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Abstract 
 A best matching algorithm was found using a test 

program written in Mathematica, and was integrated into 
an accelerator control on-line program. This on-line 
program now gets rid of network communication, and 
does not need to run code MAD. In this report, we first 
describe the matching conditions, and 4 cases of 
constrains.  Using a test program written in Mathematic, 
given a change of tunes, we were able to find the possible 
combination of the quadrupole strength in trombone 
section for each case. We then tested the calculation 
results by simulations using code MAD and by 
experiments on the Recycler ring.  Finally we found the 
best matching algorithm and integrated it into an 
accelerator control on-line program. The test results for 
the setting and measured tune values by running on-line 
program on console are also presented. 

INTRODUCTION 
In the Recycler Ring, a phase trombone is used to 

control tunes. Instead of distributing remotely adjustable 
quadrupoles around the ring, 9 pairs of independently 
power supplied adjustable quadrupoles are located in RR-
60 straight section [1]. They are segmented into 5 families 
currently to maintain a symmetrical structure. By 
adjusting these circuits, a tune variation of up to ±0.5 
units is attainable. These adjustments are coordinated in 
such a way that the Twiss parameters at the ends of the 
straight section keep unchanged.  
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hand, the matching algorithm was not proper, the solution 
given by MAD was often away from the expected tune 
changes. Our issue here is to get rid of network 
communication and trying not to use MAD anymore.  

MATCHING CONDITIONS 
Each of 9 quadrupoles in RR-60 straight section has 

their own power supply.  In principle, each of them can be 
adjusted independently as long as keeping the conditions 
that the Twiss parameters at the two ends of the straight 
section unchanged.    

We know the changes of the tunes in x and y planes are 
as follows:                          
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)( isk  is the strength of ith quadrupole, )(, iyx sβ  is the 
beta-function of the quadrupole. On the other hand, we 
have 
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For both x and y planes. where M11,M12, M21 and M22 are 
the elements of the transfer matrix M of the straight 
section, which are also the functions of the quadrupole 
strengths.  We know γ  is a function of α and β , we 
actually only get two independent equations in each plane. 
Totally, we get 6 independent equations.  

To calculate the transfer matrix M of the straight 
section, first we output transfer matrices from MAD 
between two trim quads, and take each quad as thin MRK605 
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igure 1:  Phase trombone RR-60 straight section 

To accomplish the tune adjustment in operation, a 
onsole application program, which was supposed for 
emporary use, but has been used for years since Recycler 
ing commissioning, sent the request through internet to 
nother computer (Bonson), and run MAD[1] there to 
ook for best combination of quadrupole strengths in 5 
amilies by match the request, then send the results 
hrough the internet again back to the console. It results in 
ong response time, even the program can not work if the 
nternet service is broken down. Actually the computer 
onson was running only for this purpose.  On the other 

element, with integrated strength (kL) ≈10-3,  as follows: 
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and then concatenate the transfer matrix for whole section 

                  (5) 
d1q601d2q601

d18q609d19q609d20
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where Md1, Md2, … Md20 are the matrices of drift space 
between two quads, Mq601, Mq602, … Mq609 are the 
matrices of the quads 601, 602 to 609. Note that each 
quadrupole is split into two pieces in the machine.    

TEST PROGRAM IN MATHEMATICA 
A test program was written in Mathematica. The 

transfer matrix for whole section is first concatenated in 
the program as given in Equation (5), and then the 
equations are linearized so that only first order terms of ith 
quadrupole strength ki are kept. It turns out to be a least-
squares problem, which can be solved by SVD (Singular 
Value Decomposition). There are four cases for the 
conditions of matching and constrains, listed as follows. 
Note that K in the following equations represents the 
integrated strength of the quadrupole,                 

ILAmpmkLK ××⋅== )/(00297.0  
where is circuit current, L is the length, L=0.3048m. 

 
Case 1 
Match half section and keep symmetrical structure start at 
MRK601, meaning that 9 quadrupoles are segmented into 
5 families to maintain a symmetrical structure. Given ∆νx 
and ∆νy , and constrain αx,y =0 at MRK605.  Then we 
obtain 
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In this case, we have only 4 independent equations, but 5 
variables, fewer equations than unknowns, the solutions 
are not unique.  
 
Case 2:   
Match full section, but keep symmetrical structure start at 
MRK601.  Given ∆νx and ∆νy, and constrain αx,y  and βx,y  
at MRK609.   Then we obtain 
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In this case, we have 6 independent equations, but 5 
variables, more equations than unknowns. This is an 
overdetermined set of linear equations. We found that the 
singular values are :( 4008.92, 57.66, 43.32, 20.44, 3.94), 
the ratio of maximum to the minimum of the singular 
value is in the order of 103, means that it is in ill 
condition. 

Case 3: 
Match full section, but release two quads in one of the 5 
segmented families, for example QT604 and QT606, to be 
independently adjustable.  Given ∆νx and ∆νy, and 
constrain αx,y  and βx,y  at MRK609.     
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Case 4:   
Match full section, and keep symmetrical structure start at 
MRK601. Given ∆νx and ∆νy, and only constrain αx,y =0, 
but leave βx,y at MRK609 for observation.  Then we 
obtain 
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Again, we have only 4 independent equations, but 5 
variables.   Although the solutions are not unique, we 
found that the singular values are (269.369, 48.782, 
21.606, 9.878). The ratio of maximum to the minimum of 
the singular value is about 27, means that it is in good 
condition.  

TESTING RESULTS 
For a given change of tunes ∆νx and ∆νy, SVD solution 

provides the possible combination of the quadrupole 
strength in trombone section. Putting the quadrupole 
strengths calculated from the TROMBONE program in 
Mathematica for Case 1, 2 and 3, we have run code MAD 
and later run Recycler machine to verify the expected tune 
changes, the results are listed in Table 1.   dQx and dQy 
are expected tune change, dνx and dνy are simulated or 
measured values. We see that the deviations of the tune 
changes from both MAD calculation and measurement in 
the machine in Case 2 and case 3 are large, but small in 
Case 1. However, we noticed that the beta-function 
changes in x and y planes at MRK609 are large, up to 
20% in Case 1.  

It was found that Case 4 works exactly as we want. 
Therefore, we decided to put this algorithm into the 
module of an accelerator control on-line program. The 
module is written in C, using SVD standard function from 
Numerical recipes [2], named TROMBONE. 
 
 



Table 1 Simulated and experimental results  
             for Case 1, 2 and 3 
    

(dQx, dQy) 
(expected) 

(∆νx, ∆νy) 
(simulated by 
MAD  ) 

(∆νx, ∆νy) 
(measured  in 
Recycler) 

case1 0.0019,0.0020 0.0020,0.0013 
case2 0.0019,0.0020 -0.0034,0.0017 

 
(0.002,      
      0.002) case3 0.0020,0.0020 0.002,0.0017 

case1 0.0055,0.0046 0.0051,0.0051 
case2 0.0046,0.0051 0.0037,0.0047 

 
(0.005, 
      0.005) 

case3 0.0050,0.0049 0.0186,0.0192 
case1 0.0109,0.0093 0.0101,0.0095 
case2 0.0091,0.0103 0.0085,0.0095 

 
(0.01,    
        0.01) case3 0.0098,0.0099  

case1 0.0221,0.0186 0.0216,0.0186 
case2 0.0179,0.0212 0.0172,0.0199 

 
(0.02,  
        0.02) case3 0.0195,0.0200  

case1 -0.0206,0.0157 0.0243,-0.0196 
case2 0.0083,-0.0110 0.0135,-0.0172 

 
(0.02, 
      -0.02) case3 0.0235,-0.0015  

case1 0.0203,-0.0159 -0.0189,0.0132 
case2 -0.0083,-0.0110 0.0071,-0.0223 

 
(-0.02, 
        0.02) case3 -0.0200,0.0223  

case1 -0.0221,-0.0184 -0.0223,-0.0189 
case2 -0.0198,-0.0207 -0.0206,-0.0206 

  
(-0.02, 
      -0.02) 

case3 -0.0212,-0.0200  
 
 

On-line program TROMBONE was installed and 
tested for the tune changes in Recycler machine. First of 
all, we set the currents of all 9 trim quadrupoles in 
Trombone section to 0, and adjust the skew quads in the 
Recycler to split the tune further, the base tunes measured 
in x and y planes are (0.423, 0.413) and the tune split is 
0.01 (noted that this is the minimum tune split we can get 
at this time of the machine conditions). Then we set the 
requested tune changes in TROMBONE program, and 
measured the tunes in Recycler. We found that the 
program runs smoothly, the deviations of the measured 
tune changes (the settings) from the requested (the 
readings) are less than 0.003 if the two tunes are setting 
apart, see Table 2.  If we set the two tunes together, the 
deviation is about 0.006, which is listed in the last row of 
Table 2.  Note that the beta-functions at the end of the 
trombone section in both x and y planes can always be 
kept within 3%. 

 
Conclusion 

Phase Trombone Program in the Recycler has been 
successfully migrated.  This program now gets rid of 
network communication, and does not need to run code 
MAD. For safety reason, the currents of trim quadrupoles 

are set the limitation to 6.5 Amps. In this case, the largest 
tune change in horizontal plan would be limited to 0.06, 
but 0.18 in vertical plane. The TROMBONE program is 
now running well for the operation. 
 
             Table 2 Experimental results for Case 4. 

 
 
(dQx, dQy) 
(expected) 

 
(∆νx, ∆νy) 
(Measured) 

 
(∆νx, ∆νy) 
(simulated 
by MAD) 

 
(∆β/β)x, 
,(∆β/β)x, (%) 
at MRK609 

0.004, 
      -0.068 

0.001, 
         -0.062

0.004, 
       -0.068 

 0.57, 1.33 

0.01, 
       -0.012 

0.007, 
          -0.009

0.01, 
        -0.012 

0.04,0.11 

0.08, 
        -0.08 Beam lost 0.08, 

        -0.08 

3.07,1.63 

0,   0.1 
(Half 
      integer)

Beam lost 0,   0.1 

 

-0.65,  -1.95 

0.02, 0 0.018,0.003 0.02, 0 0.64,0.02 

0.01, 0 0.009,0.002 0.01, 0 0.32,0.009 

-0.01, 0 
(coupled) 

-0.017,  
          -0.006

-0.01, 0 
 

-0.32, 
         -0.009 
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