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Abstract The ICA method considers turn-by-turn BPM data as lin-

The independent component analysis (ICA) is applied gar mixtures of inde_pendent source signals. We further as-
analyze simultaneous multiple turn-by-turn beam positio ume the source signals are narrowband S|gnals. Hence
monitor (BPM) data of synchrotrons. The sampled data a elr spectra must not overlap because .Of the mdepen(_jence
decomposed to physically independent source signals, su%rﬁld the un-equal_tlme covariance rpatnces.must be diago-
as betatron motion, synchrotron motion and other perturbna - The source signals and the mixing matrix can be found

tion sources. The decomposition is based on simultaneo%¥‘.jOintIy diagonalizing the un-equal time covariance ma-

diagonalization of several unequal time covariance matrHICes of the sample data with a few time-lag constants. The

ces, unlike the model independent analysis (MIA) whicﬁpaﬂal and temporal properties of the resulting modes can
' ' e used to identify the origins of the source signals.

uses equal-time covariance matrix only. Consequently t eThis method can successfully separate the linear cou-
new method has advantage over MIA in isolating the in-l.n normal modes. the s nc)k:rotr%n modes and other
dependent modes and is more robust under the influenigd'9 . ' y

odes. It is more robust than MIA because of the use of

of contaminating signals of bad BPMs. The spatial patter ore statistical information of the source sianals. It isle
and temporal pattern of each resulting component (modg Inrsiti/: g Iin?lulenc:as 0]1 bad BPMSS urce signais. 1t &5

n identify and analyze th i hysi ; : .
can be used to identify and analyze the associated phys Applying this new method to Fermilab Booster data, we

cause. Beam optics can be studied on the basis of the b tave measured the linear lattice functions and extracted
tron modes. The method has been successfully applied 8 ——
synchrotron oscillations.

the Booster Synchrotron at Fermilab.
INTRODUCTION THE ICA FOR BEAM DIAGNOSIS

The transverse motion of a beam in a synchrotron is Suppose there are BPMs around the ring and each

. . ; records the orbit fotV turns. We put the readings of all
composed of components driven by various physical fa%PMs into anm x N data matrixx such that each row
tors. These components include the betatron motion .

. . répresents the readings of one BPM. The offset of each row
synchrotron motion and possibly other sources. A syn-

chrotron often has many BPMs around the ring to detels subtracted from the raw readings. The data matrix is

the beam transverse orbit and in many synchrotrons tﬁ%lated with the source matrixby

BPMs are capable of measuring the orbit on turn-by-turn
basis. The multiple simultaneous turn-by-turn orbit mea-
surements provide vast data which allow us to study thgheren (not known a priori) is the number of source sig-
physical factors that affect the beam. It is highly deseablnals, A is the mixing matrix,\” contains random noises.
to separate the contributions of the factors and study theThe un-equal time covariance matrix of source signals de-
individually. The model independent analysis (MIA) [1]fined by Cs(7) = (s(t)s(t + 7)) is diagonal because
is a first attempt to achieve the goal. MIA is a principakhe source signals are non-overlapping narrowband sig-
component analysis (PCA). It can be used to study cohefals. The time-lag constamtmust be an integer. It fol-
ent betatron oscillations without a lattice model and i®abliows from Eq. (1) thalC,(0) = AC4(0)A” + 2T and
to reduce random noises. It has been applied to some eleC; (7) = AC,(7)AT, 7 # 0, i.e., the mixing matrixA
tron storage rings successfully and is now an establish@slthe diagonalizer of the sample covariance ma€i,
efficient beam diagnostic tool. where we have assumed the noises are white and indepen-
However, due to its PCA nature, MIA does not accomgdent of the source signals andienotes the noise level.
plish complete mode isolation. The linear coupling of beta- The source signals and the mixing matrix can be found
tron motions can still be mixed. The synchrotron motionsyith the Second-Order Blind Identification (SOBI) algo-
if not filtered out, can also be mixed with betatron motionsiithm [2]. First, we perform eigen-decomposition of the
The other less-significant sources are more likely to misample covariance matri€, (0) and collect the: largest
because their variances are close in strength. eigenvalues into a diagonal matrix; and the associated
In this paper we introduce the application of indepeneigenvectors into matrik/;. The number. is chosen such
dent component analysis (ICA) for multiple turn-by-turnthat the eigenvalues representing noise background are ex-
BPM data analysis to overcome the difficulties of MIA.cluded. An intermediate “whitened” 1dg\ta matrix is con-
*Work supported by grants from DE-AC02-76CH03000, DOE DE_.SII’UCI(?d withe = Vx, whereV E. Al. / U{' This step
FG02-92ER40747 and NSF PHY-0244793 is equivalent to MIA whileg contains its temporal vectors
T xiahuang@fnal.gov andU; contains the spatial vectors.

XmxN = AanSnXN +Nm><N (1)




Second, we compute the time-lagged covariance matri- 3‘2
ces of¢ by {Ce(ri) = (E(H)E(t + 7,)T)} for a selected 0.05 od
set of time-lag constants,. We form symmetric matrices . | o0
C¢(mh) = (Ce(mk) + Ce(m)™)/2 and find a orthonormal o
matrix W that diagonalizes all matric&S, () of this set, o o3
i.e. Cf (Tk) = WDkWT’ WhereDk is diagonal' In prac- 0 200 400 600 800 1000 0% 200 400 600 800 1000

turn number turn number

tice, joint diagonalization can be achieved only approxi- @ )

mately. Algorithms for approximate joint diagonalization

can be found in Ref. [3]. . 1 The t | ¢ ¢ th hrot
Finally, the source signals and the mixing matrix aré:Igure | e temporal vectors of (a) the synchrotron

s = WTVx andA = V-1W respectively, wherd/~! — mode, (b) one of the betatron modes, of an APS data set.

1/2 . Data taken by Weiming Guo at APS.

U; A7’ ”. Arow vector ofs and the corresponding column
of Ais called the temporal and spatial vector of a mode, re-
spectively. The properties of the temporal and spatial veenergy (400 MeV) for the whole cycle (1/30 s) and in
tors can help the identification of their physical originer F the AC mode beam energy was ramped from 400 MeV to
example, the betatron modes always come in pairs becagseGeV as in normal operations. The beam was excited
each BPM sees different phases and their temporal vectasg a horizontal pinger which is fired every 0.5 ms with a
are oscillations with proper tunes and decoherence. Tlgilse width of 2.2 s, or one turn at injection. Each cy-
spatial vectors of the betatron modes can be used to cal@le has 15200 turns (DC) or 20000 turns (AC). We often
late beta functions and phase advances. The spatial vec#fide the cycles into small pieces so that each piece starts
of the synchrotron mode is proportional to the dispersio@ith the firing of the pinger and ends before the next firing,
function and the temporal vector has synchrotron tune. about 220 turns per piece. Since we have both the hori-

The betatron function and phase advance can be derivgghtal and vertical BPM data, we put them into one data

from the spatial vectors of the paired betatron modes , x i
matrixy = ” for ICA analysis. Such arrangements

B; = a* (A2, + A%, ), ; = tan™ <Ab1,i> 2 _help_ the mode_separation, especially for the modes_ appear-
’ ' Ap2,i ing in both horizontal and vertical BPMs, e.g., the linearly

coupled betatron motions. The data presented in this paper

whereaq is a constant depending on initial conditions. The@vere taken after the 2003 shutdown when one of the two

dlspersanz and momentum deviatioi(t) are related to extraction doglegs was re-positioned to alleviate the dog-
the spatial vector and temporal vector of the synchrotrolrég effects

mode by For data taken in DC mode, we have measured the beta

D = bA,, a(t) = ss(1)/b (3) functions, phase advances and dispersion function. Fig. 2

with a constanb. The constan, b could be “determined” shows the temporal and spatial vectors of a pair of hori-
by certain calibration procedure with other measurement&ontal betatron modes as an example. The spatial vectors
In our study, we often just scale the spatial vectors up tare used to calculate the beta function and phase advances

compare with the beta function and dispersion of modd&¥ith Eq. (2). The results are compared to the existing lat-
calculation. tice model in Fig. 3. The error bars are estimated with 20
We have tested the applicability of both the ICA methodpieces of data from two data sets. The average error bars
and MIA with simulations [4]. The results show that MIA are6% for o3/ and0.03 rad foroy,.
modes get mixed when the source signals have close vari-The temporal vector and the spatial vector of the disper-
ances and ICA is free of such mixing. Because of its bettéion mode are used to calcula}@ and dispersion function
capability of mode separation, ICA is more robust undeP. as shown in Fig. 4. This mode is from a data piece
the effect of bad BPMs. The dependence of the separati®h 1000 turns right after injection. The injection energy

on finite sampling is also studied. mismatch iS22 = —0.4 x 102 initially and is damped by

The ICA for beam diagnosis has found applications dhe longitudinal damper in about 300 turns. The error bars
Fermilab Booster and APS. Fig. 1 shows examples of tH8 Fig. 4(b) are estimated with multiple data sets, which
temporal vectors for APS data. The beam was excited jvesop/D = 4%. The measurements of the linear lattice
a sudden shift of synchronous phase. The spatial vectdkictions indicate that our existing lattice model approxi

were used to compute the beta function and dispersion [31ates the real Booster to a reasonable level yet still with
considerable discrepancies.

APPL I CATI ON TO FERM | LAB BOOS-I- ER We have also observed instability modes in DC data sets.
Fig. 5 shows an example in the region from turn 4001 to
The Fermilab Booster has 48 BPMs, all of which are ableurn 6000. Noticeably the amplitude plot Fig. 5(a) indi-
to measure turn-by-turn orbit for both transverse planesates this instability mode appears only in half of the ring
We have taken turn-by-turn data in two setup modes of thehere the RF cavities sit. However, the cause of the insta-
Booster. In the DC mode the beam was kept in injectiobility mode is not understood yet.
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Figure 5: An instability mode in DC data. (a) the amplitude
A = /A% + A%. (b) the temporal vector.

In AC data, the betatron modes in the cycle allow us
to track the betatron tunes throughout the cycle. The lin-
ear lattice functions can be measured. Besides the betatron
modes, we have also studied synchrotron oscillations dur-
ing the cycle. More detailed accounts are presented in Ref

[4].

Figure 2: The betatron modes of Booster DC data. (a), (c)

spatial vectors of betatron mode 1, 2. (b) temporal vector

of mode 1. (d) FFT spectra of the temporal vectors.
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Figure 3: The measured horizontal beta function (a) and
phase advance (b) are compared to model calculations. The
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CONCLUSION

We had introduced independent component analysis, an
advance signal processing method for synchrotron BPM
turn-by-turn data analysis to improve the PCA-based model
independent analysis (MIA). This new method has demon-
strated its capability in isolating the underlying physica
sources in BPM data through simulation studies and the ap-
plication to Fermilab Booster. By separating the betatron
modes we can measure the beta functions and phase ad-
vances with better precision. The linearly coupled betatro
motions are decomposed to normal modes. It also allows
the study of synchrotron motions and other factors that af-
fect the beam transverse motions. This method has the po-
tential to be a powerful diagnostic tool for synchrotrons.
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Figure 4: The dispersion mode. (a) the evqutioﬁi@f (b) [5] W. Guo, private communications.
the measured dispersion function compared to the existing
model.



