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Abstract

The orbit response matrix (ORM) method [1] is applied
to model the Fermilab Booster with parameters such as
the BPM gains and rolls, and parameters in the lattice
model, including the gradient errors and magnets rolls. We
found that the gradients and rolls of the adjacent combined-
function magnets were deeply correlated, preventing full
determination of the model parameters. Suitable con-
straints of the parameters were introduced to guarantee an
unique, equivalent solution. Simulations show that such
solution preserves proper combinations of the adjacent pa-
rameters. The result shows that the gradient errors of
combined-function magnets are within design limits.

INTRODUCTION

The Fermilab Booster is a fast-cycling synchrotron
which accelerates proton beams from 400 MeV to 8 GeV.
Its performance is critical for many Fermilab experiments.
Among the many efforts to improve the Booster, we were
trying to build a realistic lattice model with beam-based
measurements, such as the orbit response matrix (ORM)
method.

The ORM method, successfully applied to many elec-
tron storage rings, is a powerful tool for accelerator lattice
modeling. However its application to fast-ramping, proton
synchrotrons such as the Fermilab Booster is more difficult
because of the reduced orbit stability and precision of orbit
measurements. In our study we found another difficulty is
the correlation between the model parameters of the adja-
cent magnets. Suitable constraints have to used to obtain
an unique solution.

The Booster has 24 identical periods. Each period has
four combined function magnets and two straight sections
with a layout of {O FU DU OOO DD FD O}, where OOO
stands for the long straight section, O for a half of the short
straight section, FU for upstream focusing magnet and DU
for upstream defocussing magnet, etc. In each straight sec-
tion there are one BPM, which measures both horizontal
and vertical orbits, one horizontal trim (a steering dipole
magnet, or a kicker) and one vertical trim. Note that there
is only one BPM in every two magnet elements. The full
ORM is 96 × 96 in dimension.
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THE FITTING MODEL AND
ALGORITHM

The model ORM is computed with the transfer matrix of
the lattice model [2]. Suppose T is the one-turn transfer
matrix at a trim and I is a 4 × 4 identify matrix, the orbit
deviation x0 and z0 at the trim’s location due to an horizon-
tal kick θx of the trim can be found by (x0, x

′

0
, z0, z

′

0
)T =

(T− I)−1(0,−θx, 0, 0)T . The ORM elements can then be
calculated using the transfer matrices between the trim and
BPMs. The same can be done with vertical trims.

The measured ORM needs to be corrected to take into
account the imperfections of the measurement systems, e.g.
BPMs and trims. The correction parameters include the
gains and rolls of BPMs, the gains and rolls of both hori-
zontal and vertical trims, the momentum deviation due to
horizontal trims. The additional horizontal orbit changes
caused by the momentum deviation are subtracted from the
measured orbit to get the correct ORM. The parameters in
the lattice model are the gradient errors and rolls of all 96
combined-function magnets. There are a total of 576 fitting
parameters.

The difference between the model and measured ORM
is characterized by the residual vector r which is a column
vector containing all elements of (M act

ij − Mmodel

ij )/σij

and the objective function χ2 = r
T
r. The betatron tunes

are included by extending the residual vector. The disper-
sion functions can also be included. The fitting parameters
are put in a column vector α. The Levenberg-Marquardt
method [4] is used to solve the nonlinear least-square prob-
lem of f(α) = χ2. For each iteration the Jacobian matrix
J = ∂r

∂α
is computed and the advance of α is found by

solving the following equation

(JT
J + λI)∆α = −J

T
r (1)

instead of solving J∆α = −r as suggested in Ref. [1],
where I is the identity matrix and λ is an adjustable param-
eter. This approach is more robust. It is also faster because
the matrix on the left side of Eq. 1 has a smaller size than
J. The error bars of the fitting parameters are estimated
by computing the covariance matrix C = J

T
J and then

σi =
√

Cii for the i’th parameter.
The above fitting scheme is correct in principle but

would not work even for simulated noise-free ORM be-
cause the Fermilab Booster beam detection system (1 BPM
in every 2 magnet elements) is not sufficient for an unique
solution. In one simulation, the “measured” ORM is gener-
ated by setting the gradient error of one magnet to ∆K1 =
0.002 m−2, or 4% of the nominal quadrupole gradient.
The algorithm reduces χ2 down to zero efficiently but does
not converge to the expected solution. The gradients of the
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Figure 1: The correlation coefficients for model parameters
of neighboring magnets. (a) The gradient errors. (b) The
magnet rolls.

immediate neighboring magnets also pop up and make up
part of the contribution to χ2. The magnet rolls show simi-
lar behavior.

Such observations suggest correlations between model
parameters of the adjacent magnets, i.e., changes of these
parameters perturb the ORM in similar patterns. The corre-
lation are illustrated in Fig. 1, which shows the correlation
coefficients between the columns of the Jacobian matrix.

The gradients of neighboring focusing magnets (FD -
FU), the rolls of neighboring upstream magnets (FU-DU)
or downstream magnets (DD-FD) have the deepest corre-
lation. The correlation indicates that the ORM fitting prob-
lem is deficient and the model parameters cannot be deter-
mined individually. The solution is not well-constrained in
some directions and tends to have big error bars.

Although the correlation prevents the full determination
of the real Booster lattice from the ORM data, it is still
desirable to have a definite solution of the fitting problem,
which can be obtained by imposing proper constraints. For
example, we may require a solution with minimum Eu-
clidean norm. A more efficient way is to limit the drifting
along the un-constrained directions by minimizing certain
combinations of the correlated parameters. These com-
binations include: (1) (θ(FU, i) + θ(DU, i))/σθ, rolls of
upstream magnets; (2) (θ(DD, i) + θ(FD, i))/σθ, rolls of
downstream magnets; (3) (θ(FD, i) − θ(FU, i + 1))/σθ,
rolls of neighboring focusing magnets; (4) (∆K1(FD, i)−
∆K1(FU, i + 1))/σK1

, quads of neighboring focusing
magnets; (5) (∆K1(FU, i)−∆K1(DU, i))/σK1

, quads of
upstream magnets; (6) (∆K1(DD, i)−∆K1(FD, i))/σK1

,
quads of downstream magnets, where i denotes the period
number, σK1

= 0.00055 m−2 and σθ = 5 mrad are char-
acteristic values to scale the parameters.

A comprehensive simulation was used to check the fit-
ting schemes. The parameters were set to random values
within a reasonable scope to generate the ORM. The con-
strained fitting converges to an unique solution and reduces
χ2 from 32 to 0.01. The solution is much less sensitive to
random noises. Assuming error sigma of matrix elements
of 1.0 m/rad, the average error sigmas of gradients are
0.0042 m−2 without constraints and 2.5 × 10−4 m−2 with
constraints, while for rolls they are 78.7 mrad and 1.7 mrad,
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Figure 2: Comparisons of the fitting results with (“pair”)
or without (“none”) constraints to the expected solution
(“act”). (a) ∆K1(FD) + ∆K1(FU), (b) θ(FU) − θ(DU).

respectively. The constrained directions are faithfully re-
covered by both methods, as shown in Fig. 2.

APPLICATION TO EXPERIMENTAL
DATA

Each ORM element is measured by applying different
kick angles and measuring the beam orbits. The slope of
orbit − kick angle is obtained by linear fitting and is turned
to ORM element according to magnet specifications. The
uncertainty levels of the elements are estimated using the
residual χ2 of the linear fittings. The maximum kick angles
are 0.58 mrad for horizontal trims and 0.34 mrad for ver-
tical trims, resulting in maximum orbit changes of 8.0 mm
and 3.0 mm, respectively. The average error sigma’s are
0.33m/rad for Mxx, 0.54m/rad for Mxz, 0.07m/rad for
Mzx and 0.15m/rad for Mzz. The vertical blocks have
better precision because the vertical orbit has less cycle-
to-cycle variations than the horizontal orbit. The betatron
tunes are measured by BPM turn-by-turn data. The disper-
sion functions are also measured. They are both included
in the fitting by extending the residual vector. The disper-
sion terms are (Dmeas

i −Dmodel

i )/(bh,iσD,i), where bh,i is
horizontal BPM gain and σD,i is error sigma for dispersion
measurements. The inclusion of dispersion function would
de-couple the BPM gains and kicker gains [1].

The Booster model has all up-to-date information, in-
cluding the experimental settings of the trim quadrupoles
and skew quadrupoles. The ORM data are taken at 0.9 ms
after injection, corresponding to kinetic energy 0.41 GeV.
The constrained fitting is applied, which reduces the nor-
malized χ2 from 76.0 to 2.5.

The χ2 contribution of each type of parameters is eval-
uated by setting all parameters to their fitted values except
for that type, which are set to the default. We found that
the major contributors are magnet rolls, kick-induced mo-
mentum deviation, vertical BPM gains and the gradient er-
rors. The model ORMs and dispersion functions gain good
agreements with their measured counterparts through the
fitting process. Figures 3 and 4 compare the model result
with the measured data before and after the ORM modeling
for the dispersion function and the ORM row for one BPM.
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Figure 3: Comparison of dispersion functions before and
after the fitting.
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Figure 4: Comparing model and measured ORM elements
for BPM HS1 before and after fitting. The deviations be-
fore fitting are mostly from kick-induced momentum devi-
ation.

The horizontal kicks cause big changes of momentum
deviation because of Booster’s radial orbit control mech-
anism, which always tries to fix the horizontal orbit at
L20 by introducing momentum changes. Suppose the
orbit is indeed fixed at L20, the momentum deviation
due to unit kick angle of the j’th trim is expected to be
−Mxx(L20, j)/Dx(L20). They are compared in Fig. 5.

The correction parameters found by the fitting can be
used to calibrate the BPMs or trims. Five special BPMs are
found to have large gains and have been fixed. The other
BPM gains and trim gains have rms deviations of 5%.

The fitting solution provides a model that is equivalent
to the real Booster in the sense of giving the same orbit
response properties. Since the ORM is essentially speci-
fied by the linear lattice functions, i.e., the beta functions
and betatron phase advances, the fitted model should pro-
duce the same lattice functions as the real Booster. Such
information can be used in machine operations, e.g., to find
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Figure 5: The kick-induced momentum deviation per unit
kick angle compared to the orbit response at L20.
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Figure 6: The changes of ∆K1 of adjacent focusing mag-
nets if we turn off two trim quads in the model. The in-
tegrated quadrupole components of the two quads are ac-
counted for by body quads in the solution.

suitable ratios of trim strengths to create local orbit bumps.
The fitted constrained combinations of the model param-

eters should approximate the real Booster. The average
gradient errors of the focusing magnet in most periods are
below 0.0004m−2, i.e., 0.8% of the nominal values. Such
deviations are within the design tolerance [3]. The origin of
the errors could be the focusing effects of sextupole com-
ponents of the magnets. To verify that the sums of neigh-
boring focusing magnets are predictable, we set two trim
quads between them to zeros in the model before fitting.
The solution reflects the changes as shown in Fig. 6.

We also conducted un-coupled fitting which exclude the
off-diagonal blocks of the ORM and all roll parameters.
This simpler fitting scheme found the same solution for the
related parameters, i.e., the gains, kick-induced momentum
deviation and gradient errors because the rolls have only
second-order effects on the un-coupled ORM.

CONCLUSION

In this study we measured the fully-coupled orbit re-
sponse matrix of the Fermi Booster and fit it to the lattice
model. The fitting scheme was not able to uniquely deter-
mine the lattice parameters because of insufficient informa-
tion and poor BPM resolution. By imposing constraints on
correlations between fitting parameters, we can obtained
an unique solution with all correction parameters and an
equivalent model to the physical Booster. From the hard-
ware point of view, these constraints are reasonable inputs.
The study confirms the gradient errors of the focusing mag-
nets are within design limits.
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