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ABSTRACT: Both galaxies and charged particle beams can exhibit collisionless evolution on 
surprisingly short time scales.  This can be attributed to the dynamics of chaotic orbits.  The 
chaos is often triggered by resonances caused by time dependence in the bulk potential, which 
acts almost identically for attractive gravitational forces and repulsive electrostatic forces.  The 
similarity suggests that many physical processes at work in galaxies, while inaccessible to direct 
controlled experiments, can be tested indirectly via controlled experiments with charged-
particle beams such as those envisioned for the University of Maryland Electron Ring currently 
nearing completion.  
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PREAMBLE 
 

Henry Kandrup and Court Bohn had independently realized that there were important parallels 
between the collisionless evolution of charged-particle beams and large stellar systems.  Both 
desired to pursue this matter explicitly by way of direct experimentation with beams.  Also 
independently, Martin Reiser obtained funding to build the University of Maryland Electron Ring 
(UMER) for the expressed purpose of doing controlled experiments to measure the dynamical 
consequences and evolutionary time scales associated with internal Coulomb forces, i.e., space 
charge.  All of these circumstances led to a strong collaboration.  Henry had been eagerly 
anticipating the completion of UMER and experiments that the collaboration was planning. 

We all endeavored to introduce the notion of an analogy between the dynamics of beams and 
galaxies to a broad spectrum of investigators.  Before Henry passed away, we had completed a 
paper, one that excited Henry immensely, to review the pertinent literature and introduce this idea.  
Feedback from referees was generally negative toward publication but positive toward pursuit of 
the idea.  Loosely translated, the referee reports stated that we have a nice proposal, e.g., to submit 
to a funding agency, but we should finish some new experiments prior to journal publication. 

The paper has evolved considerably since Henry’s passing, but it retains much of his language, 
particularly as concerns galactic dynamics.  We, his colleagues, hereby offer this paper as part of 
the Symposium that honors Henry.  What follows is a version that incorporates all referee 
comments and that is edited to mesh with other related Symposium contributions, but that retains 
the original flavor and Henry’s unique touch.  It would surely have his imprimateur. 
 
 
*Voice: (815) 753-6473; fax: (815) 753-8565; clbohn@niu.edu 
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I. INTRODUCTION 
 

Many-body systems whose constituents interact via long-range inverse-square-law “Coulomb” 
forces, both gravitational and electrostatic, can exhibit macroscopic relaxation and loss of 
coherence on time scales much shorter than might be expected on dimensional grounds.  This 
process moves the system toward a long-lived ‘metaequilibrium’ state, a state that differs from true 
thermal equilibrium (which, in the case of galaxies, cannot be accessed dynamically).  When a 
galaxy has a sizeable gaseous component, the gas will interact with the stellar component and 
thereby enhance its relaxation.  However, observations and simulations agree that even a relatively 
gas-poor (and thus presumably nearly dissipation-free) elliptical galaxy displaced from a 
metaequilibrium state as a result of an encounter with another galaxy can readjust itself towards a 
new metaequilibrium state within a few hundred million years (i.e., within ~10% of the age of the 
galaxy) although the nominal relaxation time tR associated with ‘collisions’ is orders of magnitude 
longer than the age of the Universe.  And similarly, charged-particle beams, which would be 
expected to maintain coherence while traveling some 100 km or more through an accelerator, can 
lose coherence and disperse significantly within distances as short as 10 m. 

Because collisions would cause relatively slow relaxation, any rapid relaxation must be due to 
collisionless, i.e., collective, processes.  More specifically, the collective behavior must be 
connected with mixing, i.e., the tendency of initially localized clumps of orbits to disperse.  Mixing 
is much more efficient in a chaotic system than in a system in which the bulk coarse-grained 
potential is integrable or near-integrable.  An initially localized clump of regular, i.e., non-chaotic, 
orbits will typically disperse secularly, i.e., as a power law in time; a clump of chaotic orbits will 
instead disperse exponentially. 

Allowing for a bulk potential that is strongly chaotic, thereby supporting “chaotic mixing”, 
would enable one to understand how a galaxy can ‘relax’ toward a metaequilibrium state on a 
comparatively short time scale.  Such an understanding is of practical importance in regard to 
charged-particle beams.  There, rapid collisionless relaxation places strong constraints on 
‘emittance compensation’, i.e., processes designed to confine the constituent particles to a compact 
volume of phase space, as is required for high-brightness beams. 

Theoretical considerations and detailed numerical simulations suggest that, in this setting, the 
origin of the chaos that drives the evolution is largely irrelevant.  In particular, whether the two-
body forces are attractive or repulsive should not be crucial.  What is important is that the long-
range scalings of gravitational and electrostatic forces are identical and that, in both cases, the early 
stages of evolution should be driven by long-range, collective interactions (acting ‘globally’) as 
opposed to short-range collisional encounters (acting ‘locally’).  All that seems to matter is whether 
the bulk potential associated with the many-body system admits a large measure of chaotic orbits1. 

A complete understanding of these phenomena requires a synthesis of theory, simulations, and 
experiments.  Performing experiments on self-gravitating systems like galaxies is impossible.  
However, controlled experiments can be performed with charged-particle beams, and combining 
the results of such experiments with simulations and theory should lead to a clear picture of the role 
of chaotic phase mixing in beams.  Moreover, as we will exemplify in Sec. II below, the physics 
should not depend crucially on whether the force between particles is attractive or repulsive, and 
one would thus expect that many results about beams should translate more or less directly into 
detailed predictions about the structure and evolution of galaxies.  Indeed, one can go one step 
further and argue that, in a real sense, carefully constructed experiments involving charged-particle 
beams can be used as semi-direct probes of the physics of self-gravitating systems like galaxies. 
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II. THE BEAM-GALAXY ANALOGY: THEORETICAL CONSIDERATIONS  
 
That collisional relaxation should be largely irrelevant in many settings involving galaxies and 

beams is easily seen.  Viewing such effects as an incoherent sum of binary encounters, one 
computes, respectively, for galaxies2 and (in gaussian units) for charged particle beams3,4 relaxation 
times 
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Here v is a typical speed associated with random motions; G the gravitational constant; m and q the 
typical stellar mass and particle charge, respectively; n a characteristic number density, and log 
the so-called Coulomb logarithm*, which scales as a positive power of the number of constituent 
‘particles’ N. 

In either case, assuming the bulk random kinetic and potential energies are comparable in 
magnitude implies that tR ~ (N/log )tD, with tD ~ R/v denoting the ‘dynamical time’, a 
characteristic orbital time scale defined in terms of the ‘size’ R of the system.  For large N 
(typically N ~ 109-1012 in realistic, large stellar and particle-beam systems) the relaxation time tR is 
clearly orders of magnitude longer than the dynamical time tD; collisional relaxation is slow.  By 
contrast, mixing of chaotic orbits, i.e., ‘chaotic mixing’, can proceed extremely fast; the e-folding 
time associated with the dispersal of an initially localized ‘clump’ of particles, given as the inverse 
of the largest positive Lyapunov exponent respective to that clump6, is typically comparable in 
magnitude to tD.  This is, for example, the case for the systems illustrated in Figs. 2 and 4 discussed 
below in Secs. III.A.3 and III.B.3, respectively 

Presently there is no known generic algorithm permitting accurate analytic or quasi-analytic 
estimates of the largest Lyapunov exponent in three-dimensional bulk potentials.  However, recent 
work7-9 has shown that, in many cases, an analytic technique developed for systems with many 
degrees of freedom10 can be adapted to provide reasonable estimates for lower-dimensional 
systems, the breakdown of that approach reflecting typically systems in which autocorrelation 
functions for properties of representative orbits have long time tails11.  It is therefore relevant to 
recall the analytic results for the largest Lyapunov exponent χ  in a three-dimensional time-
independent bulk potential, for this then becomes a quantitative measure of the rate of collisionless 
relaxation by way of chaotic mixing: 
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The auxiliary quantities κ  and ξ  are determined from the potential V(x): 
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wherein the averages are taken over the microcanonical ensemble in the manner 
___________________________________ 
*If one assumes that collisions act as a source of Brownian motion, tR can be related to the time integral of the quantity 
N〈F(0)•F(t)〉, where 〈F(0)•F(t)〉 is the autocorrelation function for the test ‘particle’ interacting with a single field 
‘particle’.5 
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Here, E denotes the total particle energy.  Upon invoking Poisson’s equation, we see immediately 
that the auxiliary quantities are determined from the density distribution.  For a galaxy, we have 
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where ς  = ρ (x)/ρ (0), ρ (x) denoting the mass density.  For a beam, we take the external focusing 
potential Vf to be quadratic in the coordinates x comoving with the bunch, i.e., Vf(x) = (ω •x)2/2, 
wherein ω  = (ω x,ω y, ω z) corresponds to the focusing strength; the total potential is V = Vf  + Vs.  
Then we have 
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where ω p0 is the plasma frequency at the bunch centroid and ρ (x) now refers to charge density.  

Now, the time scale for chaotic mixing is tm = 1/χ  f(ξ )κ -1/2.  The analogy between chaotic mixing 
in beams versus galaxies becomes apparent: for both classes of systems, the dynamical time is tD ~ κ -1/2, the auxiliary quantity ξ  involves a ratio of the dispersion in the density profile to the square of 
the dynamical time, and f(ξ  ) is the same function for both systems.  For beams, space charge is a 
repulsive collective force that acts to lengthen the dynamical time by weakening the net focusing 
force acting on a particle (resulting in what is called the ‘space-charge-depressed period’).  For 
galaxies no such weakening appears; gravity is strictly attractive. 

To do a computational test of this result, one chooses an energy E and integrates a large 
number (say, 2,000) tightly localized initial conditions corresponding to an energy very close to E.  
These trajectories then spread, and one can calculate moments, such as 〈x2(t)〉, of the corresponding 
distribution of trajectories versus time and assess whether they grow exponentially.  If they do, then 
one can extract the e-folding time and compare it to the analytic estimate.  Examples of such 
comparisons in galactic and beam systems appear in Fig. 1.  The galactic system is a uniform-
density ellipsoid containing a supermassive black hole at its centroid8.  The beam system is a 
configuration of thermal equilibrium having triaxial symmetry9. 

The preceding analytic results follow from a geometric treatment of scleronomous Hamiltonian 
systems in the spirit of Pettini and his collaborators10.  It does not apply to time-dependent systems, 
and thus it is not presently possible to point to an unambiguous analogy between the dynamics of 
beams and galaxies involving rheonomous Hamiltonians.  A geometric treatment of the latter 
would be based on a Finsler metric, i.e., a metric that incorporates velocities and time, but it 
becomes unclear how to define an invariant measure to use in place of the microcanonical 
ensemble for evaluating phase-space averages, particularly when one considers that resonances 
between orbital frequencies and the frequency spectrum of the time-dependent potential come into 
play.   Nonetheless, a reasonable ansatz is that a successful geometric treatment of rheonomous 
systems would result in a connection between beams and galaxies analogous to that of time-
independent systems.  The underlying reason is that both systems involve an inverse-square long-
range force, and this force is what drives chaotic mixing. 
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Figure 1.  (left) Numerical results (diamonds) and analytic (solid line) estimates of the mixing rate for chaotic orbits 
evolved in a triaxial galactic potential as a function of black-hole mass MBH and for total particle energy E = 1.0, (b) E 
= 0.6, (c) E = 0.4.  (right) Numerical (diamonds) and analytic estimates (dashed line) of the mixing rate for chaotic 
orbits in a triaxial thermal-equilibrium beam as a function of E.  In both figures the unit of χ  is tD

-1.  Further details can 
be found in Refs. [8,9] from which these figures are reprinted by permission of the American Physical Society. 
 

 
III. REGULAR VS. CHAOTIC ORBITS: A TORTURED HISTORY 

 

Chaos has been largely ignored until comparatively recently in both the galactic and 
accelerator-dynamics communities.  For example, although the famous Hénon-Heiles model12 arose 
originally in attempts to understand meridional motions in axisymmetric galaxies, as recently as 15 
years ago the potential role of chaos in galaxy structure and evolution was almost completely 
neglected (with the exception of a handful of groups in Europe).  Only with the advent of high-
resolution photometry, facilitated in part by the Hubble Space Telescope, did many galactic 
astronomers begin to recognize that the bulk potentials associated with realistically shaped galaxies 
are likely to admit significant measures of chaotic orbits. 

 
A. Galaxies 

 

It has been long recognized that the dominant mechanism for relaxation in galaxies cannot be 
‘collisional’.  For example, in the 1940s Chandrasekhar2 showed that the relaxation time scale tR on 
which binary encounters between individual stars could significantly alter the trajectories of stars in 
the Milky Way must be ~1012 years or more.  Shorter-time relaxation must somehow involve 
collective effects.  Two decades later, Lynden-Bell13 proposed a theory of ‘violent relaxation’ 
which argued, inter alia, that regular (i.e., nonchaotic) phase mixing associated with a time-
dependent potential might explain such collective effects.  Substantial evidence for rapid relaxation 
accumulated over the next twenty years derived both from numerical simulations of many-body 
systems and from the interpretation of observations of galaxies that have been involved in 
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collisions with other galaxies14.  Despite this, however, when subjected to closer scrutiny, it seemed 
that, at least in its simplest guise where the orbits that phase mix are assumed to be regular, violent 
relaxation could not explain why relaxation was as fast as it appears to be.  Some ingredient seemed 
to be missing.  Today there is good reason to think that the missing ingredient is chaos. 

In the early 1990s Kandrup and Mahon15 recognized that, because of their exponentially 
sensitive dependence on initial conditions, chaotic orbits should mix far more rapidly than regular 
orbits, in fact exponentially fast.  In the astronomical community this phenomenon, now termed 
‘chaotic mixing’16, led to speculations that chaos could play a critical role in violent relaxation.  
However, chaotic mixing in itself does not constitute a complete and satisfactory explanation.  It 
cannot drive collective relaxation unless many/most of the orbits are chaotic, a prerequisite whose 
fulfillment is far from obvious.  However, a few years later, motivated in part by the work of 
accelerator physicists17-19, astronomers20 recognized that time-dependent pulsations in the bulk 
potential of a galaxy readjusting toward a metaequilibrium state could, via resonant couplings, 
make many/most of the orbits in a galaxy chaotic with large finite-time Lyapunov exponents*21,22, 
and that the resulting ‘resonant phase mixing’ might be sufficiently strong and ubiquitous to 
explain violent relaxation.  
 

B. Charged-Particle Beams 
 

Concerns about collisionless relaxation in charged-particle beams have arisen with recent 
advances in technology for the production of high-brightness beams, wherein the collective 
Coulomb self-force, i.e., the space-charge force, becomes important.  In the laboratory frame this 
force decreases inversely as the square of the beam energy24.  For the transverse component, this is 
due to the partial cancellation between the self-magnetic and self-electrostatic forces; for the 
longitudinal component, it is due to Lorentz contraction.  Nonetheless, there are still many 
situations involving high-brightness beams where space charge is important.  Examples include 
both low-to-medium-energy hadron accelerators such as those envisioned to drive spallation-
neutron sources or heavy-ion fusion or that serve as boosters for high-energy machines, as well as 
low-energy lepton, (e.g., electron) accelerators such as photoinjectors25. 

One of the earliest papers to treat space charge in beams was by Kapchinskij and 
Vladimirskij26, who considered a direct-current beam with uniform charge density and elliptical 
cross section confined by linear external focusing forces, and derived the equations governing the 
motion of the beam envelope.  The corresponding distribution function in the four-dimensional 
transverse phase space of a single charge, commonly called the ‘KV distribution’, is a 
hyperellipsoidal shell.  A decade later, Sacherer27 noted that these results can readily be generalized 
to three-dimensional bunched beams (i.e., to six-dimensional phase space) so as to include the 
influence of space charge on bunch length and energy spread.  These two papers, regarded as 
classics by the accelerator community, set the stage for much of the subsequent investigations 
concerning space charge, from which evolved now-conventional design strategies for high-
brightness accelerators, strategies based on controlling root-mean-square (rms) properties of the 
beam. 

However, the past decade has brought the realization that, albeit necessary, controlling the rms 
__________________________________ 
*Finite-time Lyapunov exponents probe the average exponential instability of orbit segments over finite time intervals.  
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properties of a beam is not sufficient.  Perhaps the most prominent example concerns beam halos, 
i.e., particles that reach large orbital amplitudes due to a time-dependent space-charge potential 
arising because irregularities in the beamline prevent the beam from reaching a long-lived 
equilibrium state28.  The concern is that a tiny impingement of particles on the beamline, ~1 W/m 
for beam energies exceeding ~20 MeV, can generate sufficient radioactivation to preclude routine, 
hands-on maintenance.  Efforts to push our understanding of space charge beyond that required for 
computing bulk moments of the beam brought, as a spin-off, the realization that early-time 
dynamics in fully self-consistent charged-particle systems resembled that of violent relaxation in 
stellar systems18.  However, that resemblance was explored no further – until now. 
 
 

IV. EVIDENCE FOR CHAOS AND CHAOTIC MIXING 
 

A. Chaos in Galaxies 
 

1. The inevitability of chaos 
 

High-resolution observations of galaxies over the past decade or so have provided compelling 
evidence that many galaxies are more irregularly shaped than had been assumed as recently as 15 
years ago; and attempts to model such irregularly shaped objects have led many galactic 
dynamicists to conclude that the bulk potentials associated with realistic galaxies admit large 
measures of chaotic orbits.  It has been argued29 that nonaxisymmetric elliptical galaxies containing 
central density cusps of the form inferred from observations30 are very likely to admit large 
numbers of chaotic orbits.  And similarly, models of rotating barred spiral galaxies suggest31-33 that 
breaking axisymmetry with even a comparatively weak bar can trigger large numbers of chaotic 
orbits, especially near certain resonances.  More generally, as first stressed by Udry and 
Pfenniger34, making a galaxy less symmetric, e.g., by deforming it from axisymmetric to triaxial or 
by introducing ‘local’ asymmetries, tends generically to increase both the relative measure of 
chaotic orbits and the size of the largest Lyapunov exponents.  Although it is possible to contrive 
models of cuspy, nonaxisymmetric galaxies that are integrable or near-integrable35-37, they are not 
generic.  Instead, there has emerged a general sense in much of the galactic dynamics community 
that ‘generic’ irregularly shaped galaxies might be expected to contain large numbers of strongly 
chaotic orbits. 
 

2. Are galaxies really ‘in equilibrium’? 
 

One intriguing possibility is that, perhaps because of the presence of chaos, evolving galaxies 
will find it difficult, if not impossible, to approach a true equilibrium.  Rather, it may well be that, 
at the time of formation, a galaxy settles down toward a long-lived ‘metaequilibrium’ rather than a 
true equilibrium; and subsequently, in response to, e.g., external irregularities associated with a 
densely populated galactic cluster, exhibits a slow, secular evolution29,38.  To the extent that this be 
true, a basic question is whether a galaxy originally in a nonaxisymmetric metaequilibrium will 
evolve toward a more nearly axisymmetric state29; or whether instead a galaxy originally 
containing large numbers of strongly chaotic orbits might evolve toward other metaequilibria, not 
necessarily more nearly axisymmetric, which contain smaller numbers of chaotic orbits39.  In any 
event, it is generally accepted that a robust, stable metaequilibrium must contain large measures of 
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regular40 and/or sticky chaotic41 orbits to provide the ‘skeleton’ (i.e., foundation) of the interesting 
configurations that support chaotic orbits in the first place. 
 

3. The role of a time-dependent bulk potential 
 

There is also emerging evidence that chaos should be even more ubiquitous in systems that feel 
a strongly time-dependent bulk potential, especially a time dependence involving roughly periodic 
oscillations.  Nonlinear dynamicists argue that chaos typically arises via resonance overlaps6, and 
this time-dependent chaos is simply another example thereof.  When the time dependence 
influencing stellar orbits in a galaxy has power at frequencies sufficiently close to (multiples of) the 
frequencies at which the orbits themselves have power, the orbits and the time dependence can 
resonate with the result that the orbits become strongly chaotic.  If the time dependence is weak, 
such resonances may require a near-perfect frequency match, but for stronger time dependence it 
often suffices for the pulsation and orbital time scales to agree within an order of magnitude20.  
However, in a nearly collisionless system like a galaxy, dimensionally there is only one natural 
time scale, the dynamical time tD  ~ (Gρ )-1/2, with G the gravitational constant and ρ  a characteristic 
density.*  Consequently the pulsation and orbital times are likely to be comparable in magnitude 
throughout much of the galaxy, thus rendering chaos extremely common.  Simple models suggest 
that galaxies subjected to damped oscillations could (i) become almost completely mixed and (ii) 
settle down towards a nearly integrable metaequilibrium within a time as short as ~10 tD.  
Analogous effects can also be triggered by other nearly periodic phenomena such as localized, 
nonstationary collective modes, or a supermassive black hole binary orbiting near the center of a 
galaxy42.  Indeed, such a binary could produce anomalous ‘dips’ observed in the surface-brightness 
profiles of galaxies like NGC 3706 or NGC 4406 which suggest their respective mass densities do 
not decrease monotonically with distance from the center43. 

An example of such resonant phase mixing is illustrated in Fig. 2.  It tracks three initially 
localized clumps of test stars evolved in a galactic potential with periodic driving that damps as a 
power law in time.  The left and center panels exhibit the (x,y)-coordinates at several different 
times; the right panel exhibits the exponential growth of components of an emittance-like quantity ε

i (i=x,y,z), which measures the area of the occupied phase-space planes corresponding to the 
coordinate r i.

†  Here, e.g., 

,
222
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where 〈…〉 denotes an average over the clump.  As was argued in Sec. II, initially localized clumps 
of regular orbits typically diverge secularly, whereas clumps of chaotic orbits diverge exponentially  
at a rate set by the typical value of the largest finite-time Lyapunov exponent : 
 

, orbits) (chaotic            and          orbits)(regular   )/( t
i

p
Di ett χεε ∝∝   (8) 

 

with p a constant of order unity. 
______________________ 
*Assuming the bulk kinetic and potential energies are comparable in magnitude, then (Gρ )-1/2 ~ R/v, which is the time 
scale of a typical orbit. 
 

†In the context of charged-particle beams, emittance is given a more precise definition, which will be described in Sec. 
IV.B. 
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Figure 2. Left-hand and top middle panels: x and y coordinates for three different clumps of 1600 test stars evolved in 
the time-dependent galactic potential V(t)=-A(t)/(1+x2+y2+z2)1/2, with A(t)=1+(asinω t)/(1+t/t0)

2, for a=0.5, ω  =1.25, and 
t0=100.  From top to bottom, the snapshots are at times t=0, 32, 64, and, for the top middle panel, t=128.  The 
dynamical time tD~20.  The clumps had initial size δ x=δ y=0.04.  Bottom middle panel: A snapshot at t=128 for the 
same clumps evolved in a time-independent potential with A=1.  Right-hand panel: The quantity ε =(ε x

2+ε y
2)1/2 for the 

time-dependent clumps where, in terms of velocity components, the emittances ε x and ε y satisfy, e.g., ε x
2=〈x2〉〈vx

2〉-〈xvx〉
2.  

Here the angular brackets represent an average over the 1600 stars.  Right-hand panel (inset): Same for A=1. 
 
 

4. Experimental evidence for chaos in galaxies 
 

There can, of course, be no direct experimental evidence for chaos in galaxies.  However, 
careful analysis of observable velocity fields in suitably oriented galaxies provides compelling 
evidence that the gas flows in such spirals as NGC 3632 could be chaotic, especially near various 
resonances44. 

 
B. Chaos in charged-particle beams 

 
Intense charged-particle beams are, like galaxies, typically collisionless Hamiltonian systems 

wherein the density distribution self-consistently governs the dynamics via Poisson’s equation.  
Transients in the beam distribution often arise as the accelerator manipulates the beam, whereby 
questions of equilibration, damping, and reversibility become fundamentally important to 
establishing and preserving the desired phase-space properties of the beam.  For example, 
equipartitioning of anisotropic beams involves nonlinear energy transfer and evolution towards an 
isotropic metaequilibrium state45.  As will be shown, this is a consequence of chaotic mixing.  
Strictly speaking, chaotic mixing is a reversible process in that it is governed by Vlasov’s equation.  
However, an essential question for the accelerator designer is whether this process is operationally 
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reversible.  While it may be possible in principle to compensate operationally against phase-space 
dilution46, this compensation must be completed before any mixing has smeared a significant 
number of particles through global regions of phase space9,47.  The question then becomes one of 
time scales.  It arises regarding any process for manipulating a beam with space charge, be this 
changing the beam’s transverse geometry (flat-to-round or round-to-flat transformations48), its 
longitudinal geometry (bunch compression49), or controlling the beam through sudden changes or 
imperfections in the beamline50. 
 

1. Emittance and space charge 
 

Consider, for simplicity, an infinitely long, i.e., direct-current, beam that coasts without 
acceleration in the z-direction while confined by an external transverse focusing force.  It is then 
natural to compute particle dynamics in a reference plane that comoves with the beam and is 
oriented transversely with respect to the beam motion.  The particle velocities may in general 
exhibit both a systematic and a random component.  Regarding the former, the (x,y)-coordinates are 
then measured from the beam centroid.  Regarding the latter, an average kinetic temperature can 
then be defined for each transverse (x,y)-axis.  Roughly speaking, the product of this temperature 
and the rms beam size is defined as the ‘rms emittance’ of the beam, and this quantity is conserved 
for the special case that the (x,y)-components of the total transverse force (focusing plus space 
charge) are decoupled, linear, and time-independent in the reference frame comoving with the 
beam.  More precisely, the rms emittance for the x-direction is calculated as 
 

,
1 222
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where the averages involve moments defined with respect to the single-particle distribution 
function f(x,px,y,py).  Here (px,py) are the components of the transverse particle momentum with 
respect to the reference trajectory, 

β
=vz/c, γ =(1-

β 2)-1/2, m is the particle rest mass, and c is the speed 
of light.  The ‘effective emittance’, often called simply ‘emittance’, is 4ε

x, a quantity that 
corresponds to the area of the (x,px) phase space subtended by the beam and which has units of 
length.  The respective emittances in the y-direction are calculated analogously. 

Suppose the external transverse focusing force is linear, axisymmetric, and time-independent.  
For a beam with a small number of particles, the individual particles will oscillate harmonically 
(they execute what accelerator physicists call ‘betatron oscillations’) at the ‘undepressed’ betatron 
frequency, ω β o, determined solely by the external force.  The amplitude of the oscillation for each 
particle depends on its total energy, and this is determined completely by the initial position and 
velocity of that particle.  Now, as the beam current is increased, the superimposed electric field 
generated by the particles themselves becomes non-negligible, a phenomenon known as space 
charge.  Space charge alters the net force seen by the individual particles in a way that is generally 
nonlinear and dependent on the density distribution of the beam.  One can quantify space charge 
using a single parameter: the dimensionless intensity parameter �  defined as the ratio of the average 
space charge force to the external focusing force at the beam edge. 

Since space charge is repulsive, it lowers the frequency of the betatron oscillations, resulting in 
a ‘depressed’ betatron frequency ω β  < ω β o.  The average ‘tune depression’, defined as η   ω β / ω β o, is 
related to the intensity parameter by the formula η  = (1 - � )1/2.  Another important effect of space 
charge is the tendency to induce waves in the beam, a collective effect.  These waves are 
characterized by the plasma frequency ω p, which in turn relates to the intensity parameter �  as ω p = 
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(2� )1/2.  Thus, in the limit of zero space charge (�  = 0), the plasma frequency is zero, the tune 
depression is unity, and the particles behave as individual particles that only see the external 
focusing force.  At the opposite end, the space charge limit (�  = 1), the tune depression is zero, and 
the plasma frequency reaches its maximum value, meaning that collective oscillations dominate 
over the individual particles’ betatron motion.  At intermediate values of � , excepting certain 
contrived theoretical distributions, e.g., the KV distribution26, the net force acting on individual 
particles is typically nonlinear.  Inasmuch as real beams are commonly out of equilibrium and 
subject to time-dependent focusing, the net force is often time-dependent as well. 
 

2. Chaos and equipartitioning 
 

Anisotropy in a beam can be caused by essentially any anisotropic external influence, such as 
anisotropic focusing.  In addition, a recent computational study provided strong evidence that 
chaotic mixing due to nonlinear forces from space-charge waves is intimately connected with 
equipartitioning, i.e., the tendency of the velocity ellipsoid (or equivalently, the temperature) to 
isotropize rapidly51.  These computations were done using the ‘2+1/2’-dimensional* version of the 
particle-in-cell code WARP52, which tracks macroparticles with prespecified initial conditions 
through external electric and magnetic fields while including the self-consistently computed self-
fields.  The work concerned a highly space-charge-dominated, direct-current, cylindrical beam in 
which the initial momentum space reflected a temperature anisotropy.  Accordingly, the initial rms 
emittances ε

x and ε
y were unequal, but the external focusing was axisymmetric.  As the beam 

evolved, the temperature isotropized rapidly.  Full equipartitioning occurred within just ~5 m, after 
which the temperature exhibited anisotropic oscillations that largely damped by ~50 m.  The 
equipartitioning time scales were found to correlate with the evolution of initially localized clumps 
of globally chaotic particles.  These clumps dispersed exponentially with an e-folding ‘time’ ~2 m 
(roughly two plasma periods) and filled their accessible phase spaces in ~50 m. 
This first study concerned a form of ‘symmetry breaking’, with the broken symmetry appearing in 
momentum space rather than configuration space.  The beam began in a nonequilibrium state and 
evolved toward a metaequilibrium in which the particle orbits filled an invariant measure of phase 
space.  The transient dynamics reflected an intricate, evolving network of space-charge waves that 
set up a complicated time-dependent potential in which a substantial population of particle orbits 
became globally chaotic.  By contrast, an analogously evolved symmetric, isotropic system 
exhibited a near-static potential that was essentially integrable, so that the orbits were essentially 
regular.  The character of the orbits is evident in Fig. 3, which shows trajectories of 20 test particles 
randomly selected from a given initially localized clump in both isotropic and anisotropic systems.  
Progressively reducing the area of the phase space initially spanned by the clump, as would be done 
in a calculation of finite-time Lyapunov exponents, reveals that the test-particle orbits are regular in 
the isotropic beam.  However, the orbits are clearly chaotic in the anisotropic beam, this reflecting 
the complicated network of space-charge waves that arise in the presence of anisotropy. 
Equipartitioning did not lead to a significant halo because the rms properties of the beam were 
‘matched’ to the strength of the focusing forces, thereby minimizing large-scale time-dependent 
oscillations*. 
___________________________ 
*Distance down the accelerator is viewed as a ‘time’ coordinate; hence the appellation ‘2+1/2’-dimensional. 
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Figure 3.  Trajectories of 20 test particles in (x,y)-space for the isotropic beam (top); and the anisotropic beam (bottom).  
The initial clump ‘emittance’ decreases progressively by factors of 10 from left to right, thereby exposing the chaotic 
behavior of orbits in the anisotropic beam. 
 
 

3. Merging beamlets: analysis of a real laboratory experiment 
 

A unique laboratory experiment concerning violent relaxation in charged-particle beams, 
conducted in the early 1990s, involved the propagation and merging of five beamlets in a periodic 
solenoidal (hence axisymmetric) transport channel of length slightly more than 5 m53-55.  The 
beamlets were initially oriented in a quincunx pattern and were close enough to each other that 
mutual interactions were important.  The beam was nonrelativistic and subject to considerable time-
dependent space charge.  Given such a highly anisotropic initial density distribution and isotropic 
focusing, and considering that the time scale for collisional relaxation is orders of magnitude longer 
than the transport channel, one might naively expect the beamlets to merge (hence, ‘disappear’) and 
reappear periodically.  However, the beamlets were observed to reappear only once, at a point ~1 m 
from the source, regardless how well (or poorly) the rms beam properties were matched to the 
transport channel.  Moreover, rms-mismatched beams led to the formation of an extended halo, 
with the density of the halo increasing with the degree of mismatch.  Detailed simulations with a 
particle-in-cell code successfully reproduced the measurements55.  The failure of the beamlets to 
reappear again would seem to reflect a collisionless process that, in effect, causes the particle orbits 
to lose memory of their initial conditions.  

To explore to what extent chaotic mixing influences the dynamics of such a manifestly 
nonequilibrium beam, we redid the simulations using WARP.  Our new simulations differ slightly 
from the experiment in that we considered a simpler transport channel, one that imparts a constant, 
linear external focusing force, whereas in the experiment the channel constituted a periodic 
solenoidal focusing lattice.  We used a total of 4×106 particles distributed equally between each of 
the five beamlets.  The idea was to generate a reasonably smooth potential.  Our results correlated 
_________________________ 
*A beam is said to be ‘matched’ to the transport channel if its transverse density profile is stationary over the length of 
the channel.  Otherwise, the density profile evolves.  Consider the rms transverse radius of an evolving density profile.  
If the rms radius is stationary (equaling that of the matched beam), then the beam is ‘rms-matched’; otherwise, it is 
‘rms-mismatched.  The density profile, hence space-charge potential, is normally more weakly time-dependent in a 
rms-matched beam than in a rms-mismatched beam.  Only in the case of the strictly matched beam will the space-
charge potential be stationary. 
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well with measurements of the density profile versus position along the beamline. 
One might expect the strongly time-dependent space-charge potential to drive a large 

population of globally chaotic orbits.  That this is the case is illustrated in Fig. 4, which shows that 
clumps of representative test particles initially localized in phase space grew exponentially to fill 
much of their accessible phase-space regions.  In each case, an initial extremely fast growth rate 
subsequently gave way to a slower rate, the transition occurring after a distance ~5 m at which time 
the beamlets had lost their identity and the phase-space distribution had become rounder.  This 
computational finding is completely in keeping with the experimental findings. 

 

 
Figure 4.  Left-hand and middle panels: (x,y) plots (unit = m) for two different initially localized clumps of 20,000 test 
particles evolved in the total potential self-consistently computed using WARP.  The snapshots are taken from a 
simulation of an rms-mismatched beam, at locations s=0.0, 10.08, 14.4, and 20.16 m along the beamline, with the 
exception of the bottom middle snapshot, which is at s=31.68 m and pertains to a simulation with the rms-matched 
beam.  The plasma wavelength is 0.47 m and the betatron wavelength is 2.0 m.  The initial emittance of each clump is ε x=ε y=6.48×10-10 m, which is 10-5 the full beam emittance.  Right-hand panel: Natural logarithm of the emittance 4ε x for 
5 clumps, each sampling a progressively smaller portion of the ‘red’ clump on the left, hence progressively smaller 
initial emittances.  Right-hand panel (inset): Same for the rms-matched beam. 
 
 

4. Halo formation 
 

Los Alamos recently completed a laboratory experiment56 involving the production and 
measurement of halo generated in a proton beam that was intentionally mismatched to a periodic 
focusing channel comprised of quadrupole magnets.  The beam energy and current were 6.7 MeV 
and 75 mA, respectively, meaning the beam was nonrelativistic and space charge was strong.  The 
length of the focusing channel spanned ~10 mismatch oscillations.  The principal inferences from 
this experiment and corresponding simulations57 were that (i) the phase-space volume of the beam 
grew in conjunction with the conversion of free energy from mismatch into ‘thermal’ energy of the 
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beam, and (ii) parametric resonance was the principal mechanism driving halo formation.  These 
inferences correspond to expectations from idealized theoretical models58,59.  However, the 
quantitative data appeared to be sensitive to the exact phase-space distribution of the input beam, 
which could not be measured with precision, and the finite sensitivity of the diagnostics precluded 
characterization of the tenuous outermost wings of the halo profile.  Moreover, the theoretical 
models provide no prediction of growth rates; the simulations were used to extract this information 
for comparison with the experiment. 

As is documented in a companion paper in these Annals28, recent work has revealed that 
parametric resonance is not the whole story respecting halo formation60-62.  The presence of colored 
noise (noise with a nonzero autocorrelation time), a real phenomenon associated with hardware 
imperfections and/or charge-density fluctuations, in combination with parametric resonance, can 
lead to much larger halos and remove the hard upper bound to the halo amplitude inferred from 
parametric resonance acting alone.  Basically, this happens because the noise can keep a 
statistically small number of particles more in phase with low-order oscillatory modes of the beam.  
Here the fact that the orbits are chaotic is extremely important.  Because chaotic orbits have power 
over a continuous set of frequencies, their coupling to both the modes and the noise can be 
significantly enhanced relative to the couplings which would arise for regular, multiply periodic 
orbits. 

Recent theoretical studies indicate that precisely the same phenomenology applies to galaxies, 
as well.  Bohn and Sideris60 found that substantial halo appears in gravitational systems as well as 
in beams.  Colored noise in galaxies arises from the ambient intergalactic environment through the 
influence of neighboring stellar systems and/or clumpy dark-matter halos, as well as from internal 
density fluctuations within the subject galaxy.  Subsequent work indicated that galactic halo 
formation is insensitive to the details of the bulk potential; generally all that is required are 
collective modes and noise63.  This finding raises interesting questions: Are the observed light 
profiles of real galaxies primarily the product of violent relaxation at early epochs? Or can 
remanent oscillations act over a Hubble time to alter substantially the product of violent relaxation 
alone?  An effort toward answering these questions is underway, and a preliminary study indicates 
that long-time evolution and its associated halo formation can indeed influence observational 
properties of large galaxies64. 
 

5. The smooth-potential approximation 
 

The foregoing discussion implies that, viewed ‘on the whole’, discrete systems of stars or 
charged particles, if sufficiently large, can be approximated by a continuous density distribution 
and a smooth bulk potential.  As pointed out in the aforementioned companion paper28, this 
assumption has been questioned in both the galactic65 and accelerator66,67 communities.  To what 
extent is it really true that there actually is a smooth continuous-density limit?  And assuming this 
limit exists, how large must the system be before discreteness effects (i.e., granularity associated 
with finite particle number) can safely be ignored?  Can one, e.g., treat a realistic beam bunch 
comprised of 109-1011 particles as a continuous charge distribution? 

Numerical computations performed over the last several years, for both self-gravitating68 and 
self-electrostatically interacting69 Coulomb systems, suggest strongly that, viewed macroscopically, 
there is a well-defined continuum limit, and that discreteness effects can be extremely well 
modeled, even for individual orbits over comparatively short times, by Gaussian white noise in the 
context of a Fokker-Planck description.  Indeed, one can estimate smooth-potential Lyapunov 
exponents from N-body simulations70. 
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That a Fokker-Planck description can be justified is nontrivial since the standard derivations4 
and most experimental tests focus on the long-time behavior of orbit ensembles.  Even more 
interesting, however, is the fact that, when applied to chaotic systems, a Fokker-Planck description 
implies that discreteness effects can be important on time scales much shorter than the collisional 
relaxation time tR!  Discreteness effects can dramatically accelerate diffusion through a complex 
phase space, both by facilitating transport along the Arnol’d web5 and, in some cases, by 
transforming regular orbits into chaotic orbits and vice versa.  Indeed, under certain circumstances, 
e.g., for systems with ‘lumps’ and/or asymmetries and/or pronounced density gradients, 
discreteness effects can be important on relatively short time scales even for N as large as ~1010! 69  

It is important to stress that, even if discreteness effects become important over comparatively 
short time scales, their effect is not to induce collisional relaxation.  Suppose, e.g., that, in the 
absence of discreteness effects, the bulk potential, albeit chaotic, is strictly time-independent and 
the energies of individual ‘particles’ are thereby conserved absolutely.  Discreteness effects can 
then act to accelerate diffusion through a complex phase space, serving as a source of what 
nonlinear dynamicists call ‘extrinsic diffusion’5; but, over time scales much smaller than tR, they do 
not induce significant changes in energy. 
 

6. Summary 
 

There is growing evidence that physical processes involving chaos act very similarly in 
galaxies and charged-particle beams.  In both cases a time-dependent potential can trigger 
resonances which lead to large measures of strongly chaotic orbits with large Lyapunov exponents, 
even if, as for the model used to generate Fig. 2, the potential becomes integrable when the time 
dependence is ‘turned off.’  Manifestations of chaos can also be quite similar in time-independent 
systems.  For example, a systematic investigation9 of how the amount of chaos in a thermal-
equilibrium beam71 varies with the beam’s geometry yields results very similar to what is found72 
in triaxial generalizations of the Dehnen potentials of galactic dynamics73 that have been proposed 
to model cuspy, triaxial galaxies74. 
 
 

V. PLANS FOR FUTURE EXPERIMENTS 
 

Charged-particle beams differ from galaxies in that beams will adjust themselves to screen the 
external focusing force.  The screening distance is the Debye length, and in a configuration of 
thermal equilibrium, the density profile in the outer region of the beam decreases to a low-density 
tail over a few Debye lengths as a result of screening the external focusing force9.  By contrast, 
galaxies do not exhibit any analog of this Debye shielding*.  Consequently, with a beam, the bulk 
potential (focusing plus space charge) cannot generally be molded to match precisely that of an 
evolving stellar system.  For example, structures mimicking the presence of central density cusps or 
black holes in galaxies cannot be preserved in a beam because space charge is repulsive.  Nor can a 
beam mimic effects from space-time evolution over cosmological time scales.  However, 
phenomenology inherent to time-dependent collective dynamics in galaxies can be mimicked with 
beams.  Gravitational examples (and their beam analogs) include colliding and merging galaxies 
(merging beamlets), collapsing galaxies (rms-mismatched beams), or perturbed but comparatively 
quiescent galaxies (beams with evolving density inhomogeneities).  Thus, the key dynamics 
________________________________ 
*Concerning gravitation, the length scale of interest is the Jeans length over which a gravitational instability arises, 
thereby leading, e.g., to the formation of galaxies. 



16 

underlying galactic systems can be studied in the laboratory. 
As implied in Sec. IV.B, to date there have been no laboratory experiments designed explicitly 

to explore the role of chaotic phase mixing via Coulomb forces on the evolution of nonequilibrium 
beams.  Our simulations and interpretation of the merging-beamlet experiment in Sec. IV.B.3 point, 
however, to the importance of chaotic dynamics in real beams.  And the preponderance of 
simulations that we have highlighted herein suggests strongly that the combined effects of transient 
chaos and resonances are the keys toward a full understanding of violent relaxation in both beams 
and galaxies.  Accordingly, we are planning a series of experiments to study phase mixing and 
attendant collisionless relaxation using the University of Maryland Electron Ring (UMER), a 
facility that is just now coming on line75.  The ring is designed to transport the beam through many 
turns spanning over 1 km, a distance spanning some 500-1000 plasma periods, and the relative 
strength of the collective space-charge force is adjustable over a wide range, 0.25  �   0.97. 

The evolution and mixing of initial perturbations can be tracked using the comprehensive suite 
of diagnostics incorporated into UMER.  As a whole, the diagnostic suite permits direct 
measurement of mixing time scales in units of the characteristic dynamical time, and the degree of 
mixing in both configuration space and in energy, by enabling the evolution of macroscopic 
features to be observed and quantified.  It should thereby be possible to distinguish observationally 
between chaotic (i.e., exponential, global) phase mixing versus regular (i.e., secular, more local) 
phase mixing.  We also plan, of course, to confirm our interpretations using simulation codes.  We 
project an added benefit, as well: establishing the phenomenology of phase mixing in time-
dependent beam potentials both experimentally and numerically should likewise provide an 
unambiguous mechanism for validating codes and simulation techniques in both beam physics and 
galactic dynamics. 
 
 

VI. CONCLUSIONS 
 
It is clear that, in principle, chaotic mixing can account for rapid macroscopic dynamics, 

including collective ‘relaxation’ to a metaequilibrium state.  Moreover, there is substantial 
numerical evidence that such mixing could play an important role in the evolution of both galaxies 
and charged-particle beams.  While a portion of this numerical evidence arose historically as part of 
interpreting real laboratory experiments with beams, there is need for considerably more work.  Our 
idea is to look for evidence of chaos and chaotic phase mixing in controlled laboratory experiments 
involving large Coulomb systems.  Unfortunately and obviously, it is impossible to perform 
controlled experiments on self-gravitating systems like galaxies.  However, in view of the strong 
indications, both theoretical and numerical, that the relevant physics is virtually identical in 
galaxies and charged-particle beams, it seems possible – and highly desirable – to use beamlines 
like UMER as laboratories in which to perform indirect tests of the predictions of galactic 
dynamics.  The key quantities to be measured in such experiments are the evolutionary time scales 
attendant to charged-particle beams with well-diagnosed and freely adjustable initial conditions, as 
well as the efficacy of mixing in both configuration space and energy. 

The suite of diagnostics on UMER is capable of detailed, time-resolved measurement of the 
distribution function in the six-dimensional phase space of a single beam particle.  These 
diagnostics are designed to measure the same macroscopic observables and their respective 
evolutionary time scales as are generated in numerical simulations.  Accordingly, UMER serves as 
a platform for a virtually unlimited range of experiments to explore nonlinear, transient dynamics 
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of Coulomb systems, and our overarching plan is to exploit this capability to access the physics of 
collisionless relaxation that large charged-particle and self-gravitating stellar systems share in 
common. 
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