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ABSTRACT

The thermal Sunyaev Zeldovich (SZ) effect directly probes the thermal energy of the
universe. Its precision modeling and future high accuracy measurements will provide a
powerful way to constrain the thermal history of the universe. In this paper, we focus
on the precision modeling of the gas density weighted temperature T̄g and the mean
SZ Compton y parameter. We run high resolution adiabatic hydro simulations adopt-
ing the WMAP cosmology to study the intergalactic medium (IGM) temperature and
density distribution. To quantify possible simulation limitations, we run n = −1,−2
self similar simulations. Our analytical model on T̄g is based on energy conservation
and matter clustering and has no free parameter. Combining both simulations and
analytical models thus provides the precision modeling of T̄g and ȳ. We find that the
simulated temperature probability distribution function and T̄g shows good conver-
gence. For the WMAP cosmology, our highest resolution simulation (10243 cells, 100
Mpc/h box size) reliably simulates T̄g with better than 10% accuracy for z & 0.5.
Toward z = 0, the simulation mass resolution effect becomes stronger and causes
the simulated T̄g to be slightly underestimated (At z = 0, ∼ 20% underestimated).
Since ȳ is mainly contributed by IGM at z & 0.5, such simulation effect on ȳ is no
larger than ∼ 10%. Furthermore, our analytical model is capable of correcting this
artifact. It passes all tests of self similar simulations and WMAP simulations and is
able to predict T̄g and ȳ to several percent accuracy. For low matter density ΛCDM
cosmology, the present T̄g is 0.32(σ8/0.84)3.05−0.15Ωm(Ωm/0.268)1.28−0.2σ8 keV, which
accounts for 10−8 of the critical cosmological density and 0.024% of the CMB energy.
The mean y parameter is 2.6×10−6(σ8/0.84)4.1−2Ωm(Ωm/0.268)1.28−0.2σ8. The current
upper limit of y < 1.5×10−5 measured by FIRAS has already ruled out combinations
of high σ8 & 1.1 and high Ωm & 0.5.

Key words: Cosmic microwave background-theory-simulation: large scale structure,
intergalactic medium, intracluster gas, cosmology, thermal history

1 INTRODUCTION

Ionized electrons with thermal motion can scatter CMB
photons to generate secondary CMB temperature fluctua-
tions known as the thermal Sunyaev Zeldovich (SZ) effect.
Since all free electrons participate in the inverse Comp-
ton scattering and contribute to the SZ effect, the SZ ef-
fect is an unbiased probe of the thermal energy of the uni-
verse at z . 6, for which the universe is highly ionized.
The thermal SZ effect is sensitive to various physical pro-
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cesses like adiabatic gravitational heating, feedback, pre-
heating and radiative cooling (da Silva et al. 2001; Lin et al.
2002; White, Hernquist & Spingel 2002; Zhang & Wu 2003)
which affect the thermal energy of the baryons. In ad-
dition, Compton cooling of first star supernova remnants
(Oh, Cooray & Kamionkowski 2003), cluster magnetic field
(Zhang 2004), etc. could further alter the thermal energy of
the universe to the level of & 10%. Therefore, the precision
measurement and interpretation are of great importance to
understand the thermal history of the universe.

Current CMB experiments such as CBI(Bond et al.
2002; Mason et al. 2003), BIMA(Dawson et al. 2002) and
ACBAR (Kuo et al. 2002) marginally detected the SZ ef-
fect. Several upcoming CMB experiments such as ACT,
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APEX, Planck, SPT and SZA are likely able to measure the
SZ effect with ∼ 1% accuracy in the next several years. In
order to utilize the power of such accurate experiments, the
modeling of the SZ effect is required to meet this ∼ 1% accu-
racy. The first natural step for such modeling is to robustly
understand the evolution of the baryon thermal energy in
an adiabatically evolving universe. It is not only required
to extract more complicated physics by comparing with ob-
servations but also provides clues for the modeling of these
complicated physics.

Much effort has been devoted toward this
goal, both analytically (Cole & Kaiser 1988;
Makino & Suto 1993; Atrio-Barandela & Mucket 1999;
Komatsu & Kitayama 1999; Cooray, Hu & Tegmark
2000; Molnar & Birkinshaw 2000; Majumdar 2001;
Zhang & Pen 2001; Komatsu & Seljak 2002) and sim-
ulationally (da Silva et al. 2000; Refregier et al. 2000;
Seljak, Burwell & Pen 2001; Springel, White & Hernquist
2001; Zhang, Pen & Wang 2002). Both methods have
limitations, which has not been quantified and corrected
to meet the precision of future observations. Analytical
models of the SZ effect are often ad hoc procedures. In
the halo model, the cluster gas pressure distribution is
a free function of cluster mass and redshift. Though it
can be calculated by various assumptions such as hydro-
static equilibrium, its uncertainty is hard to quantify. In
the continuum field model (Zhang & Pen 2001), the gas
temperature is determined by the gravitational potential,
whose zero point is determined somewhat arbitrarily. So,
analytical models must be tested and calibrated against
simulations. For instance, Refregier & Teyssier (2002) has
tested the halo model against simulations and found good
agreement. However, the conclusions drawn from these
comparisons should be viewed with some caution. Numeri-
cal simulations are known to have artifacts, stemming from
limited resolution and finite volume. The impact of some
of the artifacts have been investigated for the thermal SZ
effect (Refregier & Teyssier 2002) and the kinetic SZ effect
(Zhang, Pen & Trac 2004). If not corrected, such artifacts
would lead to biased calibrated analytical models.

The SZ mean temperature decrement, or equivalently,
the mean SZ Compton y parameter, which corresponds to
the density weighted gas mean temperature T̄g, are the low-
est order SZ statistics. They are also the easiest to simulate
and model. So, the precision prediction of T̄g and ȳ stands as
the first natural step toward the precision modeling of the
SZ effect. Their precision modeling also provides clues for
the next low order SZ statistics such as the SZ power spec-
trum and the corresponding gas pressure power spectrum.
In this paper, we present a detailed study of the IGM den-
sity and temperature distribution from a series of ΛCDM
and self similar simulations. We further test the continuum
model prediction of T̄g and y parameter against simulations.
Our goal is to quantify and correct numerical limitations and
build calibrated analytical model aimed at 1% accuracy. We
will follow a similar procedure as in this paper to discuss the
precision modeling of the SZ power spectrum in a companion
paper (Zhang, Pen & Trac, 2004, in preparation).

2 THE THERMAL SUNYAEV-ZELDOVICH

EFFECT

Free electrons scatter off CMB photons by their thermal
motions and introduce secondary CMB temperature fluctu-
ations:

Θ = −2yST (ν) = −2y

[

2 − x/2

tanh(x/2)

]

, (1)

where x ≡ hν/kBTCMB. This is known as the thermal
Sunyaev-Zeldovich (SZ) effect (Zeldovich & Sunyaev 1969).
The Compton y parameter is given by the integral of elec-
tron thermal pressure energy along the line of sight

y =

∫

nekBTe

mec2
σT adχ, (2)

where χ is the comoving distance and a is the scale fac-
tor. The lowest order statistics of the SZ effect is the mean
Compton y parameter:

ȳ = −2.37 × 10−4Ωbh

∫

T̄g

keV
a−2dχ̃, (3)

where T̄g ≡ 〈(1 + δg)Tg〉 is the gas density weighted mean
temperature and χ̃ ≡ χ/(c/H0) is the dimensionless comov-
ing distance while H0 is the present Hubble constant.

The thermal energy of the universe only accounts for a
tiny fraction of the total energy of the universe.

ΩTE = 1.08 × 10−8 T̄g

0.3keV

Ωbh
2

0.02
. (4)

As a comparison, ΩCMB = 2.48 × 10−5h−2 and the energy
in other wavelength bands of light

ΩEBL = 2.48 × 10−6h−2 IEBL

100 nw m−2 sr−1
. (5)

3 HYDRO SIMULATIONS

We ran cosmological hydrodynamical simulations using
a new Eulerian cosmological hydro code (Trac & Pen
2003a,b). This Eulerian code (hereafter TP) is based on the
finite-volume, flux-conservative total variation diminishing
(TVD) scheme that provides high-order accuracy and high-
resolution capturing of shocks. The hydrodynamics of the
gas is simulated by solving the Euler system of conservation
equations for mass, momentum, and energy on a fixed Carte-
sian grid. The gravitational evolution of the dark matter is
simulated using a cloud-in-cell particle-mesh (PM) scheme
(Hockney & Eastwood 1988).

The robustness of the TP code has been tested by com-
paring the evolution of the dark matter and gas density
power spectra from the simulations with the fitting formula
of Smith et al. (2003). We also performed a code compari-
son by running the same initial conditions using the MMH
code (Pen 1998), which combines the shock capturing abil-
ities of Eulerian schemes with the high dynamic range in
density achieved by Lagrangian schemes. Power spectra are
computed using FFTs. We find good agreement at all rele-
vant scales and redshifts for both comparisons.

Eulerian schemes are ideal for simulating the evolution
of the IGM to model the thermal and kinetic SZ effects and
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Figure 1. The gas temperature distribution in the 10243, 100
Mpc/h WMAP simulation. The top left panel shows the cumula-
tive mass fraction p(> T ) with temperature higher than T . The
bottom bottom panel shows the conditional p(> T ) in different
overdensity regions at z = 0. The right panels plot the corre-
sponding dP/d lnT . At z = 0.0, only 5% gas is hotter than 1 keV.
Gas temperature is tightly correlated with gas density. Nearly all
virialized gas is hotter than 1 keV while effectively no gas with
δ < 10 is hotter than 0.1 keV.

the Lyman alpha forest, because of their high speed, supe-
rior mass resolution, shock-capturing abilities. Furthermore,
Eulerian algorithms are computationally very fast and mem-
ory friendly, allowing one to optimally use available compu-
tational resources.

We ran a 10243 cells, 100 Mpc/h box size simulation
with the best fit WMAP-alone cosmology Ωm = 0.268,
ΩΛ = 0.752, Ωb = 0.044, h = 0.71, and σ8 = 0.84
(Spergel et al. 2003). The ratio of dark matter particles
to fluid elements is 1:8. We achieve a spatial resolution of
∆x ≃ 100 kpc/h and a dark matter particle mass resolution
of ∆m ≃ 5.6×108 M⊙. The initial conditions are generated
by sampling from an initial power spectrum computed using
CMBFAST (Seljak & Zaldarriaga 1996). This simulation is
started at a redshift of z = 100 and evolved down to z = 0,
with data outputs at z = 3, 1, 0.5, 0.2 and 1. This sim-
ulation takes approximately 700 time-steps to evolve from
z = 100 down to z = 0. On a GS320 Compaq Alpha server
with 32 cpus and total theoretical peak speed of 32 Gflops,
the run takes approximately two days. Simulations are lim-
ited by both the box size, which causes the absence of large
scale density fluctuation at scales larger than half box size,
and resolution, which results in the failure to resolve small
scale structures. Self similar simulations are ideal to test and
quantify such simulation limitations since different redshifts
directly corresponds to different resolution and box size. We
ran one n = −2 and one n = −1 (Ωm = 1) self similar sim-
ulation with 5123 cells and the same amount of dark matter

Figure 2. The contour of gas (log)temperature and (log)density
in the 10243 WMAP simulation. Gas temperature strongly cor-
relates with gas density with a scaling relation T ∝ ρ, as found
in previous works (e.g. Kang et al. (1994); Dave et al. (2001)).

particles. In these simulations, Ωb is set to be 0.044/0.268 to
mimic the Ωb/Ωm ratio of the WMAP cosmology. The initial
fluctuation is normalized such that, when linearly extrapo-
lated to z = 0, the correlation length is half the simulation
box size. We also run a 5123 cells, 100 Mpc/h WMAP sim-
ulation with the identical initial condition as the 10243 for
a direct comparison. The moving frame of the TP code is
not turned on in these runs. We will check its effect in the
future.

We show the temperature distribution function, namely
the mass fraction of gas hotter than T , p(> T ) of the 10243

WMAP simulation in Fig. 1. At z = 0.0, only 5% gas are
hotter than 1 keV and ∼ 40% gas are hotter than 0.1 keV.
These fraction drops to 3% and 24% at z = 1.0. Gas tem-
pearture shows a strong positive correlation with its den-
sity. At z = 0.0, nearly all gas with δ & 1000 are hotter
than 1 keV. For 100 < δ < 1000, almost all gas are hot-
ter than 0.1 keV. Nearly no gas hotter than 0.1 keV lies
in δ < 10 region. It is interesting to see how much gas lies
in virialized halos. Virialized gas should have an overden-
sity larger than that of the gas overdensity at the virial ra-
dius. For an isothermal density profile ρ ∝ r−2, this states
δ > δ(rvir) = 1/3∆c/Ωm ∼ 100. ∆c ∼ 100 for WMAP
(Eke et al. 1996) is the mean matter density in a virialized
halo with respect to the critical density. This factor 1/3 does
not change much for other profiles such as NFW and thus we
omit its variation. Then the bottom panel of Fig. 1 implies
that only ∼ 28% gas resides in virialized halos. At z = 1.0,
this fraction drops to ∼ 19%. The halo model assumes all
the matter resides in virialized halos and thus contradicts
this result. It may introduce artifacts in the predictions, as
suggested also by Refregier & Teyssier (2002).
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Figure 3. The comparison of the conditional temperature distri-
bution function p(> T, δ1 < δ < δ2) between WMAP 10243 (thick
lines) and 5123 (thin lines) simulations. For clarity, we only show
δ > 1000 (solid lines), 1000 > δ > 100 (dot lines), 100 > δ > 10
(short dash lines), 10 > δ > 1 (long dash lines). Though the
overall p(> T ) agrees very well for two simulations (Fig. 5), the
conditional p(> T, δ1 < δ < δ2) does not converge yet and reflects
the effect of simulation resolution. δ & 1000 corresponds to the
inner regions of clusters and groups. For these virialized objects,
their temperature scales with respect to their mass M as M2/3.
For typical groups, T ∼ 1 keV. Higher resolution simulations are
able to resolve more low mass halos, which are smaller and have
lower T and thus result in a higher p(> T, δ > 1000) at T . 1
keV. The limited simulation resolution introduces artifacts into
the T -ρ correlation. Though its effect to the gas density weighted
temperature is minor (Fig. 5), it would affect the simulated pres-
sure power spectrum significantly.

In our simulation, a large fraction of gas is colder than
∼ 104K. At z = 0, this fraction is ∼ 10% and at z = 3, this
fraction reaches ∼ 50%. In reality, part of these gas may
condense into stars or interstellar medium. Part of them
may be photoionization-heated to above 104K. Our simula-
tion does not include any photoionization, radiative cooling,
etc., so the prediction about these gas is not reliable and is
hard to compare with other works (e.g. Kang et al. (1994);
Dave et al. (2001)). But the contribution of such gas to the
SZ effect is negligible due to their low temperature, so we
omit the complexity caused by such gas.

The strong correlation of T and ρ observed in p(> T, >
ρ) is clearly shown in the T -ρ contour of our 10243 simulation
(Fig. 2). T ∝ ρ holds in a large T -ρ regions, as found in
previous works (e.g. Kang et al. (1994); Dave et al. (2001)).

Simulations are both mass and spacial resolution
limited. So the above results may be strongly reso-
lution dependent. Both the Press-Schechter formalism
(Press & Schechter 1974) and the Jenkins fitting formula
(Jenkins et al. 2001) imply the existence of numerous small
halos. The failure to resolve these small halos will result in

0.001

0.01

0.1

1 10%

z=31

z=15

z=7

20%

0.1 1 10 100

0.001

0.01

0.1

1 50%

0.1 1 10 100

90%

Figure 4. The contour of gas (log)temperature and (log)density
in the n = −1 self similar simulation. The simulations show good
convergence in most T -ρ regions. Higher resolution is required to
simulate both low T , low ρ regions and high T , high ρ regions.
But low T , low ρ regions have little contribution to mean gas
density weighted temperature.

an underestimation of the fraction of virialized gas and bi-
ased T -ρ relation. To estimate the resolution effect, we com-
pare between WMAP simulations and between self similar
simulations.

In low density regions, the density field is well resolved.
But such regions generally have high Mach number and thus
shocks are relatively poorly resolved. Since gas thermal en-
ergy is generated by shock heating, in low density regions,
temperature field is likely poorly resolved. In high density
regions, it is the opposite case. Fig. 3 shows that both fields
are indeed significantly affected by resolutions. The fraction
of δ > 1000 gas increases from ∼ 1% in the 5123 simulation
to ∼ 5% at 10243. The 10243 simulation is able to resolve
smaller halos, which have lower temperature and results in
an increase in dp(> T, δ > 1000)/d ln T at T . 3 keV. The
fraction of virialized gas (δ & 100) increases from ∼ 18% to
∼ 28%. For δ < 10, the conditional p(> T ) agrees well at
the high T tail where Mach numbers are low and diverges
at the low T tail where Mach numbers are high. So, for
δ < 10, shock capture is the dominant resolution factor. In
summary, the IGM density and temperature distribution in
simulations is mainly limited by density resolution in high
density regions and shock capturing ability in low density re-
gions. We thus expect that higher resolution simulations will
result in larger dispersion in the gas ρ-T phase space distri-
bution, and thus larger pressure dispersion. This conclusion
is further confirmed in the T -ρ contours of the probability
distribution for our self similar simulation results (Fig. 4).
Such resolution effect has only minor effect on T̄ , but its
effect on the pressure power spectrum may be important.
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Figure 5. The comparison of the overall temperature distribu-
tion function p(> T ) between the WMAP 10243 and the 5123

simulations. Two simulations agree well. p(> T ) is directly re-
lated to the mean gas mass weighted temperature T̄g through the
relation T̄g ≡

∫

Tdp. The good convergence of p(> T ) implies

that the simulation effects to T̄g is minor, though we will still
quantify them in §4.

We will study this issue in a companion paper (Zhang, Pen
& Trac, 2004, in preparation).

Simulations confirm the strong correlation between gas
temperature and density. This behavior is hard to explain by
the halo model. The halo model assumes that all gas resides
in virialized halos. The simplest version assumes gas to be
isothermal with temperature equal to its virial temperature.
Since halos roughly have the same density, the predicted T -
ρ correlation should be very weak. The weak dependence
of halo concentration number on halo mass can not alter
this straight prediction. More complicated intracluster gas
models such as the universal gas profile (Komatsu & Seljak
2001) predict a weak variation of gas temperature from the
core to the virial radius. But such variation is still too weak
to explain the simulated T ∝ ρ relation. This issue needs
further investigation.

But despite these significant resolution effects on both
density and temperature fields, the simulated overall p(> T )
shows a good convergence expect at very low or high tem-
perature ranges (Fig. 5 & 6). Since the energy conservation
guarantees the total amount of kinetic and thermal energy
to be well simulated, the good agreement of p(> T ) implies
that the conversion efficiency from kinetic energy to thermal
energy is well simulated too. Since T̄g ≡

∫

Tdp, the effect
of simulation limitations to T̄g should be minor, as we will
quantify in the next section.

The simulated T̄g(z) would be less resolution dependent
and robust. We will develop our model for T̄g(z) in the next
section, test it against simulations, quantify simulation ar-
tifacts and provide a precision model of T̄g(z). As we will

Figure 6. The overall temperature distribution p(> T ) for
n = −1 self similar simulation. For the temperature field, the
simulation effect is minor except for very low or high temperature
regions. Since the gas density weighted temperature T̄g =

∫

Tdp,

T̄g is well simulated.

show in §4, the simulation effect on T̄g is only non-negligible
at z . 0.5 and this effect is no bigger than ∼ 20%, even at
z = 0.

4 THE CONTINUUM FIELD MODEL

In a gravitational heating scenario, the gas temperature is
determined by the gravitational potential Φ. The pressure
depends on the thermalized fraction of the total kinetic en-
ergy. The translational kinetic energy is thermalized from
the energy released when particles shell cross. A model of
the thermalized energy is thus given by the difference in en-
ergy between two particles separated by a non-linear scale in
Lagrangian space, which is the distance at which they can be
expected to have shell crossed. The exact procedure amounts
to solving the non-linear evolution equations directly. But we
can treat the effect statistically in a linear fashion. In the
initial linear evolution, the gravitational potential remains
constant. After virialization, the gravitational energy at a
fixed location remains almost constant. In an Eulerian de-
scription, we can describe the energy of particles at a final
virialized location as the energy released as a particle travels
from its initial position to the final virialized location. We
can then relate the gas temperature to Φ through the viral
theorem:

kBTg(x) =
1

6

4mH

3 + 5X

[

Φ(x) − Φ̄(x)
]

. (6)

Since the initial position is not exactly known, we take a
spherical average over the non-linear scale to average over
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Figure 7. The density weighted gas temperature T̄g . Data points
are the results of our self similar simulations (5123), WMAP
simulation (10243 , 100 Mpc/h) and solid lines are our model
predictions. Our model predicts a self similar scaling relation
T̄g(z) ∝ (1 + z)(n−1)/(n+3) for self similar simulations. Our pre-
dictions agree with simulations very well at most redshifts. The
breaking of the self similar relation at low redshifts suggests the
limitation of simulations. We will show that the discrepancy of
the WMAP simulation at low redshifts is caused by simulation
resolution in fig. 8 while the discrepancy of the self similar simual-
tions is caused by limited box size.

all possible initial locations and obtain the mean initial po-
tential

Φ̄(x) =

∫

Φ(x
′

)We(x − x
′

)d3x
′

. (7)

For a detailed explanation, refer to Zhang & Pen (2001).
Then, the averaged gas density weighted temperature

T̄g = 0.016ΩmkeV(1 + z)

∫

∞

0

∆2
dg(k)fe(k)

dk

k
. (8)

Here, fe(k) ≡ [1 − We(k)]/k2 (k is in unit of Mpc/h). ∆2
dg

is the dark matter-gas cross correlation power spectrum.
In our model, We(k) is a free function, but its asymp-

totic behavior toward k = 0 is fixed by the requirement that
Tg follows the density field at large scales, or equivalently,
the Tg bias with respect to the underlying density field is
a constant at large scales. Its behavior at small scales is
hard to determine from first principles. But since at scales
smaller than smoothing scale, We(k) → 0 and fe(k) → k−2,
the exact behavior of We(k) at large k is not very important.
Based on these considerations, a natural choice of We(k) is
a Gaussian function We(k) = exp(−k2r2

e). For this func-
tion, when k → 0, fe(k) → r2

e , so the temperature bias with
respect to the density field is a constant. Since gas gains
thermal energy by shell crossing, which happens at the non-
linear scales, we expect re to be roughly equal to the density

Figure 8. The resolution effect of simulations to T̄g. The data
points with (2σ) error bars are the WMAP simulation result while
the triangle data points are our model prediction using the simu-
lated ∆2

dg. For clarity, triangle data points are shifted horizontally
arbitrarily. The solid line is our model prediction assuming gas
perfectly follows dark matter and the dash line is the prediction
assuming a small scale cutoff in the gas density power spectrum.
The excellent agreement between two sets of data points supports
the validity of our model and implies the simulation limitations
to be the cause of the apparent discrepancy found in fig. 7. The
excellent reproduction of the simulation results at low redshifts
by the dash line implies that the simulation resolution is the cause
of the discrepancy.

correlation length. So, the evolution of re(z) follows that of
the density correlation length. Essentially, the only free pa-
rameter in our model is re(z = 0). We will choose re = rNL,
where rNL is the non-linear scale set by ξL(rNL) = 1 with
ξL as the linear correlation function. This choice of re has to
be tested against simulations and this is the only parameter
that requires calibration against simulations.

For self-similar simulations, ∆2
dg(k) should scales as

f(k/kNL) (We define kNL as kNL ≡ 1/rNL), then Eq. 8 nat-
urally predicts

T̄g(z) = T̄G(z = 0)(1 + z)(n−1)/(n+3). (9)

Without feedback or cooling, the gas should follow the dark
matter distribution matter to very high overdensity and thus
we expect ∆2

dg(k) = ∆2
dm(k) = ∆2

g(k). We calculate ∆2
dm(k)

using the code of Smith et al. (2003). We compared the pre-
dictions from our model with simulation results and found
a good agreement (Fig. 7). The scaling relation Eq. (9) with
the right amplitude is observed at high redshifts and further
confirms the validity of our model.

At low redshifts, the scaling relation breaks down for
the self similar simulations. This is caused by the finite sim-
ulation box size. Its effect to T̄g corresponds to a lower k
cutoff kcut = 2π/L in the integral of Eq. 8, where L is the
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Figure 9. The gas-dark matter relation. The dash lines are the
gas-dark matter cross correlation coefficients while the solid lines
are the gas biases versus dark matter at different redshifts. At
small nonlinear scales, gas ceases to follow dark matter in simula-
tions. But the redshift dependence of such behavior suggests that
it is unphysical and possibly caused by the simulation resolution
effect. Lower redshift simulation has better mass resolution (left
panel), which corresponds to better spacial resolution in unit of
nonlinear scale. But spacial resolution in unit of absolute physical
scale is poorer at lower z (right panel).

box size. For our self similar simulations, the correlation
length at z = 0 is half the box size and kNL = 2/L. One has
kcut = πkNL. So, it is the limited box size that causes T̄g in
self similar simulations to lose power at low redshifts.

The deviation between the predicted and simulated T̄g

is also observed in the WMAP simulation. Such discrepancy
increases toward low redshifts and exceeds 2σ level at z = 0
(Fig. 8), so it is hard to be explained by sample variance.
If this discrepancy is caused by simulation limitations, T̄g

calculated using the simulated WMAP ∆2
dg(k) should agree

with the simulated T̄g. Indeed, the agreement is better than
5% at low redshifts (Fig. 8). Thus we show that this dis-
crepancy can be naturally explained by the simulation limi-
tations and thus our model works well to better than several
percent at low redshifts.

We further probe which simulation limitation causes
this discrepancy. For WMAP simulations, even at z = 0,
the nonlinear scale is still much smaller than the box size,
so the box size effect is negligible. Resolution effect causes
∆2

dg to lose power at small scales and causes the simulated
T̄g to lose power. Since the resolution of the hydro part of
a hydro simulation is generally worse than that of the N-
body part, gas ceases to follow dark matter below certain
scale. Such deviation is a suitable measure of simulation
resolution and can be quantified. We define the gas bias
bg(k) ≡

√

∆2
g(k)/∆2

dm(k) and the gas-dark matter cross

correlation coefficient r ≡ ∆2
dg(k)/

√

∆2
dm(k)∆2

g(k). We ex-

Figure 10. The requirement of T̄g on simulation resolution. The
top panel plots the integrand of Eq. 8, namely, the contribution of
different scales to T̄g. The nonlinear power spectra are calculated
by the Smith et al. (2003) code. At z & 1, only k ∼ kNL is
required to resolve. But at z = 0, k & 10kNL is required to resolve.
The bottom panel is the gas bias in our simulation. Its deviation
from unity is a measure of the simulation resolution. We find that,
at z & 1, WMAP simulation meets the resolution requirement.
But at z = 0, the resolution requirement (k ∼ 10kNL) is beyond
simulation ability. Since simulated power spectrum loses power
at 10% level at k ∼ 10kNL, we expects the simulated T̄g to lose
power at 10% level, as predicted in Fig. 8.

pects bg(k) < 1 at very nonlinear scales. This behavior is
observed in our simulations (Fig. 9). Poorer resolution of
gas with respect to dark matter means gas is smoother than
dark matter, so phenomenologically, one can treat the gas
density field as a smoothing of the underlying dark matter
density field:

δg(x) =

∫

δdm(x
′

)Wg(x − x
′

)d3x
′

. (10)

In this model, gas perfectly correlates with dark matter and
r ≡ 1. In our simulation, we find that at ∆2

dm . 200, this
is the case (Fig. 9). One can model Wg(k) = exp[−k2/k2

g ].
An ideal simulation should have a kg such that ∆2

g(kg) ≫ 1.
In simulations, kg(z) should increase with z since for higher
z, the nonlinear scale is smaller (e.g. fig. 9). The simulated
kg can be modeled by kg(z) = 5(1 + z)2 h/Mpc, which is
roughly consistent with the simulated gas power spectrum,
and reproduces the simulation results (Fig. 8). This agree-
ment implies that for WMAP cosmology, the simulation res-
olution causes the simulated T̄g to lose power at low redshift.

This conclusion seems counter-intuitive. Since gas tem-
perature arises from thermalization at nonlinear scales,
which are better resolved in lower redshift simulations (left
panels of fig. 9 and bottom panel of fig. 10), we may expect
less severe resolution problem for simulated T̄g at lower red-
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Figure 11. The predicted T̄g and ȳ as a function of σ8 and
Ωm. For the left panels, from top down, lines correspond to
Ωm = 0.5, 0.4, 0.3, 0.2. For the right panels, from top down, lines
correspond to σ8 = 1.1, 1.0, 0.9, 0.8, 0.7.

shifts. For self similar simulations, this is true since kNL is
the only relevant scale. But ΛCDM cosmology breaks self
similar condition and makes the nonlinear scale kNL not the
only relevant parameter to determine T̄g. We show how this
running power index causes more severe resolution problem
for simulated T̄g.

The relative contribution from different scale k to T̄g re-
lies on the slope of the power spectrum. The larger the power
index at k > kNL is, the larger the relative contribution to
T̄g is and the higher the requirement of spacial resolution in
unit of kNL to simulate T̄g is. For WMAP cosmology, kNL

keeps decreasing toward low z. The effective power index
at k = kNL keeps increasing and the relative contribution
from k > kNL keeps increasing. Such behavior requires a
stronger spacial resolution in unit of kNL. In order for the
simulated T̄g not to lose power, at z = 1, simulation must
be able to resolve k . 2kNL, but at z = 0, the requirement
is k . 10kNL (Fig. 10). As we see from the bottom panel of
Fig. 10, WMAP simulation meets this requirement at z = 1
but fails at z = 0. So, we conclude that, for CDM simula-
tion with reasonable large simulation box (& 50 Mpc/h), the
simulation resolution is the dominant simulation limitation
to simulate T̄g.

In summary, our choice of re, the only free parameter
in our model passes the tests of all simulations. Thus our
model has no free parameter, is free of simulation artifacts
and is able to predict the real T̄g to several percent accuracy.

For the WMAP cosmology, we predict T̄g(z = 0) = 0.32
keV. T̄g is sensitive to σ8 and Ωm. For self similar cosmology,

T̄g ∝ σ
−(n−1)/(n+3)
8 . For ΛCDM, the actual dependences of

T̄g on σ8 and Ωm (fig. 11) is complicated due to the running
index of the density power spectrum. In our interested σ8

and Ωm range, the effective power index neff is −2 . neff .

−1. So T̄g ∝ σα
8 Ωβ

m with α ∼ −(neff−1)/(neff +3) ∼ 1-3 and
β ∼ 1. A smaller σ8 results in a larger kNL and thus a smaller
effective power index neff . So α is larger. The deviation of β
from unity comes from the dependence of neff on Ωm since
CDM transfer function depends on the combination q ≃
k/Ωm. Around the WMAP cosmology Ωm = 0.268 and σ8 =
0.84, Tg can be fitted as

Tg = 0.32(σ8/0.84)3.05−0.15Ωm (Ωm/0.268)1.28−0.2σ8 keV.(11)

5 THE SZ MEAN Y PARAMETER

The SZ mean y parameter is calculated using Eq. 2 and
the result is shown in Fig. 11. ȳ is generally ∼ 10−6. For
the WMAP cosmology, ȳ = 2.6 × 10−6 and the mean tem-
perature decrement at Rayleigh-Jeans regime is 14µK. The
dominant contribution comes from z ≃ 1 (Fig. 12). Since at
z & 1/2, dχ/dz ∝ 1/

√
Ωm, one may expect ȳ ∝ T̄g/

√
Ωm ∝

Ω∼0.5
m . But since in a higher matter density universe, the

density field evolves faster and thus T̄g drops faster with in-
creasing z, the ȳ dependence on Ωm is stronger than Ω∼0.5

m .
Indeed, we find ȳ ∝ Ω∼1

m . Around the WMAP cosmology
Ωm = 0.268 and σ8 = 0.84, ȳ can be fitted as

ȳ = 2.6 × 10−6(σ8/0.84)4.1−2Ωm (Ωm/0.268)1.28−0.2σ8 . (12)

Though our model is able to predict the Compton ȳ
in an adiabatically evolving universe to several percent ac-
curacy, it does not include any non-gravitational thermal
processes, which introduce non-negligible effect to ȳ. Photo-
ionization contributes ȳphotonion ∼ τ104K/mec

2 ∼ 3× 10−7,
or ∼ 10% of the adiabatic IGM ȳ. Though feedback, pre-
heating, radiative cooling may decrease the SZ power spec-
trum by a factor of 2 (da Silva et al. 2001; Lin et al. 2002;
White, Hernquist & Spingel 2002; Zhang & Wu 2003), they
only affects ȳ at 10% level (e.g. White, Hernquist & Spingel
(2002)). This is straightforward to understand. Once hydro-
static equilibrium is reached, the gas pressure is always de-
termined by the gravitational potential, which is mainly set
by dark matter distribution and is only weakly affected by
these thermal processes. Feedback and preheating do not
change the total amount of gas. While radiative cooling
turns some gas into bound objects, such mass loss is minor
since bounds objects in galaxies only accounts for . 10%
baryons. Thus, the change of the total gas thermal energy
due to these processes is minor. These processes change ȳ
mainly during the stages of expansion in the case of feed-
back and preheating and infall in the case of radiative cool-
ing. Such stages are either in semi hydrostatic equilibrium
(feedback and radiative cooling) or last relatively short time
(mild preheating), thus their effects to ȳ is not significant.
Cluster magnetic field also only has ∼ 10% effect to ȳ (Zhang
2004).

WMAP measured a high Thomson optical depth to
the last scatter surface and implies an early reionization
epoch caused by first stars. At high z, CMB density is
high and is able to convert a considerable fraction of first
star supernova explosion thermal energy through the ef-
ficient Compton cooling. Such first star contribution to
ȳ is ∼ few 10−6 and comparable to low redshift IGM ȳ
(Oh, Cooray & Kamionkowski 2003).
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Figure 12. The integrand of ȳ, as defined by dy/d ln z for the
WMAP cosmology. The dominant contribution to ȳ comes from
z ∼ 1.

These processes have distinctive signatures to ȳ and the
SZ power spectrum, respectively. For first stars, since at high
z ∼ 10, density fluctuations are small, the relative contribu-
tion of first stars to the SZ fluctuation is much smaller than
that of to ȳ. As estimated by Oh, Cooray & Kamionkowski
(2003), even if first star ȳ is larger than that of low redshift
IGM, its contribution to the SZ power spectrum can still be
an order of magnitude smaller than that of low redshift IGM
(Fig. 1, Oh, Cooray & Kamionkowski (2003)). The case of
photon-ionization is similar, but that of feedback, preheat-
ing, radiative cooling and magnetic field is opposite. Thus,
combining the ȳ and the power spectrum measurement helps
to separate these contributions more unambiguously. For ex-
ample, if ȳ can be measured to ∼ 10% accuracy, the first
star contribution can be constrained with a statistical un-
certainty ∼ 0.4 × 10−6 and systematic underestimation of
∼ 0.5) × 10−6 caused by feedback, etc.

Unfortunately, the direct precision measurement of ab-
solute ȳ is difficult. Currently, the best measurement, ȳ <
1.5 × 10−5 is given by the COBE/FIRAS measurement
(Fixsen, et al. 1996). This result has already been able to
rule out combinations of high σ8 & 1.1 and high Ωm & 0.5.
This constrain is quite weak. But considering the con-
tributions from non-gravitational processes could make it
stronger. Nonetheless, ȳ may be measured to a higher accu-
racy in the future and/or inferred from new statistics and
helps to independently constrain σ8 and Ωm.

6 SUMMARY

The mean gas density weighted temperature T̄g and the
mean SZ Compton y parameter are the lowest order SZ
statistics. Their precision modeling stands as the first step

toward the precision understanding of the IGM SZ effect and
may provide useful clues for modeling of higher order statis-
tics. The two ways of the SZ modeling, analytical models
and hydro simulations both have their own limitations. It is
essential to quantify simulations limitations and test analyt-
ical models against corrected simulations. The convergence
of T̄g stands as the lowest requirement for simulations to
reliably predict the SZ effect.

We ran n = −1,−2 self similar 5123 hydro simulations
to quantify simulation limitations utilizing their self similar
scaling relation. We also ran a high resolution 10243 cell,
100 Mpc/h box size hydro simulation adopting WMAP cos-
mology. We find that the simulated p(> T ), the fraction of
mass with temperature bigger than T , shows a good con-
vergence for all our simulations, expect at both tails. This
convergence suggests that T̄g is well simulated. Our contin-
uum field model is then tested against these simulations. It
passed all tests and we believe that its prediction for ȳ is
accurate to several percent.

Various simulation limitations such as limited box size
and limited resolution can affect the simulated T̄g. Gener-
ally, for a ΛCDM simulation, the nonlinear scale is much
smaller than the box size, thus the box size effect is negligi-
ble and the resolution effect is the dominant cause of simu-
lation artifacts in T̄g. We found that, at z = 0, due to the
simulation resolution, gas power spectrum loses power at
small scales with respect to dark matter power spectrum.
This behavior causes the simulated gas density weighted
temperature T̄g to be ∼ 20% underestimated. But this res-
olution effect becomes negligible quickly toward higher red-
shift. At z & 0.5, simulated T̄g is quite accurate. Since
the dominant contribution to ȳ comes from z ∼ 1, our
simulation prediction of ȳ is reliable to ∼ 10% level. Fur-
thermore, our analytical model is able to correct this sim-
ulation artifacts and predicts ȳ with several percent ac-
curacy. For a flat, low matter density ΛCDM universe,
ȳ = 2.6 × 10−6(σ8/0.84)4.1−2Ωm (Ωm/0.268)1.28−0.2σ8 . The
current upper limit of y < 1.5 × 10−5 measured by FIRAS
has already ruled out combinations of high σ8 & 1.1 and
high Ωm & 0.5.

Our simulations confirms previously found T ∝ ρ rela-
tion in a large region of ρ-T plane. Such relation is hard to
be explained by the halo model and deserves a further in-
vestigation. We also found that, the simulated p(> T, > δ),
does not converge. At high density regions, it is caused by
density resolution limitation while at low density regions,
it is caused by failure of capturing shocks. Though this nu-
merical limitation has only minor effect on T̄g, it may affect
the gas pressure power spectrum a lot. This issue will be
addressed in a companion paper.
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