numerical experiment (right) 
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Lm(z)≡1 for short bunches (σs/β∗<<1). Fig.2 shows that the 
longitudinal factor for long bunches can be very small 
suppressing the resonance excitation. 

DIFFUSION OVER RESONANCE ISLAND 
 First let us consider on-momentum particles, δp =0. If 
the tune of small-amplitude libration around the stable 
fixed point (the island tune) is low 

1|| 2/1 <<Λ= mmisl Rν           (6) 

the action variable increment per turn is δI1 =2π|Rm|cosψ1. 
Assuming action to change at this pace for ncorr turns we 
get for the diffusion rate 
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 This estimate (with ncorr =1) is widely used; to be 
correct it requires the motion to be chaotic which is 
certainly not true for hadron colliders. In absence of 
external noise the motion described by Hamiltonian (3) is 
regular, there is no diffusion at all.  
 If there is some noise, it can drive particles from 
coasting trajectories into the separatrix (Fig.1 left) and, a 
few libration half-periods later (number of turns nisl 
~1/νisl), out of the separatrix on the other side. In this 
process the action invariant J1=�I1dψ1/2π changes by the 
island full width: 
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so the effective diffusion rate (within the island) scales as 
2/12/32
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 Constant κ  was determined in a numerical experiment. 
104 particles were placed at the reflecting boundary (Fig.1 
right) and tracked for 105 turns at different levels of 
external noise. The resonance contribution to the diffusion 
rate was inferred from the excess in the loss rate. For νisl = 
0.0025-0.01 (resonance strength varying by 16 times) and 
the noise level varying in a wide range the constant was 
found to be κ = 0.65±0.1. 
 There is an important difference between the two 
estimates. Since both Rm and Λm are proportional  to the 
intensity of the strong beam Nst, Dm0 ~ Nst whereas 
Dnaive ~ Nst

2. 

Diffusion over the synchrotron satellites 

 If motion of an off-momentum particle is correlated 
over many synchrotron periods the multiplet resonance 
structure develops. Eq. 9 holds for an isolated synchrotron 
satellite as well with an appropriate modification of the 
longitudinal factor in Rm. For short bunches it is 
accomplished with the replacement 

,),/( 0pMsMmsmm CmQJTR δνν ⋅=→   (10) 

where Jm(x) is the Bessel function, δp0 is the synchrotron 
amplitude. The general formula can be found in [7]. 
 Eqs. 8-10 permit to calculate the rate of diffusion 
across the resonance islands (or, more, precisely, across 
the resonance layers) and, in combination with the 
extrinsic diffusion between the layers, to find the average 
diffusion rate over the multiplet. 
 The question is if there is enough time for the multiplet 
structure to emerge. The strongest and first to develop (in 
a few synchrotron periods) are the satellites of order 
ms=±[νM /Qs]. But in a real situation the correlation may 
be lost even sooner. 

DIFFUSION DUE TO MULTIPLE 
CROSSING OF A RESONANCE 

 Analytical estimates can be made for particles crossing 
the resonance at momentum deviation δpr far from the 
amplitude value δp0 and for particles which reach the 
resonance near the turning point, δpr ≈ δp0.   

Crossing at a constant rate 
 In the first case we may assume the detuning from the 
resonance to be a linear function of time: 
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and find variation of I1 over period θ ∈(-∞, ∞) in absence 
of noise.  
 Invoking the noise only to destroy correlation between 
successive crossings we find for the diffusion rate  
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where function Φ(v) of the normalized crossing velocity 
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is presented in Fig.3.  
 Let us note that Rm in Eqs. 11, 12 is that of Eq. 5 with 
values of longitudinal variables 
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αc being the momentum compaction factor and R the 
machine mean radius. 
 Function Φ(v) has a pronounced peak at v = 1 
corresponding to what may be called catching up with 
(but not trapping into) the moving separatrix. For fast 
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Figure 2. Longitudinal factor for 12th order resonances 
in head-on colliding round beams. 



crossing (v >> 1) Φ(v) ≈ π/v [6], for v < 1 numerical fit 
gives Φ(v) ≈ 5.64v1.683.  
 Diffusion vanishes in the limit v<<1 since all particles 
receive the same kick δI1 (one crossing up, the other 
down) independently of the initial phase. 

Comparison with quasi-linear diffusion rate 
 Averaging rate (12) over the range δpr∈(-δp0, δp0) in the 
limit of fast crossing (v >> 1) we obtain  
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where DQL is the average diffusion rate over the multiplet 
of overlapping synchrotron sidebands [3]. This shows that 
it is not important what destroys phase correlation: 
external noise or interference with other resonances, but 
in the case of noise there is no threshold intensity. 
 In the limit of fast crossing, v >> 1, (which implies 
limitation on the strong beam intensity) Dm

(c.v.)
 ~ Nst

2. But 
the phase space area swept by the resonance is  

st1 /1~||/2 NI mM Λ≈∆ ν ,    (15) 

so the effect on lifetime may even decrease with Nst. 

 Crossing in the turning point neighborhood 
 When the resonance crossing occurs in the vicinity of 
the turning point of synchrotron oscillations, δpr ≈ δp0, the 
assumption of constant velocity does not hold.  
 For a weak resonance, following the path which led to 
Eq. 7 and assuming loss of phase correlation between 
successive “touches” of the resonance, we obtain at 
δpr = δp0: 
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where Jµ (x) is the Anger function (which coincides with 
Jµ (x) for integer µ) 
 In the case of a strong resonance (νisl >Qs) the so-called 
adiabatic trapping occurs. To describe it we may use Eqs. 
8-10 for the strongest satellite, ms=µ.. 

SOLUTION OF THE DIFFUSION 
EQUATION 

 Since the diffusion in the longitudinal phase space is 
usually slow, it can be ignored on the transverse diffusion 
time scale. In the result the problem is reduced to 2D 
diffusion equation for a given synchrotron amplitude δp0: 
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where the diffusion operator was introduced (∂x,y ≡∂/∂Ix,y): 
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Inverting Eqs.2 we obtain for one resonance contribution 

myyymyxyxxymxxx DmDDmmDDDmD 22 ,, ====  

 Due to symmetry and the fact that Dm=0 if Ix=0 or Iy=0  
operator (18) is self-adjoint on functions vanishing at the 
absorbing boundary (or at infinity in its absence). 
Therefore it has an orthogonal set of eigenfunctions with 
non-positive eigenvalues since DxxDyy – DxyDyx ≥0. 
 Fig. 4 shows evolution of the antiproton distribution  
(bunch #12) with initial emittances 16π mm⋅mrad and 
9π mm⋅mrad, lattice tunes Q={20.576, 20.575}, 
chromaticities C={20, 10} and total beam-beam tuneshifts 
0.021, 0.031. Five points in δp0 were taken. One can see 
fast emittance growth (~10% vertically) in the first 
minutes of collisions due to 5th order resonances. 
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Figure 3. The crossing velocity factor. 
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