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We study post weak decoupling coherent active-sterile and active-active matter-enhanced neu-
trino flavor conversion in the early universe. We find that under some circumstances sterile neutrino
production via these processes can leave the active neutrinos with non-thermal energy spectra. In
turn, these distorted energy spectra can affect primordial nucleosynthesis by altering the neutron-
to-proton ratio. Inclusion of this effect changes the relationship between the cosmological lepton
numbers and the primordial 4He yield and reduces the range of lepton numbers that could recon-
cile the observationally-inferred primordial helium abundance with active-sterile vacuum neutrino
mixing in the mass-squared difference range 0.2 eV2 < δm2 < 10 eV2. This δm2 regime currently is
being probed by accelerator-based experiments (mini-BooNE).

PACS numbers: 14.60.Pq; 14.60.St; 26.35.+c; 95.30.-k

I. INTRODUCTION

In this paper we study the cosmological lepton number-
driven conversion of active neutrinos, να (and/or ν̄α)
with α = e, µ, τ , to a singlet, “sterile” neutrino species νs

(or ν̄s) in the post-weak decoupling environment of the
early universe. We go on to assess the impact of this pro-
cess on Big Bang Nucleosynthesis (BBN) and to examine
critically the consequent prospects for reconciling the pri-
mordial helium abundance with neutrino mass-squared
differences that lie in the range 0.2 eV2 < δm2

as < 100 eV2

by means of a cosmological primordial lepton number.
This neutrino mass-squared range is significant because
it has been invoked to give a vacuum neutrino oscillation
explanation for the LSND experiment’s result [1] and it
is covered by the on-going mini-BooNE experiment [2].

A positive signal in mini-BooNE, i.e., confirming the
interpretation of the LSND result in terms of vacuum
neutrino mixing, sets up an immediate crisis in neu-
trino physics. Such a result, when combined with
the already well established evidence for neutrino mix-
ing at mass-squared differences associated with the at-
mospheric (δm2 ∼ 3 × 10−3 eV2) and solar neutrino
(δm2 ∼ 7× 10−5 eV2) anomalies, would suggest the exis-
tence of three independent neutrino mass-squared differ-
ences which would, in turn, require four neutrino species.
Given the Z0-width limit on the number of flavors of
neutrinos with standard weak interactions (3), a fourth
neutrino would have to be “sterile,” with sub-weak inter-
action strength, e.g., perhaps an SU(2) singlet. The only
alternative to this line of reasoning and to this conclusion
is the possibility of CPT violation [3]. However, there is
no consistency of the neutrino oscillation data with a

CPT-violating three-neutrino model at a 3-σ level [4].

Hand-in-hand with this particle physics dilemma, evi-
dence for a singlet neutrino that mixes with active neutri-
nos in this mass-squared range also confronts cosmology
with a curious and vexing problem. In the standard cos-
mological model with zero or near-zero net lepton num-
bers one would expect that matter-supressed neutrino
oscillations in the channel να ⇀↽ νs or in ν̄α ⇀↽ ν̄s (where
α = e, µ, τ) proceeding in the regime above weak interac-
tion decoupling (T > 3MeV), would efficiently populate
seas of singlet neutrinos [5]. The significant additional
energy density in these sterile neutrino seas would engen-
der a faster expansion rate for the universe and a conse-
quently higher temperature for Weak Freeze-Out (where
the initial isospin of the universe, the neutron-to-proton
ratio is set). A higher Weak Freeze-Out temperature
would result in more neutrons and, hence, a higher yield
of 4He.

A higher predicted abundance of 4He arguably may
be in conflict (or close to being in conflict) with the
observationally-inferred upper limit on the primordial he-
lium abundance. Depending on the helium abundance in-
ferred from compact blue galaxies, an increase in the pre-
dicted BBN 4He yield may or may not be disfavored [5, 6].
However, the primordial helium abundance is notoriously
difficult to extract from the observational data and re-
cent studies point to a fair range for the observationally-
inferred primordial mass helium fraction: 23% to 26%
[7]. The upper limit of this range is provocatively close
to the standard BBN 4He mass fraction yield predic-
tion, 24.85 ± 0.05%, as computed with the deuterium-
determined or CMB (Cosmic Microwave Background)
anisotropy-determined baryon density.
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Additionally, it has been suggested [8] that a fully pop-
ulated sea of sterile neutrinos and antineutrinos with rest
masses ∼

√
δm2

as could be in conflict with neutrino mass
bounds derived from CMB anisotropy limits and large
scale structure considerations [9]. There is a recent analy-
sis of constraints from measurements of galaxy bias stem-
ming from galaxy-galaxy lensing and the inferred linear
matter power spectrum derived from the Lyman alpha
forest in the Sloan Digital Sky Survey (SDSS) [10]. This
analysis specifically considers a so-called “3+1” neutrino
mass hierarchy, i.e., the scheme which is appropriate for
constraining sterile neutrinos. The neutrino mass con-
straint so derived is somewhat less stringent than con-
straints in schemes with three neutrinos with degenerate
masses. However, the central conclusions of Ref. [8] sur-
vive.

Should we someday be confronted with a positive indi-
cation of neutrino flavor mixing with mass-squared scale
consistent with the range for δm2

as, we will have a prob-
lem that would call for modification either of our notions
of basic neutrino physics or of the standard cosmologi-
cal model. There have been a number of ways proposed
to get out of these cosmological problems. Chief among
these is the invocation of a significant net lepton num-
ber in the universe [11]. The idea is that the net lepton
number gives active neutrinos larger effective masses in
medium in the early universe, thereby driving them fur-
ther off-resonance in the epoch prior to weak decoupling
(i.e., T > 3 MeV) and reducing their effective matter
mixing angles with the singlet neutrino. In turn, smaller
effective matter mixing angles would imply a suppressed
production of singlet neutrinos and, hence, a reduced
population of the singlet neutrino sea.

The lepton number residing in the sea of να and ν̄α

neutrinos (α = e, µ, τ) is defined in analogy to the baryon
number η ≡ (nb − nb̄)/nγ ≈ 6× 10−10,

Lνα =
nνα − nν̄α

nγ
(1)

where nγ =
(
2ζ(3)/π2

)
T 3

γ is the proper photon number
density at temperature Tγ , and where nνα and nν̄α are
the number densities of να and ν̄α neutrinos, respectively,
at this epoch.

We can insure that the effective matter mixing angles
for the oscillation channel να ⇀↽ νs (or ν̄α ⇀↽ ν̄s) are
sufficiently small to suppress singlet neutrino produc-
tion if the Mikheyev-Smirnov-Wolfenstein (MSW) [12]
resonance temperature is less than the weak decoupling
temperature, Tres < Tdec. This implies that the lepton
number associated with any of the active neutrino flavors
should satisfy,

L >
10−3

ε

(
2

Ndegen

)(
3MeV
Tdec

)4 (
δm2

as cos 2θ

1 eV2

)
(2)

where θ is the vacuum mixing angle characteristic of
να ⇀↽ νs oscillations, Ndegen is the number of neu-
trino species possessing this lepton number, and where

ε ≡ Eν/T . For neutrinos with typical energies in the
early universe (i.e., ε ∼ 1), suppression of singlet neu-
trino production would require lepton numbers ranging
from L > 10−4 for δm2

as = 0.2 eV2 to L > 5 × 10−3 for
δm2

as = 10 eV2. Current limits on lepton numbers are
|Lνα | < 0.1 [13] (and possibly even weaker by a factor of
two or so if allowance is made for another source of ex-
tra energy density in the early universe [14]). Therefore,
this avenue for escape from the sterile neutrino conun-
drum appears to be allowed, albeit at the cost of a huge
disparity between the lepton and baryon numbers.

However, this argument overlooks an important point.
Though the large lepton number supresses the effective
matter mixing angle for να ⇀↽ νs during the epoch
of the early universe where active neutrinos are ther-
mally coupled (T > Tdec), it can cause coherent matter-
enhancement of this channel at lower temperatures where
the active neutrinos rarely scatter and are effectively de-
coupled. Resonant MSW transformation of active neu-
trinos to singlets in the channel να ⇀↽ νs is, however,
self limiting. This is because as the universe expands
and the resonance sweeps from low toward higher neu-
trino energy, the conversion of να’s decreases the lep-
ton number which, in turn, causes the resonance sweep
rate to increase, eventually causing neutrinos to evolve
non-adiabatically through resonance and so causing fla-
vor transformation to cease.

At issue then is how many active neutrinos can be
converted to sterile neutrinos prior to Weak Freeze-Out,
where the neutron-to-proton ratio is set. If there is a sig-
nificant conversion, the resultant non-thermal active neu-
trino energy spectra can cause an increase or decrease (if
ν̄α ⇀↽ ν̄s is enhanced) in the 4He yield and call into ques-
tion the viability of invoking a large net lepton number to
reconcile neutrino physics and BBN. Other but related
aspects of transformation-induced nonthermal neutrino
spectra effects on primordial nucleosynthesis have been
studied in Ref.s [15, 16]. In any case, non-thermal energy
distribution functions for νe and/or ν̄e change the rela-
tionship between the BBN 4He yield and the neutrino
chemical potentials.

In section II we discuss the physics of active-sterile neu-
trino flavor transformation in the early universe and the
physics that determines how the MSW resonance sweeps
through the neutrino energy distribution functions as the
universe expands. The adiabaticity of neutrino flavor
evolution in general is also discussed in this section, as
is simultaneous active-active and active-sterile neutrino
flavor conversion, and “synchronization.” Possible multi-
neutrino mass level crossing scenarios in the early uni-
verse are discussed in this section. Sterile neutrino con-
tributions to closure, constraints on this from large scale
structure and Cosmic Microwave Background radiation
considerations, as well as other sterile neutrino sea pop-
ulation constraints are examined in section III. In section
IV we describe how distorted νe and/or ν̄e distribution
functions impact the rates of the lepton capture reactions
that determine the neutron-to-proton ratio and the 4He
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yield in BBN. This is then applied in various initial lep-
ton number and neutrino conversion scenarios. Finally,
in section V we give conclusions and speculations regard-
ing the neutrino mass and cosmological lepton number
insights that would follow in the wake of an experimen-
tal signature for a large neutrino mass-squared difference
of order the range given for δm2

as. Appendix A provides
an exposition of the lepton capture rates on free nucleons
when, as appropriate, νe or ν̄e energy distribution func-
tions are zero up to some energy, and thermal/Fermi-
Dirac at higher energies.

II. COHERENT NEUTRINO FLAVOR
TRANSFORMATION IN THE EARLY UNIVERSE

A. Active-Sterile Conversion

Coherent conversion of active neutrino species into sin-
glets in the early universe can occur through the usual

MSW process, albeit in an exotic setting. In words,
this process is extremely simple: (1) an active neutrino
(mostly the light mass state in vacuum) forward scatters
on particles in the plasma and, if there is a net lepton
and/or baryon number, will acquire a positive effective
mass; (2) when this effective mass is close to the mass as-
sociated with the singlet (mostly the heavy mass state),
transformation of flavors can occur. The efficiency of con-
version at such a mass level crossing (or MSW resonance)
depends on the ratio of the resonance width (in time or
space) to the neutrino oscillation length. Efficient, adia-
batic conversion takes place only when this ratio is large.

The forward charged and neutral current exchange
Hamiltonians for the neutrinos in the early universe are
as follows:

H (νs) = 0 (3)

H (νe) =
√

2GF

(
ne − 1

2
nn

)
+
√

2GF

(
2 (nνe − nν̄e) +

(
nνµ − nν̄mu

)
+ (nντ − nν̄τ )

)
(4)

H (νµ) =
√

2GF

(
−1

2
nn

)
+
√

2GF

(
(nνe − nν̄e) + 2

(
nνµ − nν̄mu

)
+ (nντ − nν̄τ )

)
(5)

H (ντ ) =
√

2GF

(
−1

2
nn

)
+
√

2GF

(
(nνe − nν̄e) +

(
nνµ − nν̄mu

)
+ 2 (nντ − nν̄τ )

)
. (6)

Here ne = ne− − ne+ is the net number density of elec-
trons, nn = nb − np is the number density of neutrons,
and nb and np are the net number densities of baryons
and protons, respectively. Charge neutrality implies that
the number density of protons is np = ne = nbYe. The
net number of electrons per baryon is Ye. The baryon
number density is nb ≈ ηnγ , where the baryon-to-photon
ratio η is as defined above.

Weak Decoupling occurs when neutrino scattering be-
comes so slow that it can no longer facilitate efficient en-
ergy exchange between the neutrino gas and the plasma.
For the low lepton numbers considered here, Weak De-
coupling occurs at temperature T ∼ 3MeV.

Weak Freeze-Out occurs when the rates of the reac-
tions that govern the ratio of neutrons-to-protons (n/p =
1/Ye − 1) fall below the expansion rate of the universe.
This is roughly at T ≈ 0.7MeV for standard cosmologi-
cal parameters. Below this temperature Ye is only slowly
decreasing and this decrease is dominated by free neutron
decay.

Note that in the regime between Weak Decoupling

and Weak Freeze-Out, we have Ye ≈ 0.5. Therefore,
throughout this epoch we will have nearly equal num-
bers of neutrons and protons. During this time we can
then approximate ne− 1

2nn = nb( 3
2Ye− 1

2 ) ≈ nγη/4, and
− 1

2nn = nb(Ye/2− 1
2 ) ≈ −nγη/4.

We can denote the weak potentials from neutrino-
electron charged current forward exchange scattering and
neutrino-neutrino neutral current forward exchange scat-
tering as A and B, respectively, with their sum being

A + B ≈ 2
√

2ζ(3)GFT 3

π2

(
L ± η

4

)
, (7)

where GF is the Fermi constant, the Riemann Zeta func-
tion of argument 3 is ζ (3) ≈ 1.20206, and we take the
plus sign for transformation of νe, and the minus sign for
conversion of νµ and/or ντ . (Here the plus sign is taken
when we intend A + B = H(νe) and the minus sign is
taken when A + B = H(νµ,τ ).) A measure of the lepton
number which enters into the potential for the να ⇀↽ νs
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(α = e, µ, τ) conversion channel is

L ≡ 2Lνα +
∑

β 6=α

Lνβ
. (8)

We will refer to this quantity as the “potential lepton
number.” In general this may be different for different
channels να ⇀↽ νs, even for a given set of lepton numbers
associated with each flavor.

Finally, since the early universe is at relatively high en-
tropy per baryon, the overall weak potential has a contri-
bution from neutrino neutral current forward scattering
on a thermal lepton background. This thermal potential
is

C ≈ −rαG2
FεT 5, (9)

where the neutrino energy divided by the temperature
is ε ≡ Eν/T . For the conversion channel νe ⇀↽ νs, we
employ r0

e ≈ 79.34, while for the channel νµ,τ ⇀↽ νs, we
use r0

µ,τ ≈ 22.22. If the neutrinos have strictly thermal
energy distribution functions, then

rα ≈ r0
α

[
F2 (ηνα

)
F2 (0)

+
F2 (ην̄α)
F2 (0)

]
, (10)

where the neutrino and antineutrino degeneracy parame-
ters are ηνα and ην̄α , respectively, and the Fermi integrals
of order 2 are defined below. For the small lepton num-
bers considered in this paper, we can almost always use
re ≈ r0

e and rµ,τ ≈ r0
µ,τ .

The total weak forward scattering potential is

V ≈ A + B + C. (11)

For the transformation channel να ⇀↽ νs, the neutrino
mass level crossing (MSW resonance) condition for a neu-
trino with scaled energy ε is

δm2 cos 2θ

2εT
≈ V, (12)

where δm2 is the difference of the squares of the appro-
priate neutrino mass eigenvalues and θ is the relevant
effective two-by-two vacuum mixing angle. Neglecting
the light mass eigenvalue, the effective mass-squared ac-
quired by an electron neutrino from forward scattering
on weak charge-carrying targets in the early universe is

m2
eff ≈ 2εV ≈ (

8.03× 10−12 MeV2
)
ε(L ± η/4)

(
T

MeV

)4

− (
2.16× 10−20 MeV2

)
ε2

(
T

MeV

)6

. (13)

It is clear that we can negelect the second term (the ther-
mal term C) in Eq. (11) in the regime between Weak
Decoupling and Weak Freeze-Out, where 3 MeV > T >
0.7MeV.

At a given temperature, the scaled neutrino energy
which is resonant is

εres =
δm2 cos 2θ

2V T
. (14)

If we neglect the thermal term, the rough dependence of
resonant energy on temperature and lepton number is

εres ≈ π2δm2 cos 2θ

25/2ζ (3) GF(L ± η/4)T 4
(15)

≈ 0.124
(

δm2 cos 2θ

1 eV2

)
1
L

(
MeV

T

)4

,

where in the second approximation we neglect the
neutrino-electron forward scattering contribution (±η/4)
relative to L. It is clear from Eq. (15) that as the uni-
verse expands and the temperature drops, the resonance
energy εres will sweep from lower to higher values. In fact,
as the resonance sweeps through the active neutrino dis-
tribution, converting να → νs, L will decrease, further
accelerating the resonance sweep rate.

Assuming homogeneity and isotropy, the number den-
sity of active neutrinos να with thermal distribution func-
tion fνα (ε) in the scaled energy range ε to ε + dε is

dnνα = nναfνα (ε) dε, (16)

where nνα is the total number density (that is, integrated
over all neutrino energies). In terms of the temperature T
and degeneracy parameter ηνα ≡ µνα/T , where µνα is the
appropriate chemical potential, the thermal distribution
function is

fνα (ε) =
1

F2 (ηνα)
ε2dε

eε−ηνα + 1
. (17)

We define relativistic Fermi integrals of order k in the
usual fashion:

Fk (η) ≡
∫ ∞

0

xkdx

ex−η + 1
. (18)

The total number density of thermally distributed ac-
tive neutrinos να with temperature Tν and degeneracy
parameter ηνα is

nνα =
T 3

ν

2π2
F2 (ηνα) . (19)
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Note that if the neutrino degeneracy parameter is ηνα =
0, then F2 (0) = 3ζ (3) /2 and the number density of ther-
mally distributed να’s is

nνα
=

3
8
nγ

(
Tν

Tγ

)3

, (20)

where we allow for the neutrino temperature Tν to differ
from the photon/plasma temperature Tγ .

The relationship between the lepton number in α flavor
neutrinos and the να degeneracy parameter is

Lνα ≈
(

π2

12ζ (3)

)(
Tν

Tγ

)3 [
ηνα + η3

να
/π2

]
. (21)

This relation assumes that neutrinos να and antineutri-
nos ν̄α are (or were at one point) in thermal equilibrium
so that ην̄α

= −ηνα
. In the limit where the lepton number

is small, so that ηνα
¿ 1, and the neutrino and photon

temperatures are nearly the same, we can approximate
Eq. (21) as ηνα

≈ 1.46Lνα
. Neutrino degeracy parameter

is a comoving invariant; whereas, lepton number is not
in general since the photons can be heated relative to the
neutrinos by, e.g., e± annihilation.

Some employ an “effective number of neutrino flavors”
Nν as a measure of both energy density in relativistic
particles and the extent to which the energy density in
the neutrino gas differs from that of pure Fermi-Dirac,
zero chemical potential neutrino distributions. For one
degenerate neutrino species the change in the effective
number of neutrinos over the zero lepton number case,
Nν = 3, is

∆Nν ≈ 30
7

(ηνα

π

)2

+
15
7

(ηνα

π

)4

. (22)

As the universe expands and να neutrinos are con-
verted to sterile species νs, the lepton number Lνα drops.
As L approaches zero, the resonance sweep rate becomes
so large that neutrinos will be propagating through MSW
resonances non-adiabatically [18]. Efficient neutrino fla-
vor conversion ceases at this point. If the conversion
process results in a change in the number density of να

neutrinos, ∆nνα , such that the lepton number associated
with this species changes by ∆Lνα = −∆nνα/nγ , then
the potential lepton number would change from its ini-
tial value, Linitial to

Lfinal = Linitial + 2∆Lνα . (23)

The adiabaticity condition ensures that flavor conversion
ceases when Lfinal approaches zero, or in other words,
when ∆Lνα = −Linitial/2. It is important to note that
transformation of any flavor active neutrino to sterile fla-
vor can drive down the overall potential lepton number,
no matter which flavor or flavors of active neutrinos har-
bor the net lepton number.

If additionally we were to assume that the resonance
smoothly swept through the να energy distribution from
zero to energy ε during this conversion process, we would

have ∆nνα
=

∫ ε

0
dnνα

and so the concomitant change in
lepton number would be

∆Lνα ≈ −3
8

(
Tν

Tγ

)3 1
F2 (0)

∫ ε

0

x2

ex−ηνα + 1
. (24)

In this idealized limit, the potential lepton number as
a function of ε, the scaled energy of resonance assum-
ing a smooth and continuous resonance sweep from zero
energy, is

L(ε) ≈ Linitial − 3
4

1
F2 (0)

∫ ε

0

x2

ex−ηνα + 1
. (25)

In this last relation we have set the photon/plasma and
neutrino temperatures to be the same. This is a good ap-
proximation in the epoch between Weak Decoupling and
Weak Freeze-Out where we are interested in active-sterile
neutrino conversion. This is because during this epoch
there has been little annihilation of e± pairs and, conse-
quently, little heating of the photons/plasma relative to
the decoupled neutrinos.

Employing the approximation of a smooth and contin-
uous sweep of scaled resonance energy from zero to ε, we
can re-write the resonance condition, Eq. (15), as

εL(ε) ≈ π2δm2 cos 2θ

25/2ζ (3) GFT 4
, (26)

where we have neglected the baryon number.
Eq. (26) reveals a problem: the resonance cannot sweep

continuously and smoothly to the point where L(ε) → 0.
This is because εL(ε) is a peaked function. The maximum
of this function occurs for a value εmax satisfying the
integral equation

ε3max ≈ 2ζ (3)
(
eεmax−ηνα + 1

)L(εmax). (27)

It is clear, however, that as the universe expands, the
right hand side of Eq. (26) will increase monotonically.
Although the resonance sweep can begin smoothly and
continuously, there will come a point where it is no longer
possible to find a solution to Eq. (26). This will occur
when the resonance energy reaches εmax.

What happens beyond this point? If we relax the de-
mand that the resonance sweep be continuous, then it is
possible in principle to find a solution to Eq. (26) as the
temperature drops beyond the point where ε = εmax,
though this would require a re-interpretation of L(ε)
in obvious fashion. For example, the resonance energy
could skip to some value ε > εmax, possibly toward the
higher energy portions of the neutrino distribution func-
tion. There the occupation number would be small and
so the decrement in L(ε) would be similarly small. It
is even possible that beyond εmax the resonance sweeps
stochastically through relatively small intervals of the ac-
tive neutrino distribution function.

In any case, active-to-sterile neutrino conversion να →
νs will have to cease when L approaches zero. At this
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FIG. 1: The nonthermal scaled energy (p/T ) distributions for
νs (dotted) and νe (solid) resulting from smooth, adiabatic
resonance sweep.

point we will be left with grossly non-thermal, non-Fermi-
Dirac να and νs distributions. Since this process occurs
after Weak Decoupling, active neutrino inelastic scatter-
ing processes on electrons, nucleons, and other neutri-
nos have rates which are slow compared to the expansion
rate of the universe. This means that these processes will
be unable to redistribute the active neutrino occupation
numbers and so they cannot morph the να distribution
into a thermal distribution. This has consequences for
the lepton capture rates on nucleons as we will discuss
below in section IV.

In the either the smooth and continuous resonance
sweep limit or the stochastic resonance sweep limit both
the active neutrino and resulting sterile neutrino distri-
bution functions will be non-thermal in character. For
the special case of a smooth and continuous and adia-
batic resonance sweep up to a scaled energy limit, and
an assumed non-adiabatic evolution thereafter for higher
energy neutrinos, the resulting active and sterile neutrino
distribution functions would be as shown in Fig. (1).

This energy distribution function is zero for all val-
ues of scaled neutrino energy 0 ≤ Eν/T ≤ ε, and has a
normal Fermi-Dirac thermal distribution character for all
neutrino energies Eν/T > ε. The corresponding sterile
neutrino energy spectrum would be the “mirror image” of
this: a thermal Fermi-Dirac spectrum for 0 ≤ Eν/T ≤ ε,
and zero occupation for Eν/T > ε.

It is useful to consider the solution for the cut-off en-
ergy ε and the peak energy εmax in the smooth and con-
tinuous resonance sweep case. In this limit, the first of
these quantities is the solution of

Linitial =
3
4

1
F2 (0)

∫ ε

0

x2

ex−ηνα + 1
, (28)

or L (ε) = 0. The second of these quantities is the so-
lution of Eq. (27). Both of these solutions are shown
as functions of initial L in Fig. (2). In this figure it
is assumed that the active neutrinos are fully “equili-
brated” initially (before any flavor transformation) with
Lνe = Lνµ = Lντ .

6

5

4

3

2

1

ε

0.80.60.40.2

2Lνe+Lνµ+Lντ

fully equalized
regime

FIG. 2: The values of ε (solid line) and εmax (dashed line) are
shown as functions of total initial potential lepton number in
the limit of a smooth and continuous resonance sweep and
with the assumption that full active neutrino equilibration
obtains (Lνe = Lνµ = Lντ ).

It is obvious from Eq. (28) that there is a maximum
value of the initial potential lepton number for which a
solution is obtainable when να ⇀↽ νs is the only operative
neutrino flavor conversion channel. This maximum is
given by the limit where ε →∞,

Linitial
max ≈ 3

4
F2 (ηνα)
F2 (0)

. (29)

Scenarios where the bulk of the initial potential lepton
number is contained in seas of another flavor of active
neutrinos may not allow να ⇀↽ νs conversion to leave
a zero final potential lepton number. This is a simple
consequence of the post Weak Decoupling conservation of
numbers of neutrinos of all kinds. Of course, active-active
neutrino flavor transformation in the channels να ⇀↽ νβ

(α, β = e, µ, τ) can alter this picture significantly and will
be discussed below.

B. Efficiency of Neutrino Flavor Conversion:
Adiabaticity

From the previous discussion it is clear that a crucial
determinant of the efficiency of active-sterile neutrino fla-
vor conversion at MSW resonances is the adiabaticity of
neutrino propagation. It turns out that this is true also
for general active-active neutrino mixing in matter. We
therefore discuss here the adiabatic character of neutrino
flavor evolution in the early universe for both channels.

The causal horizon (particle horizon) is the proper dis-
tance traversed by a null signal in the age of the universe
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t. In radiation-dominated conditions in the early universe
this is

dH (t) = 2t = H−1, (30)

where the local Hubble expansion rate is

H ≈
(

8π3

90

)1/2

g1/2 T 2

mpl
. (31)

Here mpl ≈ 1.221 × 1022 MeV is the Planck mass. The
statistical weight for a relativistic boson species i is (gb)i,
while that for a relativistic fermion species j is (gf )j .
These are related to the total statistical weight g by a
sum over all particle species i and j with relativistic kine-
matics with equilibrium or near equilibrium energy dis-
tribution functions and energy densities in the plasma at
temperature T , given by g ≡ ∑

i (gb)i + (7/8)
∑

j (gf )j .
In the epoch between Weak Decoupling and Weak Freeze
Out and BBN, photons, e± pairs and the active neutri-
nos are relativistic and appreciably populated so that
g ≈ 10.75 and t ≈ (0.74 s) (10.75/g)1/2(MeV/T )2. This
is a good approximation for the scenarios with net lep-
ton number considered in this paper. This is because the
spectral distortions and extra energy density stemming
from the net lepton numbers are small effects, causing
deviations of the expansion rate from that given above
by less than a few percent.

Homogeneity and isotropy in the early universe imply
that the entropy in a co-moving volume is conserved. The
proper, physical entropy density in radiation-dominated
conditions is S ≈ (

2π2/45
)
gsT

3, where gs is closely re-
lated to g and we can take gs ≈ g. We can take the co-
moving volume element to be the cube of the scale factor
a in the Friedman-Lemaitre-Robertson-Walker (FLRW)
metric, so that a3S is invariant with FLRW time coor-
dinate t and therefore g1/3aT is constant. In turn, this
implies that the fractional rate of change of the temper-
ature is related to the expansion rate and the fractional
rate of change of the statistical weight by

Ṫ

T
≈ −H

(
1 +

ġ/g

3H

)
. (32)

At lower temperatures, where the thermal potential
can be neglected, the potential governing neutrino fla-

vor transformation is the difference of the Hamiltonians
(e.g., Eq.s (4),(5),(6),(3)) for the transforming neutrino
species. For the active-sterile channel να ⇀↽ νs, for exam-
ple, we have defined this potential to be V = A+B +C.
In the epoch between Weak Decoupling and Weak Freeze
Out where the thermal term C is negligible, we have
V ≈ H(να)−H(νs). The appropriate potentials for the
active-active neutrino flavor transformation channels fol-
low in like manner.

The density scale height for the early universe depends
on the neutrino flavor transformation channel and is de-
fined as

H ≡
∣∣∣∣
1
V

dV

dt

∣∣∣∣
−1

(33)

≈ 1
3
H−1

∣∣∣∣1 +
ġ/g

3H
− L̇/L

3H

∣∣∣∣
−1

.

Here the approximation on the second line is for active-
sterile neutrino flavor transformation and follows on ne-
glecting the thermal potential C and using Eq. (32).
When the statistical weight and the lepton numbers are
not changing rapidly the density scale height is roughly a
third of the horizon scale. This is ∼ 105 km at the epoch
we are considering here.

Define ∆ ≡ δm2/2Eν . It can be shown that the ratio
of the difference of the squares of the effective masses in
matter to twice the neutrino energy is

∆eff ≡ δm2
eff

2Eν
(34)

≈
√

(∆ cos 2θ − V )2 + (∆ sin 2θ + Beτ )2,

where θ is the appropriate effective two-by-two vacuum
mixing angle and where V = A + B + C is the appropri-
ate potential for the transformation channel. Here Beτ

is the flavor-off diagonal potential as defined in Qian &
Fuller 1995 [19]. The flavor basis off-diagonal potential
vanishes, Beτ = 0, for any active-sterile mixing channel.

The effective matter mixing angle θM for a neutrino
transformation channel with potential V and effective
vacuum mixing angle θ satisfies

sin2 2θM =
∆2 sin2 2θ

(
1 + 2EνBeτ/δm2 sin 2θ

)2

(∆ cos 2θ − V )2 + ∆2 sin2 2θ(1 + 2EνBeτ/δm2 sin 2θ)2
. (35)

The effective matter mixing angle for the antineutrinos
in this channel, θ̄M, satisfies a an expression which has
opposite signs for the potentials B, A, and Beτ , but which

is otherwise identical.
The change in the potential required to drop the ef-

fective matter mixing from the maximal resonant value
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(θM = π/4) to a value where sin2 2θM = 1/2 is termed
the resonance width and is

δV ≈ ∆sin 2θ

∣∣∣∣1 +
2EνBeτ

δm2 sin 2θ

∣∣∣∣. (36)

The physical width in space, or in FLRW coordinate time
t, corresponding to this potential width is

δt =
dt

dV
δV ≈

∣∣∣∣
1
V

dV

dt

∣∣∣∣
−1

δV

V

∣∣∣∣
res

(37)

≈ H tan 2θ

∣∣∣∣1 +
2EνBeτ

δm2 sin 2θ

∣∣∣∣.

The local neutrino oscillation length at resonance is

Lres
osc =

4πEν

δm2
eff

=
2π

∆eff
≈ 2π

δV
, (38)

where the latter approximation is good only at resonance.
We can define the dimensionless adiabaticity parameter
as proportional to the ratio of the resonance width and
the neutrino oscillation length at resonance:

γ ≡ 2π
δt

Lres
osc

≈ δtδV (39)

≈ δm2H
2Eν

· sin2 2θ

cos 2θ
·
∣∣∣∣1 +

2EνBeτ

δm2 sin 2θ

∣∣∣∣
2

.

This parameter can be evaluated anywhere in the evolu-
tion of neutrino flavors, even well away from resonances
and it will serve to gauge the degree to which neutrinos
tend to remain in mass eigenstates. The Landau-Zener
jump probability, assuming a linear change in potential
across the resonance width, is PLZ ≈ exp (−πγ/2), so
that it is clear that a large value of the adiabaticity pa-
rameter corresponds to a small probability of jumping
between mass eigenstate tracks and, hence, efficient fla-
vor conversion at asymptotically large distance (many
resonance widths) from resonance.

Folding in the expansion rate in radiation-dominated
conditions, using the conservation of co-moving entropy
density, and assuming that we can neglect the thermal
potential C, we can show that the adiabaticity param-
eter for neutrino propagation through an active-sterile
resonance is

γ ≈
√

5 ζ3/4 (3)
21/8π3

·
(
δm2

)1/4
mplG

3/4
F

g1/2
·
[L3/4

ε1/4

]
·
[

sin2 2θ

cos7/4 2θ

]
·
∣∣∣∣1 +

ġ/g

3H
− L̇/L

3H

∣∣∣∣
−1

(40)

≈
(

10.75
g

)1/2

·
[

δm2

1 eV2

]1/4

· 1
ε1/4

·
[ L
0.01

]3/4

·
∣∣∣∣1 +

ġ/g

3H
− L̇/L

3H

∣∣∣∣
−1

·
{

sin2 2θ

1.77× 10−8

}
.

In these expressions ε = Eν/T is the scaled energy of a
neutrino at resonance in a channel να ⇀↽ νs character-
ized by the difference of the squares of the appropriate
vacuum mass eigenvalues, δm2. It is obvious from these
considerations that neutrino flavor transformation will be
efficient at resonance (i.e., γ À 1) over broad ranges of
energy for the regime of the early universe between Weak
Decoupling and Weak Freeze Out even for very small ef-
fective vacuum mixing angle θ.

Eq. (40) shows that two trends can eventually destroy
adiabaticity and, therefore, large scale resonant active-
sterile neutrino flavor transformation. As active neutri-
nos are converted L is reduced and this reduces γ. In
turn, the fractional rate of destruction of L compared
with the Hubble parameter can be become significant,
especially if L is small, and this can also reduce γ.

C. Active-active Neutrino Flavor Conversion and
Equilibration

Active neutrinos (νe,ν̄e,νµ,ν̄µ,ντ ,ν̄τ ) transforming
among themselves on time scales comparable to or
shorter than that of the active-sterile conversion chan-
nel can alter significantly the scenario for sterile neu-
trino production given above. This is apt to be the case
if active-active neutrino mixing in medium is large and
efficient over a broad range of neutrino energies. Active-
sterile neutrino flavor conversion tends to be slow because
it occurs through MSW resonances and the rate at which
these resonances sweep through the neutrino distribution
functions is determined by the expansion of the universe,
a slow gravitational time scale.

Coherent neutrino flavor conversion in active-active
channels in the early universe can be dominated by the
flavor off-diagonal potential. Large in-medium mixing
angles can accompany the synchronization seen in cal-
culations of active-active mixing in supernovae and the
early universe [13]. If active-active neutrino flavor trans-
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FIG. 3: Level crossing diagram for the case with lepton num-
bers as shown and for scaled neutrino energy ε = 1. The vac-
uum mass-squared eigenvalue for the (mostly) sterile state is
taken as m2

4 = 10 eV2. This is shown as the dashed curve
labeled νs. An artificial (exaggerated) 1 eV2 offset between
the vacuum mass-squared eigenvalues m2

2 and m2
3 has been

added so that the curves labeled with ν∗µ and ν∗τ are sepa-
rated for clarity. In reality, the top curve should be split from
the lower curve by δm2 ≈ 3 × 10−3 eV2. Conversion in the
channel νe → νs is as described in the text.

formation is efficient, then lepton numbers in different
active neutrino species can be quickly equilibrated, mean-
ing instantaneous equal lepton numbers.

The flavor diagonal neutrino forward scattering poten-
tial in an active-active channel να ⇀↽ νβ is A + B =
H (να) − H (νβ). If there is an initial disparity in lep-
ton number in these two flavors then matter-enhanced
or -suppressed transformation will go in the direction of
reducing this disparity. Though initially the flavor off-
diagonal potential Beτ ≈ 0, as soon as flavor transforma-
tion begins this potential comes up.

The interplay of matter-enhanced coupled active-
sterile and active-active neutrino flavor transformation
can be complicated and difficult to follow numerically.
The size of the debit in the νe or ν̄e distributions, i.e.,
the final value of ε or εmax, may be much more compli-
cated in the general 4×4 case than the scenario outlined
above for simple 2 × 2 να ⇀↽ νs interconversion. We
can, however, identify a few cases where we can at least
outline the course of neutrino flavor conversion as the
universe expands and cools. We will therefore consider
two limits: (1) no active-active mixing; and (2) efficient
active-active mixing that guarantees that lepton num-
bers in active species are always the same (instantaneous

equilibration).

D. Inefficient Active-Active Neutrino Flavor
Conversion

Consider first the case where we neglect active-active
neutrino mixing effects. In this case we could have
initial lepton numbers that are not fully equilibrated.
For example, we could have a scenario where initially
Lνe

< Lνµ
= Lντ

. In this case the νµ and ντ experi-
ence the largest effective potentials, and hence have the
largest effective masses at a given temperature (epoch) in
the early universe. Therefore, the first (highest temper-
ature) resonance occurs for νs with νe, as illustrated in
Fig. (3). This resonance will destroy lepton number, as
will the subsequent ν∗µ ⇀↽ νs resonance, and it will leave
a distorted νe spectrum.

Here we follow Ref. [20] and define linear combinations
of the muon and tauon neutrino flavor states

|ν∗ν 〉 ≡
|νµ〉 − |ντ 〉√

2
(41)

|ν∗τ 〉 ≡
|νµ〉+ |ντ 〉√

2
. (42)

This reduces the 4 × 4 mixing problem of three active
neutrinos and a sterile neutrino into a 3 × 3 problem
with |ν∗τ 〉 decoupled (a mass eigenstate in vacuum with
no mixing with the other neutrinos). This reduction in
dimensionality of the neutrino mixing problem works in
vacuum only if the muon and tauon neutrinos are max-
imally mixed. It also will be valid in medium only if,
additionally, these two neutrino flavors experience iden-
tical matter interactions. This latter condition is met if
Lνµ = Lντ . This symmetry condition will be respected so
long as muon and tauon neutrinos behave and transform
identically. Indeed, the second resonance encountered as
the universe cools, ν∗µ ⇀↽ νs, respects this condition as the
|ν∗µ〉 state consists of equal parts muon and tauon states.

The sterile neutrinos produced through the νe → νs

resonance are subsequently transformed into ν∗µ at the
second resonance at lower temperature, as depicted for a
particular set of initial lepton numbers in Fig. (3). This
resonance also converts the ν∗µ into the sterile state, so
that the final abundance of sterile neutrinos results from
the conversion of neutrinos which were originally in the
νµ and ντ distributions. Since these distributions have
higher lepton number than resides in the νe/ν̄e seas, the
final number density of sterile neutrinos will be larger
than the number of νe missing from the νe-distribution.
As we will see, this case may be more likely to be in
conflict with massive neutrino dark matter constraints.

If we temporarily ignore the effect of active-active neu-
trino flavor transformations, then we can make some gen-
eral statements about the change in the lepton numbers
and ε for the νe or ν̄e distributions in this case of unequal
Lνe and Lνµ = Lντ . If the potential lepton number for
electron flavor neutrinos Le is driven to zero first then the
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changes in the individual active neutrino lepton numbers
must be related by

2∆Lνe
+ ∆Lν∗µ = −Linitial

e , (43)

where here Lν∗µ =
(
Lνµ

+ Lντ

)
/2, and ∆Lνe

= ∆nνe
/nγ

and ∆Lνµ = ∆nνµ/nγ .
Of course, if Le is driven to zero before L∗µ, then con-

version of νe’s at the first resonance will cease while con-
version in the channel ν∗µ → νs continues until Lµ∗ is
reduced to zero. This will leave Le < 0 which will result
in anti-electron neutrino transformation ν̄e → ν̄s, leaving
a non-thermal deficit in the ν̄e distribution.

This is temporary, however. The νe potential is zero
at the point where Le first vanishes. Thereafter, with
reduction in Lµ∗ , the νe potential’s magnitude first in-
creases, but then decreases with the expansion of the uni-
verse (see Eq. 14). Therefore, the ν̄s’s created resonantly
via ν̄e → ν̄s are subsequently re-converted to active neu-
trinos via a second resonance where ν̄s → ν̄e. This is
directly analogous to the re-conversion of ν̄s neutrinos in
neutrino-heated outflow in supernovae [21].

In this scenario it is the mu and tau neutrinos, ulti-
mately, that are converted to sterile neutrinos so that
the numbers and kinds of converted active neutrinos are
given by

Linit
µ∗ ≈ 2

nγ

(
∆nν∗µ + ∆n′ν∗µ

)
− 1

nγ
(∆nνe + ∆nν̄e), (44)

where ∆nν∗µ and ∆n′ν∗µ are the number of ν∗µ neutrinos
converted before and after Le first vanishes, respectively.
Likewise, ∆nνe electron neutrinos are converted before
Le first vanishes and ∆nν̄e electron antineutrinos after-
ward, though these ν̄e’s are eventually returned to the
distribution.

There is an additional complication: in the case that all
three lepton numbers are equal, the mass-squared differ-
ences between the active states are approximately given
by their vacuum values, which are quite small. The three
resonances depicted in Fig. (3) will then be very close to-
gether, and in fact may overlap if the resonance width is
sizable.

If the resonances do not overlap, the lepton number
destroying resonance will take place between ν1 and νs,
where ν1 is the lightest neutrino mass eigenstate. Since
ν1 has a large νe component, this will leave a non-thermal
νe distribution, and in addition there will be smaller non-
thermal distortions of the νµ and ντ spectra. In the case
that the resonances do overlap, the full details of the evo-
lution will be quite complicated, but a similar outcome
is obtained nonetheless. To summarize, in all cases a non
thermal νe spectrum results.

E. Efficient Active-Active Mixing: Instantaneously
Equilibrated Lepton Numbers

Let us now consider the limit where in addi-
tion to the active-sterile MSW transitions, oscilla-
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FIG. 4: Final active neutrino energy distribution function fνα

for Cases 1 (solid line), 2 (short dashed line), and 3 (dot-dash
line) in the instantaneous active-active mixing limit as de-
scribed in the text. Here α = e, µ, τ : all species have the same
distribution function. The long-dash line shows the original
thermal distribution function common to all active flavors.
The particular scenario shown here has Lνe = Lντ = Lνµ =
0.1, so that ε1 ≈ 3.8, ε2 ≈ 2.3, and ε3 ≈ 1.85

tions/transformations between/among the three active
neutrinos occur simultaneously and are efficient. If
active-active mixing among all the active flavors is instan-
taneous and efficient then we only need to consider the
case where the lepton numbers are equal, Le = Lµ = Lτ ,
both initially and as active-sterile transformation pro-
ceeds. It has been shown that large angle mixing between
the three active neutrino species results in the system
being driven toward such an equilibrated state [13] at a
temperature of T >∼ 2 MeV.

An obvious additional effect of efficient active-active
oscillations will be to partially refill any hole that was left
in the νe distribution. It is important to note, though,
that this refilling cannot be complete. For maximal
νe− νµ,τ mixing, the hole in the distribution can be only
partially refilled. In vacuum the measured solar neutrino
mixing angle is less than maximal, θsolar ' 32.5◦, and
Ue3 is relatively small. In medium, at best we will ob-
tain maximal matter mixing angles in the limit where the
flavor off-diagonal potential is large. We again therefore
expect about 0 to 2/3 refilling at most, so that a non-
thermal νe spectrum is always obtained by the epoch of
Weak Freeze Out. Even if it were somehow possible for
the resonance to effectively involve only νs and νµ/ντ ,
active-active oscillations would again act to refill the hole
in the resulting non thermal νµ and/or ντ spectra, and
in so doing create a non-thermal νe distribution.

We can identify three cases.
Case 1: We have only one sterile neutrino species and

only one channel for its production, να → νs. If this
channel is, e.g., νe → νs, then the neutrinos in the ντ and
νµ distributions will, in the limit of instantaneous max-
imal mixing, partially fill in the hole left by the active-
sterile conversion process. Given the boundary condition
of equal lepton numbers in all active flavors at all times,
the smooth resonance sweep scenario will leave each ac-
tive neutrino distribution with a low energy “hole” with
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2/3 of the normal population out to some value of scaled
neutrino energy ε1. In terms of the initial potential lep-
ton number Linit = Le = Lµ = Lτ , this is obtained by
solving the integral equation

2Linit ≈ 1
F2 (0)

∫ ε1

0

x2dx

ex−η + 1
. (45)

In this scenario the number of active neutrinos converted
in each flavor are equal (∆nν ≡ ∆nνe = ∆nνµ = ∆nντ )
and this, in turn, is equal to the number of sterile neu-
trinos produced ns,

ns

nγ
≈ ∆nν

nγ
≈ 3

4
Linit. (46)

Up until now, we have been working under the assump-
tion that the sterile neutrino takes part in a resonance
with one of the active neutrino flavors, να, taken to be
νe. However, if the initial lepton numbers are equal, the
resonance will instead occur between νs and a superposi-
tion of the three active neutrinos. In principle, all three
of the active neutrinos may mix with the sterile, so the
MSW resonance which is responsible for lepton number
destruction may occur for the sterile neutrino and a linear
superposition of the three active neutrinos. For example,
in the so called “3+1” LSND inspired mixing scheme,
both θ14 and θ24 are required to be non-zero, and the
sterile effectively mixes with all three active neutrinos
(as there will also be indirect ντ − νs mixing).

Furthermore, if there is one light sterile neutrino, there
may be others. In fact it has been claimed that two sterile
species are a better fit to the LSND data than just one
[26]. So this suggests Cases 2 and 3.

Case 2: Allow two channels of sterile neutrino produc-
tion and two kinds of light sterile neutrinos νs1 and νs2.
As an example, we could have νe → νs1 and νµ → νs2,
but again with instantaneous mixing among all the active
neutrino flavors. A smooth resonance sweep scenario will
leave each active neutrino distribution with a low energy
hole now with 1/3 of the normal population out to some
value of scaled neutrino energy ε2. In terms of the initial
potential lepton number Linit = Le = Lµ = Lτ , this is
obtained by solving the integral equation

Linit ≈ 1
F2 (0)

∫ ε2

0

x2dx

ex−η + 1
. (47)

In this scenario the number of active neutrinos converted
in each flavor are equal (∆nν ≡ ∆nνe = ∆nνµ = ∆nντ )
and this, in turn, is equal to 1/2 the number of sterile
neutrinos produced ns,

ns

nγ
≈ 2∆nν

nγ
≈ 3

4
Linit. (48)

For a given initial potential lepton number, this is the
same total number of sterile neutrinos (of all kinds) pro-
duced as in Case 1. Though there are now two channels
for νs production, ε2 is smaller than ε1. In Case 1 ε1 is

relatively larger because as νe’s are converted to steriles
two active neutrino distributions compensate by feeding
neutrinos into the hole, forcing the resonance to sweep
further (higher in energy) through the νe distribution to
erase the net lepton numbers. In Case 2 only one active
neutrino distribution remains to compensate for the hole.

Case 3: Allow all three active neutrinos to convert
simultaneously to three kinds of light sterile neutrinos
νs1, νs2, νs3. Now a smooth resonance sweep scenario
will leave each active neutrino distribution with a low
energy hole with zero population out to some value of
scaled neutrino energy ε3. In terms of the initial potential
lepton number Linit = Le = Lµ = Lτ , this is obtained
by solving the integral equation

2
3
Linit ≈ 1

F2 (0)

∫ ε3

0

x2dx

ex−η + 1
. (49)

In this scenario the number of active neutrinos converted
in each flavor are equal (∆nν ≡ ∆nνe

= ∆nνµ
= ∆nντ

)
and this, in turn, is equal to 1/3 the number of sterile
neutrinos produced ns,

ns

nγ
≈ 3∆nν

nγ
≈ 3

4
Linit. (50)

This is the same number of sterile neutrinos produced
as in Cases 1 and 2 for a given Linit. This result comes
about for the same reasons indicated in the last para-
graph. Note that ε1 > ε2 > ε3 for a given initial potential
lepton number in each of our three cases.

For Cases 1, 2, and 3 the active neutrino distribution
functions will be left with population deficits relative to
the thermal case. This is shown in Fig. (4) for the partic-
ular scenario where each active flavor starts out with lep-
ton number Lνe = Lντ = Lνµ = 0.1. Solving the above
equations for the three cases yields ε1 ≈ 3.8, ε2 ≈ 2.3,
and ε3 ≈ 1.85 in this example.

In obvious fashion all of the above discussion applies to
ν̄s production if the initial lepton numbers are negative.
We should also note that the actual active and sterile
neutrino energy distributions in all of the limits consid-
ered here may differ considerably from those shown in the
figures, particularly if the smooth and continuous reso-
nance sweep approximation does not apply. In this case,
the resulting neutrino energy distribution functions may
have deficits extending to higher energy but arranged in a
“picket fence” character. We conclude that a sterile neu-
trino in the mass range of interest is almost certain to
leave non-thermal active neutrino distribution functions
if the lepton number is significant.

III. CONSTRAINTS ON STERILE NEUTRINOS
AND LEPTON NUMBERS

The entire plausible range of sterile neutrino masses
and net lepton numbers of interest is not likely to be
consistent with all of the current observational bounds.
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For example, we may demand that the initial net lepton
numbers are large enough to suppress the production of
fully thermalized seas of νs and ν̄s. Eq. (2) shows that the
lepton number necessary for suppression of thermal ster-
ile neutrino production depends both on neutrino mass
and neutrino average energy. We will hold off on consid-
ering BBN effects/limits until the next section.

As discussed in the introduction, a population of sterile
neutrinos could provide enough relativistic energy den-
sity, depending again on sterile neutrino mass, to run
afoul of large scale structure/CMB bounds [8]. The
above-cited analysis of the SDSS data [10] using CMB
anisotropy limits, galaxy clustering and bias, and cou-
pled with the matter power spectrum inferred from the
Lyman-alpha forest suggest a limit on the neutrino mass
of 0.79 eV (95% CL). This corresponds to a limit on the
neutrino closure fraction

Ωlim
ν h2 < 0.0084 (95% CL), (51)

where h is the Hubble parameter at the current epoch
in units of 100 km s−1 Mpc−1. This is comparable to the
older WMAP bound, Ωlim

ν h2 < 0.0076 (95%CL). How-
ever, the Eq. (51) bound is more appropriate here as it
assumes a “3+1” neutrino mass scenario in contrast to
the three neutrinos with a common mass assumed in the
WMAP analysis. Adopting the Eq. (51) bound suggests
that thermal distributions of να and ν̄α neutrinos are ac-
ceptable only if they have rest masses

mνα
<∼ 0.79 eV

[
2F2 (0)

F2 (ηνα) + F2 (−ηνα)

][
Ωlim

ν h2

0.0084

]
, (52)

where α = e, µ, τ, s. We can connect this with the
a putative thermal sterile neutrino sea by noting that
mνs ≈

(
δm2

as

)1/2. So, for example, δm2
as > 0.63 eV2 is

disallowed if all the sterile neutrino species have thermal
distributions. This would eliminate much of the LSND-
inspired sterile neutrino mass range.

However, the coherent sterile neutrino production sce-
narios discussed above may do better at creeping in un-
der the closure contribution bound. For one thing, only
νs (or ν̄s) and not its opposite helicity partner are pro-
duced coherently. Furthermore, the sterile neutrinos are
produced in numbers of order the initial lepton number.
This will be smaller than a general thermal population.

At the epoch of coherent sterile neutrino production
the ratio of the number of active neutrinos ∆nνα con-
verted to steriles to the number total density of a ther-
mal distribution of να plus ν̄α neutrinos is in the ratio of
the closure contributions of a sterile species to thermal
neutrino species:

Ωsh
2

Ωtherm
να+ν̄α

h2
≈ Rs ≡ Ns∆nνα

nνα + nν̄α

, (53)

where Ns is the number of active-sterile mixing channels
operating in the production of sterile neutrinos. In turn

0.0001

0.001

0.01

0.1

1

2
L

ν α
+
L

ν β
+
L

ν γ

100806040200

δm2
 (eV

2
)

Ωνh
2
>0.0084

fully thermalized

sterile neutrino sea

efficient 

active-active

no active-active

FIG. 5: Constraints on the the ranges of active-sterile mass-
squared splitting and potential lepton number as derived in
the smooth and continuous resonance sweep limit. Parame-
ter ranges which give sufficient sterile neutrino production to
exceed the bound on the neutrino closure fraction are shown
cross hatched, as are parameter ranges which allow for com-
plete or nearly complete thermal, undiluted energy distribu-
tion functions for a sterile species. The upper solid line is for
efficient active-active mixing in Cases 1, 2 , or 3, while the
upper dashed line gives the constraint for να → νs with no
active-active mixing.

it can be shown that

Rs ≈
[

1
F2 (0)

∫ ε

0

x2

ex−η + 1

][
F2 (0)

F2 (ηνα) + F2 (−ηνα)

]

(54)
where ε and the degeneracy parameter η are values con-
sistent with the particular sterile neutrino production
scheme. From these relations we can show that

Ωsh
2 ≈ (

1.062× 10−2
) (

β

2

)
L

[
δm2

as

eV2

]1/2

, (55)

where L is an appropriate potential lepton number and
where β is a parameter that is related to the particu-
lar sterile neutrino production scheme and the number
of active-sterile channels in that scheme. For example,
β = 2 for Cases 1, 2, and 3 of the efficient active-active
limit, whereas β = 4/3 for να → νs only with no active-
active mixing. All of these constraints are summarized
in Fig. (5).
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IV. NON-THERMAL NEUTRINO ENERGY
SPECTRA AND PRIMORDIAL

NUCLEOSYNTHESIS

The neutron-to-proton ratio is set by the competition
of the expansion rate of the universe and the forward
and reverse rates of the following lepton capture/decay
processes:

νe + n ⇀↽ p + e−, (56)

ν̄e + p ⇀↽ n + e+, (57)

n ⇀↽ p + e− + ν̄e. (58)

n + e+ + νe → p. (59)

In the epoch where the temperature is greater than that
of Weak Freeze-Out, T > Twfo, the isospin of any nu-
cleon will flip from neutron to proton and back at a rate
which is rapid compared to the expansion rate. Even
post-Weak-Decoupling, the lepton capture rates on nu-
cleons can be large. This is because the number densi-
ties of relativistic neutrinos and charged leptons are some
10 orders of magnitude larger than the baryon density.
The neutron-to-proton ratio in the T > Twfo limit has a
steady state value given by [22]

n

p
≈ λν̄ep + λe−p + λpeν̄e

λνen + λe+n + λn decay + λne+νe

, (60)

≈ λν̄ep + λe−p

λνen + λe+n

,

where, for example, λν̄ep is the forward rate for the pro-
cess in Eq. (57), λe+n is the corresponding reverse rate,
and λn decay is the forward rate for the neutron decay pro-
cess in Eq. (58), while λpeν̄e is the corresponding three
body capture reverse rate, and λne+νe

is the three body
capture process on neutrons. Other notation follows in
obvious fashion. The second approximation in Eq. (60)
is valid when the three body rates can be neglected.

Eq. (60) is valid in general only when the neutron-to-
proton ratio is in strict steady state equilibrium. In fact,
the lepton capture rates on free nucleons can be compa-
rable to the expansion rate at Weak Freeze Out. This
implies that there is a correction to the Eq. (60) result
which depends on the rate of change of the lepton capture
rates. This term can be significant. In fact, the neutron-
to-proton ratio will continue to change well after Weak
Freeze Out. In this sense, our estimated effects of the
“holes” in neutrino distribution functions are sometimes
likely to be conservative.

As the universe expands and the temperature drops,
the relative values of these rates change and, hence,
so does the neutron-to-proton ratio. At temperatures
T ≥ Twfo the three body lepton capture and free neu-
tron decay processes have rates which are unimportant

compared to those of the lepton capture rates. For tem-
peratures T À Twfo, typical lepton energies are large
compared to the energy thresholds in the forward rate of
the process in Eq. (57) and the reverse rate for the pro-
cess in Eq. (56), so that if the lepton numbers are small
we would have n/p ≈ 1, or Ye ≈ 1/2.

For T < Twfo the lepton capture rates and the three
body capture rates eventually become small compared to
the expansion rate and the neutron-to-proton ratio will
only slowly decrease with time on account of free neutron
decay. In standard BBN, n/p ≈ 1/6 at Twfo ≈ 0.7 MeV
and has fallen to n/p ≈ 1/7 at TNSE ≈ 100 keV, where
strong and electromagnetic nuclear interactions begin to
freeze out and neutrons are efficiently incorprated into
alpha particles.

In fact, the primordial 4He yield is determined roughly
by the number of neutrons available at TNSE. In mass
fraction, this is Xα ≈ 2(n/p)/(n/p + 1), or 25% for
n/p = 1/7. The standard BBN 4He mass fraction yield
prediction is 24.85± 0.05% using the CMB (Cosmic Mi-
crowave Background) anisotropy-determined baryon den-
sity [6]. (The baryon closure fraction as derived from the
deuterium abundance [23] is consistent with the CMB-
derived value.)

The observationally-inferred primordial helium abun-
dance has a long and troubled history. One group pegs
this abundance at 0.238±0.002±0.005 [24], while another
using similar but not identical compact blue galaxy data
estimates 0.2421 ± 0.0021 [25]. These values are quite
restrictive. However, these older estimates may now be
superseded by more recent analyses as discussed in the
Introduction.

A more detailed analysis of the helium and hydrogen
emission lines done in Ref. [7] suggests that the allow-
able range of mass fraction for primordial 4He is 0.232
to 0.258. This is fairly generous compared to previous
“limits.” However, it is a good bet that a 5% or 10% in-
crease in the calculated, predicted yield in 4He would be
an unwelcome development. Therefore, as a crude guide-
line, in this paper we will take a 5% to 10% increase in
the steady state equilibrium neutron-to-proton ratio at
T = 0.7MeV as estimated by Eq. (60) as a limit. We
emphasize that this is only a rough guide as to when
non-thermal neutrino distribution effects are likely unac-
ceptable. Should there be experimental confirmation of
the LSND result or other evidence for light sterile neu-
trinos then our rates, together with the simultaneously
followed resonance sweep, will have to be computed along
with the nuclear reactions in the primordial nucleosyn-
thesis code.

If the electron neutrinos and antineutrinos and the
electrons and positrons all have Fermi-Dirac energy spec-
tra, then Eq. (60) can be reduced to [27, 28]

n

p
≈

(
λe−p/λe+n

)
+ e−ηνe+ηe−ξ

(
λe−p/λe+n

)
eηνe−ηe+ξ + 1

, (61)

where ηe = µe/T is the electron degeneracy parameter
and ξ = (mn −mp) /T ≡ δmnp/T ≈ 1.293MeV/T is
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the neutron-proton mass difference divided by tempera-
ture. Here we have neglected the neutron decay/three-
body capture processes of Eq. (58). The expression in
Eq. (61) is generally true for Fermi-Dirac leptonic en-
ergy distribution functions, even if the neutrinos and
electrons/positrons are not in true thermal and chemi-
cal equilibrium. If and only if chemical equilibrium ac-
tually obtains (or did obtain at some early epoch) are we
guaranteed to have µe − µνe

= µn − µp, where µn and
µp are the neutron and proton total chemical potentials,
respectively, and only in this case does Eq. (61) reduce
to

n

p
≈ e(µe−µνe−δmnp)/T . (62)

With strict chemical equilibrium and with Fermi-Dirac
energy distributions for all leptons, we could conclude
from Eq. (62), for example, that a positive chemical
potential for electron neutrinos (i.e., an excess of νe

over ν̄e) would suppress the neutron-to-proton ratio at
Weak Freeze-Out relative to that for ηνe = 0. This be-
haviour follows also from a straightforward application of
Le Chatlier’s principle to the processes in Eqs. (56) and
(57). A decrease in the neutron abundance translates, in
turn, into a decrease in the predicted 4He yield.

However, if after Weak Decoupling the neutrino distri-
bution functions are modified by active-sterile neutrino
conversion, να ⇀↽ νs, then the resulting active and sterile
neutrino distribution functions would not be Fermi-Dirac
in character and we could not employ Eq. (62) to deter-
mine the neutron-to-protion ratio at Twfo. Instead, we
would be forced in this case to evaluate and follow the
rates directly. We can get a crude estimate of the effects
of these altered rates on the neutron-to-proton ratio by
using them in Eq. (60).

Let us first consider the modifications of the lepton
capture rates for the case where a net lepton number
drives conversion of electron neutrinos to singlet neutri-
nos, νe → νs. Further, for argument’s sake, let us assume
that the resonant conversion proceeds in a smooth and
continuous sweep from low energy toward higher energy
in the manner of Eq. (26), i.e., all electron neutrinos with
scaled energy less than ε are converted to sterile neutri-
nos.

The result for inefficient active-active cases or for Case
3 of the efficient active-active limit would be a νe energy
distribution function as in Fig. (1), which is zero for all
values of scaled neutrino energy 0 ≤ Eνe/T ≤ ε, and has
a conventional Fermi-Dirac thermal distribution charac-
ter for neutrino energies Eνe/T > ε. The non-thermal
energy spectrum for νe in this case will alter the rates
for electron capture on protons, e− + p → n + νe, and
for νe capture on neutrons, νe + n → p + e−, over what
these rates would have been prior to νe → νs conversion.
Because there are now fewer νe’s, the electron capture
on proton reaction will be less Fermi blocked and, hence,
the capture rate, λe−p, will be larger. By the same to-
ken, fewer νe’s will translate into a reduction of the νe

capture rate on neutrons, λνen. Note that both a larger
value for λe−p and a smaller value for λνen go in the di-
rection of increasing the neutron-to-proton ratio in weak
steady state equilibrium. This is obvious from Eq. (60).

For a quantitative gauge of the effects of these al-
tered lepton capture rates, let us consider a particular
active-sterile neutrino conversion scenario in the channel
νe → νs. We can get an idea of how important these
effects might be if we take each of the three neutrino fla-
vors to have a lepton number near or at the maximum al-
lowed. Therefore, take Lνµ

= Lντ
= 0.15, corresponding

to degeneracy parameters ηνµ
= ηντ

≈ 0.219, and take
Lνe

≈ 0.0343, corresponding to electron neutrino degen-
eracy parameter ηνe

= 0.05. This will give an initial
potential lepton number in the νe → νs transformation
channel,

Linitial
e = 2Lνe + Lνµ + Lντ ≈ 0.368. (63)

In this case the difference in neutrino energy density over
the zero lepton case is only 0.2%. Therefore, the expan-
sion rate of the universe at Weak Freeze Out in this case
will differ from the standard BBN model by only ∼ 0.2%.
Therefore, the expansion rate by itself would give a neg-
ligible difference in neutron-to-proton ratio between the
case with the lepton number in Eq. (63) and the zero
lepton number, standard BBN case.

However, positive electron lepton number in this case,
corresponding to ηνe = 0.05, would by itself, with no
νe → νs conversion, result in a significant reduction in the
neutron-to-proton ratio and a concomitant reduction in
the 4He yield over the standard BBN case. If we use the
above rates and Eq. (60) we can estimate that the zero
lepton number, standard case gives a neutron-to-proton
ratio at Weak Freeze Out at temperature T = 0.7MeV,

n

p

∣∣∣∣
ηνe=0

ε=0

≈ 0.159, (64)

or roughly 1 to 6 as discussed above.
By contrast, if we again allow no neutrino conversion

(equivalently, ε = 0), but now include the electron neu-
trino degeneracy ηνe = 0.05, we obtain for the neutron-
to-proton ratio at Weak Freeze Out, T = 0.7MeV,

n

p

∣∣∣∣
ηνe=0.05

ε=0

≈ 0.151. (65)

This is a ∼ 5% drop in the neutron-to-proton ratio
and would imply a comparable drop in the 4He yield.
It has been argued that an electron neutrino degener-
acy of this order is actually the best fit to some of
the observationally-determined primordial helium abun-
dance values [14].

Assuming a smooth and continuous resonance sweep
through the νe distribution, we can employ Eq. (25) and
solve for the value of ε that gives zero final potential lep-
ton number Le = 0. In this case ε ≈ 2.724. Using the es-
timates for the lepton capture rates given in Appendix A
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with ε = 2.724 suggests that the neutron-to-proton ratio
at Weak Freeze Out (T = 0.7 MeV) for the case with the
lepton numbers in Eq. (63), and where we allow for νe

conversion to steriles, is

n

p

∣∣∣∣
ηνe=0.05

ε=2.724

≈ 0.174. (66)

Note that this represents a ∼ 9% increase in the neutron-
to-proton ratio and, hence, the 4He yield over the stan-
dard BBN case. Furthermore, this result is a ∼ 15%
increase in n/p over the no-transformation case with a
neutrino degeneracy parameter, Eq. (65). We could con-
clude that these lepton numbers are likely not a way to
make the LSND result consistent with BBN, especially
given the current tension between the observationally-
inferred primordial helium abundance and the 4He yield
predicted by standard BBN.

However, as discussed above, the resonance may not
sweep smoothly and continuously all the way to the
point where the potential lepton number has been driven
to zero and neutrino flavor evolution through resonance
ceases to be adiabatic. In fact, the adiabatic conversion
and smooth resonance sweep in the channel νe → νs may
cease at εmax, as outlined in the last section. There are
two possibilities from this point onwards.

First, it is possible that the resonance sweep for scaled
energy values beyond the maximum, ε > εmax, is ac-
companied by non-adiabatic neutrino flavor evolution.
That is, neutrino flavor conversion ceases at εmax. The
deficit in the νe distribution function would be smaller
in this case and, consequently, the modifications in the
rates would be smaller as well. For the specific example
case discussed above with overall potential lepton num-
ber Le = 0.368, we can estimate that εmax ≈ 1.46. This
gives a much smaller increase in the neutron-to-proton
ratio over the no flavor conversion case,

n

p

∣∣∣∣
ηνe=0.05

εmax=1.46

≈ 0.156. (67)

This result lies between the no conversion case with
neutrino degeneracy, Eq. (65), and the zero degener-
acy, no conversion case in Eq. (64). Therefore, in this
scenario a sterile neutrino with the LSND parameters
could be reconciled with the predictions of BBN and the
observationally-inferred primordial abundance of helium.

By contrast, the second possibility for resonance sweep
beyond εmax likely would preclude a much larger range
of lepton number as a means for reconciling BBN and
an “LSND” sterile neutrino species. In this second reso-
nance sweep scenario, there would be sporadic adiabatic
conversion νe → νs for ε > εmax until the potential lep-
ton number is driven to zero. This would imply that, in
addition to the hole in the νe distribution function for
ε < εmax, there would now be occasional holes with zero
population for short intervals in scaled energy in the re-
gion ε > εmax. The νe distribution function in this case
would have a “picket fence” character for ε > εmax.
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FIG. 6: Constraints as in Fig. (5) and now with BBN “guide-
lines,” see text. The double-dot-dashed line gives an estimate
of the limiting 4He yield in a no active-active mixing scenario
where Le = 0.001 and Lµ = Lτ = 0.01. The dashed line gives
a threshold in potential lepton number for all cases where neu-
trino lepton numbers are equilibrated, including those with
efficient active-active mixing. Beyond this threshold there
are significant alterations in the helium yield stemming from
non-thermal neutrino distributions. The upper dash-dot line
gives a rough estimate of the limiting potential lepton number
for equilibrated cases with inefficient active-active mixing.

Removing νe’s from the distribution at higher energies
would result in a much greater decrease in λνen and a
greater increase in λe−p for a given initial potential lep-
ton number than in the case with a smooth resonance
sweep. In turn, this would imply a larger overall increase
in the neutron-to-proton ratio than for the smooth sweep
scenario. The reason for the greater rate modifications in
this case is that the integrands of the lepton capture rate
expressions scale like the fourth power of lepton energy
(see Appendix A). Both the weak cross sections and the
neutrino fluxes are larger at higher neutrino energies.

Similar arguments apply to the cases where active-
active neutrino mixing is efficient and neutrino lepton
numbers equilibrate rapidly. However, in Cases 2 and 3
discussed above, the neutrino populations in the “hole”
are not zero, with the consequence that for a given ε value
the rates are not as affected as in the cases discussed
above. For example, for initial lepton numbers Lνe =
Lνµ = Lντ = 0.1, corresponding to ηνe ≈ 0.146, the
standard lepton degenerate Weak Freeze Out neutron-
to-proton ratio would be n/p ≈ 0.136, which would cor-
respond to an unacceptably low 4He yield. By contrast,
when we allow sterile neutrino production in Case 1, the
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resulting non-thermal νe spectrum increases this ratio to
≈ 0.15, an allowed value. In Case 2 this goes to 0.145
while in Case 3 it is 0.144, each likely allowed if some-
what low. Taking all the initial lepton numbers equal
to 0.15 (i.e., L = 0.6), an utterly disallowed proposition
without neutrino spectral distortion, yields a acceptable
n/p-ratio for Cases 1 and 2.

Figures of merit for these considerations and potential
lepton number and BBN-effects “guidelines” are shown
in Fig. (6). The horizontal lines and the corresponding
labels are meant to give a guide as to the effects of various
assumed initial lepton numbers on the neutron-to-proton
ratio and 4He yield as discussed above.

However, these BBN effects lines (guidelines) in our
figures are to be regarded only as quite rough estimates
of where non-thermal effects need to be considered. The
guidelines are crude for three principal reasons. (1) MSW
resonance scaled energy ε is proportional to δm2 and in-
versely proportional to the product of T 4 and the instan-
taneous value of L (see Eq. 15), so that the cases with the
lowest values of δm2 and larger values of L on the plot
may not experience the full resonance sweep required to
deplete all of the initial lepton number prior to reach-
ing the Weak Freeze Out temperature. This would result
in a reduced alteration in lepton capture/decay rates at
Weak Freeze Out. (2) Likewise, the cases with the high-
est values of δm2 coupled with lower values of L on the
plot may already have experienced considerable resonant
active-sterile conversion and concomitant lepton number
depletion before Weak Decoupling, while neutrino scat-
tering was still effective. This would either wash out
much of the “hole” in the neutrino distribution functions
or leave a hole of reduced energy width at higher ener-
gies. (3) The neutron-to-proton ratio actually changes in
response to altered lepton capture/decay rates well after
Weak Freeze Out, as discussed above.

In any case, we do not know precisely the Weak De-
coupling temperature and, as we have emphasized, Weak
Freeze Out is not really an instantaneous occurrence.
Furthermore, we may not have the smooth resonance
sweep scenario, but rather something more akin to the
“picket fence” neutrino distribution functions discussed
above. All of this implies that the magnitude of the above
effects are hard to gauge quantitatively without a fully
coupled and simultaneous calculation of nuclear and weak
reactions and resonance sweep/lepton number depletion.
Nevertheless, we believe that our BBN guidelines at least
indicate where the existence of light sterile neutrinos and
concomitant non-thermal distribution function and weak
rate effects may alter BBN significantly.

What about conversion of anti-electron neutrinos to
singlets, ν̄e → ν̄s? This process can be matter-enhanced
when the overall potential lepton number is negative,
Le < 0. It will be exactly analogous to the positive po-
tential lepton number case, at least as far as the neutrino
flavor conversion and the resonance sweep physics goes.
The close analogy ends, however, when it comes to the
lepton capture reactions.

If the resonance sweeps adiabatically out to a scaled
antineutrino energy ε̄, a hole will be left in the ν̄e distri-
bution, in complete analogy to the cases discussed above.
Fewer ν̄e’s will translate into a decreased antineutrino
capture rate, ν̄e + p → n + e+, and an increased rate of
positron capture, e+ + n → p + ν̄e. These rate modifica-
tions both go in the direction of decreasing the neutron-
to-proton ratio n/p at weak Freeze Out, as is obvious
from Eq. (60). Production of ν̄e’s with efficient active-
active neutrino mixing follow schemes in obvious analogy
to the cases discussed in this limit with positive potential
lepton number.

One might think at first that simply changing the sign
of the potential lepton numbers given in the above ex-
amples could result in a suppressed n/p and, therefore,
no BBN conflict with a large lepton number scenario for
reconciling observed abundances with an LSND sterile
state. This is not correct however, because the threshold
in the reaction ν̄e + p → n + e+ plays a crucial role. As
can be seen in the rate integrals given in Appendix A, in
this channel a ν̄e must have an energy in excess of the
threshold, Eν̄e

> Ethresh
ν̄e

to be captured. The threshold
is Ethresh

ν̄e
= Qnp + mec

2 ≈ 1.804MeV.
Consider the smooth resonance sweep scenario outlined

above where ν̄e’s are converted to sterile states up to
scaled energy ε̄. Unless ε̄ > Ethresh

ν̄e
/T , there will be

no modifications in the capture rates. Likewise for the
inverse process of positron capture on protons, e+ +n →
p+ ν̄e. In this case, there will be no alteration of the final
state ν̄e blocking factor unless ε̄ > Ethresh

ν̄e
/T .

For example, consider the case with Lνe ≈ −0.0343
(ηνe = −0.05) and Lνµ = Lντ = −0.15. This gives the
opposite sign potential lepton number from the case first
considered above, Le ≈ −0.368. This implies that in
the smooth, adiabatic resonance sweep scenario that ε̄ ≈
2.724. The neutron-to-proton ratio for this ν̄e degeneracy
parameter, but neglecting the effects of ν̄e conversion, is
of course completely ruled out by the data:

n

p

∣∣∣∣
ηνe=−0.05

ε̄=0

≈ 0.263. (68)

When the conversion of ν̄e’s to sterile neutrinos is taken
into account, we get a result which is still unacceptable
and only incrementally better,

n

p

∣∣∣∣
ηνe=−0.05

ε̄=2.724

≈ 0.260. (69)

The very small effect of active-sterile neutrino conversion
in this case is because at Weak Freeze Out, T ≈ 0.7MeV,
the scaled threshold energy is Ethresh

ν̄e
/Twfo ≈ 2.58, a

value not much smaller than ε̄.
If we try to circumvent this threshold problem by in-

voking even larger negative lepton number, we are usually
still left with an unacceptably high neutron-to-proton ra-
tio. For example, consider the case with Lνe ≈ −0.343
(ηνe = −0.05) and Lνµ = Lντ = −0.2. This gives
the opposite sign potential lepton number from the case
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FIG. 7: Constraints and guidelines as in Fig.s (5) & (6), but
now for negative values of potential lepton number. The dot-
dashed line represents the vicinity of parameter space in a no
active-active mixing scenario where the 4He yield is reduced
by about 4% over the standard value, giving agreement with
the observationally-inferred helium abundance. The dashed
line gives a rough threshold on potential lepton number in the
equilibrated regime ( Le = Lµ = Lτ ) beyond which significant
alterations in 4He yield stemming from ν̄e spectral distortion
can be expected.

first considered above, Le ≈ −0.4685 and ε̄ ≈ 3.262, a
value now significantly above the scaled threshold. The
neutron-to-proton ratio at Weak Freeze Out in this case
would be roughly

n

p

∣∣∣∣
ηνe=−0.05

ε̄=3.262

≈ 0.163, (70)

a prodigious 38% decrease over the result in Eq. (68), but
still likely unacceptably large, mostly on account of the
pernicious effects of the degeneracy in ν̄e. Could we then
consider large negative lepton numbers in the νµ and ντ

neutrinos, but near zero excess of ν̄e. The answer is no,
because in any realistic scenario active-active conversion
will keep lepton numbers in all neutrino flavors within an
order of magnitude of each other [13].

In the no active-active mixing limit, initial lepton num-
bers Lνe = −0.025 and Lνµ = Lντ = −0.25 provide a dis-
tortion in the ν̄e spectrum which gives an acceptable n/p
ratio corresponding to a slightly lower 4He yield than in
standard zero-lepton number BBN. However, this big lep-
ton number disparity is not likely possible with efficient
active-active mixing. For all cases where active neutri-
nos are equilibrated, a potential lepton number larger in
magnitude (more negative than) −0.014 results in signif-

icant modification (bigger than a half percent or so) in
the 4He yield over the no-distortion BBN result. Fig. (7)
summarizes these considerations. Again, the warning as
to the very rough nature of our guidelines applies here as
well as in Fig. (6).

V. DISCUSSION AND CONCLUSIONS

The most general conclusion that can be drawn from
this work is the existence of one or more light sterile
neutrinos could alter the relationship between neutrino
chemical potential and primordial nucleosynthesis yields.
An ancillary conclusion is that it may not always be true
that invocation of a net lepton number in excess of that
given in Eq. (2) can reconcile an LSND-inspired light
sterile neutrino with Big Bang Nucleosynthesis limits. A
lepton number with magnitude L ≥ 10−2 will certainly
suppress sterile neutrino production for epochs with tem-
peratures above that of Weak Decouplig, Tdec ≈ 3MeV,
but at the price of driving coherent active-to-sterile neu-
trino conversion in the regime below Weak Decoupling
and, depending on δm2

as, potentially above Weak Freeze
Out. In turn, this will lead to depleted, non-thermal νe

or ν̄e energy distribution functions which can modify the
neutron-to-proton ratio and, hence, the 4He yield over
the standard BBN case.

We have shown that in the νe → νs neutrino flavor
conversion channel these modifications lead to generally
larger neutron-to-proton ratios at Weak Freeze Out and
therefore to a generally larger 4He yield than in the stan-
dard BBN case. In some circumstances this may be un-
acceptable as discussed in the last section.

In contrast, invocation of non-thermal ν̄e energy spec-
tra stemming from negative potential lepton number-
driven active-sterile neutrino flavor conversion in the
channel ν̄e → ν̄s is not nearly as vulnerable to constraint.
This is because the threshold in the lepton capture re-
actions on free nucleons dictates that only non-thermal
deficits in the ν̄e energy distribution which extend to en-
ergies beyond the threshold can affect the rates. Since
the initial lepton numbers would have to be very large to
to produce deficits extending beyond the threshold, it is
not likely that the effects discussed here can be used to
extend constraints.

Simplistic limits on sterile neutrinos based on con-
ventional BBN calculations with thermal lepton energy
distribution functions are now suspect. If the mini-
BooNE experiment sees evidence for neutrino mixing in
the LSND range or beyond we will be forced to re-think
the BBN paradigm, incorporating the effects pointed out
here.

This would also force us to confront the problem
posed by the work in this paper. Namely, what are
the light element primordial nucleosynthesis abundance
yields when both active-active and active-sterile neutrino
inter-conversion/mixing among eight neutrino species is
followed simultaneously and consistently with lepton cap-
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ture/decay and nuclear reactions? This is a challenging
problem at present that pushes the limits of our under-
standing of neutrino physics and neutrino flavor conver-
sion in dense and hot environments.
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APPENDIX A: WEAK RATES WITH
NON-THERMAL NEUTRINO ENERGY

SPECTRA

In this Appendix we calculate the forward and reverse
rates of the processes in Eqs. (56) & (57) for the cases
where, respectively, all neutrinos below energy Eνe = Tε
or antineutrinos below energy Eν̄e = T ε̄ are converted
to sterile species. We provide estimates of these rates
in terms of standard relativistic Fermi integrals. We
also discuss how these rates would be modified if the
MSW resonance does not sweep smoothly and continu-
ously (and adiabatically) through the low energy neu-
trino or antineutrino distribution function, but instead
skips to higher energies. The rate modifications for Cases
1 and 2 in the efficient active-active neutrino mixing limit
will be different, of course, because in those scenarios
the “holes” in the neutrino distribution functions are not
empty. Though the rate formulae presented here are not
valid for these cases, they still give a general idea of how
the lepton capture/decay rates depend on spectral dis-
tortion and thresholds.

If there is no active-sterile conversion and all neutrino,
nucleon, and charged lepton distribution functions are
thermal in character, the νe capture rate on neutrons
is λ0

νen. By contrast, we will denote as λνen the actual
electron neutrino capture rate when the same thermody-
namic conditions obtain, but now where νe’s have been
converted to sterile species up to scaled energy ε as out-
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lined above. If all neutrino, nucleon, and charged lep-
ton energy distribution functions are at least piece-wise

Fermi-Dirac or zero, these rates can be written [28], re-
spectively, as

λ0
νen ≈ Λ

[
1− eηe−ηνe−ξnp

]−1
∫ ∞

0

x2(x + ξnp)
2

(
1

ex−ηνe + 1
− 1

ex+ξnp−ηe + 1

)
dx, (A1)

λνen ≈ Λ
[
1− eηe−ηνe−ξnp

]−1
∫ ∞

ε

x2(x + ξnp)
2

(
1

ex−ηνe + 1
− 1

ex+ξnp−ηe + 1

)
dx (A2)

≈ Λ
[
1− eηe−ηνe−ξnp

]−1
4∑

n=0

αn

[
Fn

(
ηeff

ν

)− Fn

(
ηeff

e

)]
.

Here the integration variable in both equations is the
scaled νe energy, x = Eνe

/T . The final state electron
energy is Ee = T (x + ξnp). The other notation in these
expressions is as defined above and ξnp ≡ Qnp/T with
Qnp = δmnp. There is no threshold for νe energy in this
reaction channel. The temperature and matrix element-
dependent factor in both rate expressions is

Λ ≡ 〈G〉 ln 2
〈ft〉

(
T

mec2

)5

(A3)

≈ (
1.835× 10−2 s−1

) 〈G〉
(

T

MeV

)5

,

where 〈ft〉 is the effective ft-value as defined in Ref. [28]
and is roughly log10 ft ≈ 3.035 for free nucleons, while
〈G〉 is the average Coulomb wave correction factor (also
defined in Ref. [28]) with G ≡ F (Z, Ee)Ee/pe and where
F (Z, Ee) is the usual Fermi function for nuclear charge
Z and final state electron energy Ee. For the relativistic
leptons considered here (the lowest electron energy is ≈
Qnp ≈ 1.3 MeV), 〈G〉 ≈ 1, though we note that 〈G〉 in
the no-transformation case is slightly larger than that for
the case with the ε cut-off on account of the lower energy
electrons present in the phase space integral in the former
case. (Electrons are “pulled in” to the proton because of
Coulomb attraction, making for a larger overlap.)

The second approximation in Eq. (A2) gives λνen as a
sum of differences of relativistic Fermi integrals. In this
expression the effective νe and e− degeneracy parameters
are defined as ηeff

ν ≡ ηνe−ε and ηeff
e ≡ ηe−δ, respectively,

where δ ≡ ε + ξnp. Also in Eq. (A2) we define α4 ≡
1, while α3 ≡ 2 (ε + δ), and α2 ≡ (ε + δ)2 + 2εδ, with
α1 ≡ 2εδ (ε + δ) and α0 ≡ ε2δ2. Note that as ε → 0,
both expressions in Eq. (A2) approach λ0

e−p in Eq. (A1).
It is obvious that for nonzero ε the νe capture rate on
neutrons will be reduced over its no-transformation value,
λνen < λ0

νen.
The rate for the corresponding reverse process of elec-

tron capture on protons, e− + p → n + νe, will be in-
creased if some νe’s are transformed to sterile states, as

0.20
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FIG. 8: Rate λνen in s−1 for the process νe + n → p + e− at
temperature T = 0.7MeV as a function of ε and/or Lνe in the
smooth and continuous resonance sweep limit and for the case
of complete active neutrino equalization (Lνe = Lνµ = Lντ ).
The solid curve gives the rate for no sterile neutrino con-
version, thermal νe distribution, but with the νe chemical
potential appropriate for the corresponding ε value. The dot-
dashed curve gives the rate with active-sterile neutrino con-
version and corresponding non-thermal character for the νe

energy distribution function.

there will be less final state νe blocking in this case. For
a Fermi-Dirac distribution of electrons, and in terms of
an integral over electron energy Ee, this rate is

λe−p ≈
〈G〉 ln 2

〈ft〉(mec2)5

∫ ∞

Qnp

E2
e (Ee −Qnp)

2

eEe/T−ηe + 1
[1− Sνe ] dEe,

(A4)
where Sνe is the energy-dependent νe occupation proba-
bility,

Sνe = 0 for Eνe/T ≤ ε, (A5)

Sνe =
1

eEνe/T−ηνe + 1
for Eνe/T > ε. (A6)

Here the νe energy is Eνe = Ee −Qnp on account of the
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threshold, Qnp.
It is convenient to re-write the rate in Eq. (A4) as

an integration over neutrino energy scaled by tempera-
ture, x = Eνe/T , and as a sum of contributions from low
neutrino energy with no final state blocking, and higher
final state neutrino energy where there is non-zero Fermi
blocking,

λe−p = λlow
e−p + λhigh

e−p . (A7)

The first of these rate contributions can be approximated

by

λlow
e−p ≈ Λ

∫ ε

0

x2 (x + ξnp)
2

ex+ξnp−ηe + 1
dx. (A8)

Just as for νe capture, the average Coulomb wave correc-
tion factor will be lower (closer to unity) with increasing
ε. Again this has to do with the enhancement of the low
energy electron probability density near the proton. As
above, we can represent the rate contribution in Eq. (A8)
in terms of standard relativistic Fermi integrals,

λlow
e−p ≈ Λ

[
F4 (ηe − ξnp) + 2ξnpF3 (ηe − ξnp) + ξ2

npF2 (ηe − ξnp)
]− Λ

4∑
n=0

βnFn (ηe − ξnp − ε), (A9)
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FIG. 9: Rate λep in s−1 for the process e− + p → n + νe at
temperature T = 0.7MeV as a function of ε and/or Lνe in the
smooth and continuous resonance sweep limit and for the case
of complete active neutrino equalization (Lνe = Lνµ = Lντ ).
The solid curve gives the rate for no sterile neutrino con-
version, thermal νe distribution, but with the νe chemical
potential appropriate for the corresponding ε value. The dot-
dashed curve gives the rate with active-sterile neutrino con-
version and corresponding non-thermal character of the νe

energy distribution function.

where β4 ≡ 1, and where β3 ≡ 2 (ε + δ), while β2 ≡
(ε + δ)2 + 2εδ and β1 ≡ 2εδ(ε + δ), with β0 ≡ ε2δ2. Here
we define δ ≡ ε + ξnp.

The physical interpretation of this expression for λlow
e−p

is clear if it is recalled that the νe energy is Eνe =
Ee−Qnp, implying that the “effective final state neutrino
degeneracy parameter” is ηe − ξnp for the no-conversion
case, and ηe − ξnp − ε with conversion of νe’s to steriles.
Of course, as ε → 0, the rate contribution from the (final
state νe) unblocked portion of the phase space approaches
zero, λlow

e−p → 0. The second of the rate contributions in
Eq. (A7) can be approximated as

λhigh
e−p ≈ Λ

[
1− eξnp−ηe+ηνe

]−1
∫ ∞

ε

x2(x + ξnp)
2

(
1

ex+ξnp−ηe + 1
− 1

ex−ηνe + 1

)
dx (A10)

≈ Λ
[
1− eξnp−ηe+ηνe

]−1
4∑

n=0

βn [Fn (ηe − ξnp − ε)− Fn (ηνe − ε)],

where the notation is as above and where the βn are as defined above for Eq. (A9). In summary, a hole in the low
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energy νe distribution results in a lower value for λνen, a
higher value for λe−p and, hence, an increased n/p ratio.

By contrast, conversion up to scaled energy ε̄ = Eν̄e
/T

of ν̄e’s to sterile neutrinos, ν̄e → ν̄s, would result in a
lower value of the neutron-to-proton ratio and, hence,
a lower 4He yield. This is because a low energy deficit
in the ν̄e distribution would lead to a decreased rate for

ν̄e + p → n + e+ and, on account of less blocking, an in-
creased rate for the reverse process. Handling the energy
threshold for these reactions is, however, somewhat more
complicated than for νe and e− capture.

Using much the same notation as above, we can ap-
proximate the rate for ν̄e + p → n + e+ as

λν̄ep ≈ Λ
[
1− eξnp−ηe−ην̄e

]−1
∫ ∞

γthresh

x2(x− ξnp)
2

(
1

ex−ην̄e + 1
− 1

ex−ξnp+ηe + 1

)
dx (A11)

≈ Λ
[
1− eξnp−ηe−ην̄e

]−1
4∑

n=0

ᾱn

[
Fn

(
ηeff

ν̄

)− Fn

(
ηeff

ē

)]
.

The integration variable in the first of these equations is
x = Eν̄e

/T , and the final state positron energy will be
Ee+ = T (x− ξnp). The scaled energy threshold in these
expressions is

γthresh = ξnp + me for ξnp + me ≥ ε̄ (A12)
γthresh = ε̄ for ε̄ > ξnp + me

where me ≡ mec
2/T . It is clear that transformation of

ν̄e’s with energies below the threshold energy Qnp +mec
2

does not affect the rate. In the second approximation in

Eq. (A11), the effective ν̄e degeneracy parameter is ηeff
ν̄ =

ην̄e− ε̄, while the effective positron degeneracy parameter
is ηeff

ē = ξnp− ηe− ε̄. (Since electromagnetic equilibrium
always obtains here, the positron and electron degeneracy
parameters have equal magnitudes and opposite signs,
ηe+ = −ηe.) If we define a ≡ 2ε̄−ξnp and b ≡ ε̄ (ε̄− ξnp),
then the coefficients ᾱn are: ᾱ4 = 1; ᾱ3 = 2a; ᾱ2 =
a2 + 2b; ᾱ1 = 2ab; and ᾱ0 = b2.

Utilizing the same quantities and notation as in Eq.
(A11), the rate for the reverse process of positron cap-
ture, e+ + n → p + ν̄e, can be written as

λe+n ≈
Λ

1− eηe−ξnp+ην̄e

∫ ∞

γthresh

x2(x− ξnp)
2

(
1

ex+ηe−ξnp + 1
− 1

ex−ην̄e + 1

)
dx + Λ

∫ γthresh

me+ξnp

x2(x− ξnp)
2

ex−ξnp+ηe + 1
dx. (A13)

Again we see that if ε̄ < ξnp + me, then from Eq. (A12)
the threshold is γthresh = ξnp+me and the neutrino flavor
conversion will have no affect on the rate. In this case,
the second term of Eq. (A13) will vanish and the first
term will be the rate with no neutrino conversion. The
full rate expression in Eq. (A13) can be broken up into
three parts,

λe+n = λfirst
e+n + λsnd

e+n + λthrd
e+n , (A14)

each of which can be rendered in terms of standard rela-
tivistic Fermi integrals.

Here λfirst
e+n corresponds to the first integral in Eq.

(A13). It can be reduced to

λfirst
e+n ≈

Λ
1− eηe−ξnp+ην̄e

4∑
n=0

ᾱn

[
Fn

(
ηeff

ē

)− Fn

(
ηeff

ν̄

)]
,

(A15)
where the ᾱn are as defined for Eq. (A11), the effective
positron degeneracy parameter is ηeff

ē ≡ −ηe + ξnp − ε̄,
and the effective ν̄e degeneracy parameter in this case is
ηeff

ν̄ ≡ ην̄e − ε̄.

Note that the second integral in Eq. (A13) is the sum
λsnd

e+n + λthrd
e+n . The last term in this sum can be approxi-

mated as

λthrd
e+n ≈ −Λ

4∑
n=0

ᾱnFn (ξnp − ηe − ε̄), (A16)

where the ᾱn are the same as defined above for Eqs. (A11)
& Eq. (A15). In similar fashion we can express λsnd

e+n in
terms of standard relativistic Fermi integrals,

λsnd
e+n ≈ Λ

4∑
n=0

β̄nFn (−me − ηe). (A17)

We define x ≡ 2me + ξnp and y = me (me + ξnp), with
me ≡ mec

2/T . With these definitions we can write the
β̄n in Eq. (A17) as: β̄4 ≡ 1, while β̄3 ≡ 2x, β̄2 ≡ x2 + 2y,
β̄1 ≡ 2xy, and β̄0 ≡ y2.


