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Abstract

An SO(10) grand uni�ed model considered previously by the authors fea-

turing lopsided down quark and charged lepton mass matrices is successfully

predictive and requires that the lightest two right-handed Majorana neutri-

nons be nearly degenerate in order to obtain the LMA solar neutrino solu-

tion. Here we use this model to test its predictions for baryogenesis through

resonant-enhanced leptogenesis. With the conventional type I seesaw mecha-

nism, the best predictions for baryogenesis appear to fall a factor of three short

of the observed value. However, with a proposed type III seesaw mechanism

leading to three pairs of massive pseudo-Dirac neutrinos, resonant leptogen-

esis is decoupled from the neutrino mass and mixing issues with successful

baryogenesis easily obtained.
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I. INTRODUCTION

The accumulation of re�ned data on both neutrino oscillation and quark 
avor physics
has posed increasingly severe tests for quark and lepton models which attempt to explain the
mass and mixing data. This is especially true for Grand Uni�ed models which must relate
both the quark and lepton sectors. In fact, at present several such models [1] do survive
these tests given the present levels of experimental precision for the CKM quark and MNS
lepton mixing matrix elements. Two other hurdles for these Grand Uni�ed models involve
the issues of 
avor-changing neutral currents, for example in � ! e + 
 and � ! � + 

decays, and the survival of baryogenesis in the early Universe. It is the latter hurdle which
we wish to address in this paper.

It appeared early on that Grand Uni�ed Theories (GUTs) provided the necessary condi-
tions for successful baryogenesis as postulated by Sakharov [2]: baryon-violating interactions
which involve both C- and CP -violation and which occur out-of-equilibrium in the early Uni-
verse. Since then we have learned that the baryon-violating interactions which occur near
the GUT scale conserve B � L, so that any net baryon number generated by them can
be washed out by sphaleron B + L interactions which occur in thermal equilibrium with
the expanding universe. Only if the net baryon number is generated with �(B � L) 6= 0
interactions will it not be erased by the sphaleron interactions [3].

For this reason, Fukugita and Yanagida suggested that leptogenesis may play a necessary
primary role for baryogenesis [4]. An excess in lepton number generated by the lepton-
violating decays of the heavy right-handed neutrinos can be converted into a baryon excess
by sphaleron interactions in thermal equilibrium above the critical electroweak symmetry-
breaking temperature. In this decay or direct \ �0 " CP -violating scenario, the CP violation
is generated through an interference between the decay tree graph and the absorptive part of
the one-loop decay vertex. This mechanism requires very heavy Ni; i = 1; 2; 3 right-handed
neutrinos, with the lightest being heavier than roughly 109 GeV. Thus with a moderate
hierarchy of heavy right-handed neutrinos and with the lightest satisfying the above bound,
satisfactory leptogenesis can be generated.

However, it has been observed that successful leptogenesis may also arise through indirect
\ � " CP -violating mass-mixing e�ects in the decays of two quasi-degenerate heavy right-
handed neutrinos [5]. In other words, resonant enhancement of the lepton asymmetry can
be generated if the two neutrinos are suÆciently close in mass that level crossing can occur.
Ellis, Raidal, and Yanagida as well as Akhmedov, Frigerio and Smirnov have performed
phenomenological studies [6] of neutrino mass matrices and shown that suÆcient lepton
asymmetry can be generated in the case that the level crossing involves the two lighter
right-handed neutrinos, N1 and N2; moreover, the quasi-degenerate masses can lie as low as
108 GeV, at least a factor of 10 below the bound obtained in the generic hierarchical case.
Recently Pilaftsis and Underwood have proposed a model of the lepton sector in which the
nearly degenerate neutrino pair is as light as 1 TeV [7].

It is important to test this suggested scenario in a realistic model of quark and lepton
masses in as quantitative a manner as possible. At issue is whether or not the desired results
for both leptogenesis and neutrino oscillations can be obtained simultaneously for the model
in question. In this paper we explore leptogenesis with such resonant enhancement in an
SO(10) GUT model proposed several years ago by us in collaboration with Babu [8] with
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a series of re�nements by us since then [9]. This model is numerically very predictive and
is found to explain accurately the present data on quark masses and mixings as well as
the large mixing angle (LMA) Mikheyev-Smirnov-Wolfenstein (MSW) [10] solar neutrino
solution with near maximal atmospheric neutrino mixing. The lopsided texture of the 2-3
submatrices of the down quark and charged lepton mass matrices neatly explains the small
mixing in that sector of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, i.e., small Vcb
and Vts, as well as the near maximal mixing in that sector of the Maki-Nakagawa-Sakata
(MNS) matrix [11], i.e., large U�3. The LMA solar neutrino solution arises from the type I
seesaw mechanism as an interplay between the Dirac neutrino matrix and the right-handed
Majorana mass matrix, MR. In fact, the 2-3 submatrix of MR has a zero determinant
which nearly replicates the corresponding sector for the right-handed Dirac neutrino matrix
product, M y

NMN . With the full structure of MR spelled out to give the LMA solution, one
�nds the lighter two masses N1 and N2 are nearly degenerate, so at least the possibility of
resonant enhancement of leptogenesis exists in this model. We shall examine how successful
the model can be in achieving leptogenesis suÆcient to generate the desired amount of
baryogenesis observed in Nature.

As an alternative approach, we can reformulate the model with the type III seesaw
mechanism developed in [12,13]. Whereas in the usual type I see-saw mechanism there
are three superheavy Majorana neutrinos, in the type III see-saw, there are six superheavy
neutrinos that typically form three pseudo-Dirac pairs. The desired resonant enhancement
of leptogenesis can result from the mixing of the two neutrinos of the lightest pseudo-Dirac
pair. In this scheme, the LMA solar neutrino mixing solution emerges rather naturally
without �ne-tuning of the Dirac and Majorana neutrino matrices, and the heavy lepton
decay asymmetry is e�ectively decoupled from the light neutrino neutrino mass and mixing
issues. As a result we shall see that satisfactory leptogenesis is easily obtained in this
scenario.

In Sect. II we summarize brie
y the features of the SO(10) model and take the oppor-
tunity to update the input parameters so as to give even better agreement with the quark
and lepton mass and mixing data. The formulas relevant for leptogenesis involving two
quasi-degenerate right-handed neutrinos are summarized in Sect. III. We then apply these
formulas to the model, modify the model slightly and compare the leptogenesis and oscilla-
tion results with experimental information. In Sect. IV the necessary formulas are presented
for the type III seesaw and numerically satisfactory examples are given. Conclusions follow
in Sect. V.

II. SO(10) MODEL WITH U(1) � Z2 � Z2 FLAVOR SYMMETRY

The GUT model in question [8,9] is based on the grand uni�ed group SO(10) with
a U(1) � Z2 � Z2 
avor symmetry. The model involves a minimum set of Higgs �elds
which solves the doublet-triplet splitting problem. This requires just one 45H whose VEV
points in the B � L direction, two pairs of 16H ; 16H 's which stabilize the solution, along
with several Higgs �elds in the 10H representations and Higgs singlets [14]. The Higgs
superpotential exhibits the U(1)�Z2�Z2 symmetry which is used for the 
avor symmetry
of the GUT model. The combination of VEVs, h45HiB�L; h1(16H)i and h1(16H)i break
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SO(10) to the Standard Model. The electroweak VEVs arise from the combinations vu =
h5(10H)i and vd = h5(10H)i cos 
 + h5(160H)i sin 
, while the combination orthogonal to vd
gets massive at the GUT scale. As such, Yukawa coupling uni�cation can be achieved at
the GUT scale with tan � � 2 � 55, depending upon the 5(10H)� 5(16H) mixing present
for the vd VEV. In addition, matter super�elds appear in the following representations:
161; 162; 163; 16; 16; 16

0; 160, 101; 102, and 1's, where all but the 16i (i = 1; 2; 3) get
superheavy.

The mass matrices then follow from Froggatt-Nielsen diagrams [15] in which the super-
heavy �elds 16, 16, 160, 160, 101, 102, and 1 are integrated out. These diagrams, cf. [16],
correspond to the following e�ective Yukawa operators for the indicated Dirac mass matrix
elements:

33 : 163 � 10H � 163
23 : [162 � 10H ]16 [45H � 163]16 =MG

23 : [162 � 16H ]10 [160H � 163]10 =MG

13 : [161 � 163]10 [16H � 160H ]10 =MG

12 : [161 � 162]10 [16H � 160H ]10 =MG

11 : 161 � 10H � 161 � (1H)2=M2
G

(1)

where the subscripts to the brackets indicate how the �elds inside the brackets are contracted.
The Dirac mass matrices for the up quarks, down quarks, neutrinos and charged leptons are
then found to be

MU =

0
B@ � 0 0
0 0 ��=3
0 �=3 1

1
CAmU ; MD =

0
B@ 0 Æ Æ0ei�

Æ 0 ��=3
Æ0ei� � + �=3 1

1
CAmD;

MN =

0
B@ � 0 0
0 0 �
0 �� 1

1
CAmU ; ML =

0
B@ 0 Æ Æ0ei�

Æ 0 � + �
Æ0ei� �� 1

1
CAmD:

(2)

The above textures give the Georgi-Jarlskog relations [17] between the quark and lepton
GUT scale masses, m0

s ' m0
�=3; m

0
d ' 3m0

e with Yukawa coupling uni�cation holding for
tan � � 5. (Here the Dirac matrices are written with the convention that the left-handed
�elds label the rows and the left-handed conjugate �elds label the columns. The opposite
convention was used in some earlier references for this model. Hence the matrices here are
the transpose of those given in those earlier papers.)

All nine quark and charged lepton masses, plus the three CKM angles and CP phase,
are well-�tted with the eight input parameters (the older choice is indicated in parentheses)

mU ' 113 GeV; mD ' 1 GeV;
� = 1:83 (1:78); � = 0:147 (0:145);
Æ = 0:00946 (0:0086); Æ0 = 0:00827 (0:0079);
� = 119:4Æ (126Æ); � = 6� 10�6 (8� 10�6);

(3)

de�ned at the GUT scale to �t the low scale observables after evolution downward from
�GUT :
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mt(mt) = 165 GeV; m� = 1:777 GeV;

mc(mc) = 1:23 GeV; m� = 105:7 MeV;

mu(1 GeV) = 3:6 MeV; me = 0:55 MeV;

mb(mb) = 4:25 GeV; Vcb = 0:0410;

ms(1 GeV) = 148 MeV; Vus = 0:220;

md(1 MeV) = 7:9 MeV; jVub=Vcbj = 0:090;

ÆCP = 64Æ; sin 2� = 0:72:

(4)

A better overall agreement with experiment [18] is obtained with the new parameter values
aside from the electron mass which is most sensitive to small corrections. With no extra
phases present other than the one appearing in the CKM mixing matrix, the vertex of the
CKM unitary triangle occurs near the center of the presently allowed region with sin 2� '
0:72. The Hermitian matrices MUM

y
U ; MDM

y
D, and MNM

y
N are diagonalized with small

left-handed rotations, while MLM
y
L is diagonalized by a large left-handed rotation. This

accounts for the small value of Vcb = (U y
UL
UDL

)cb, while jU�3j = j(U y
LL
U�L)�3j will turn out

to be large for any reasonable right-handed Majorana mass matrix, MR [8].
The e�ective light neutrino mass matrix, M�, is obtained from the type I seesaw mecha-

nism once the right-handed Majorana mass matrix, MR, is speci�ed. The large atmospheric
neutrino mixing �� $ �� arises primarily from the structure of the charged lepton mass
matrix ML, while the structure of the right-handed Majorana mass matrix MR determines
the type of �e $ ��; �� solar neutrino mixing, so that the solar and atmospheric mixings
are essentially decoupled in the model. The LMA solar neutrino solution is obtained with
a special form of MR, as will be seen in a moment. However, this special form can be
explained by the structure of the Froggatt-Nielsen diagrams [16]. The most general form
for the right-handed Majorana mass matrix considered in [16] which gives the large mixing
angle (LMA) solar neutrino solution is

MR =

0
B@ c2�2 �b�� a�
�b�� �2 ��
a� �� 1

1
CA�R; (5)

where the parameters � and � are those introduced in Eq. (2) for the Dirac sector. With
a 6= b = c, for example, the structure of MR arises in the following way. The VEV of one
particular Higgs singlet that has �L = 2 contributes to all nine matrix elements giving a
factorized rank 1 form. The VEV of a second Higgs singlet also breaks lepton number, but
contributes only to the 13 and 31 elements of MR.

Given the right-handed Majorana mass matrix above, the seesaw formula results in

M� = �MNM
�1
R MT

N

= �

0
BB@

0 1
a�b� 0

1
a�b�

b2�c2
(a�b)2 �

2 b
b�a�

0 b
b�a� 1

1
CCAm2

U=�R:
(6)
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As a numerical example, with just three additional input parameters: a = 1; b = c = 2 and
�R = 2:65� 1014 GeV, one obtains

M� = �
0
B@ 0 �� 0
�� 0 2�
0 2� 1

1
CAm2

U=�R; (7)

leading to

m1 = 5:1� 10�3 eV; m2 = 9:1� 10�3 eV; m3 = 52� 10�3 eV;

M1 'M2 ' 2:3� 108 GeV; M3 = 2:7� 1014 GeV;

�m2
32 = 2:6� 10�3 eV2; sin2 2�atm = 0:991;

�m2
21 = 5:6� 10�5 eV2; tan2 �12 = 0:48;

Ue3 = �0:0172� 0:00094i; sin2 2�13 = 0:0012;

J = 2:0� 10�4; ÆCP = 177Æ; �1 = �180Æ; �2 = 90Æ;

(8)

to be compared with the present atmospheric, solar and reactor data and best-�t point in
the LMA region [19]

�m2
32 ' 2:6� 10�3 eV2; sin2 2�atm = 1:0 (� 0:92 at 90% c:l:);

�m2
21 = 7:1� 10�5 eV2; tan2 �12 = 0:44: (9)

In fact, the whole presently-allowed LMA region can be covered with a thin strip in the a�b
plane given by b = c ' 1:9 + 1:4a. In this region, sin2 2�13 = 0:0004� 0:0012. Although the
prediction for Ue3 is thus 3 - 5 times larger than the CKM mixing element Vub, a Neutrino
Factory would be required to reach that range of sin2 2�13.

It is interesting to remark that the hierarchy exhibited by the light left-handed neutrinos
is a weak and normal one as is typical in SO(10) models. This is somewhat surprising, for
both the Dirac and Majorana neutrino matrices, N and MR, exhibit strong hierarchies. As
is apparent these hierarchies nearly cancel each other in the type I seesaw mechanism.

It is a simple matter to compute the e�ective mass parameter for neutrino-less double
beta decay. For this purpose, we �rst note that the MNS neutrino mixing matrix is given
by the product of the two unitary matrices which diagonalize the charged lepton and light
left-handed neutrino mass matrices, i.e., VMNS = U y

LL
U�L . The diagonalization occurs as

follows:

UT
LL
MLM

y
LU

�
LL

= diag(m2
e; m

2
�; m

2
� );

UT
�L
M�LU�L = diag(m1; m2; m3);

(10)

where the mass eigenvalues are taken to be positive. Clearly an arbitrary phase trans-
formation can be made on ULL but not on U�L. Hence the mixing matrix VMNS has the
form

VMNS = UMNS�; � = diag(expi�1 ; expi�2; 1); (11)
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where UMNS has the standard form with the Dirac CP phase appearing in the 13 element,
while �1; �2 are the two Majorana CP phases. In terms of the above, the e�ective mass in
neutrino-less double beta decay can then be written as

hmeei = jPjmj (UMNS�)
2
1j j

= jPjmj�jjUMNS;1jj2j;
(12)

where �j = exp2i�j for j = 1; 2 is the CP-parity of the jth lepton. For the example illustrated,
�1 = �180Æ; �2 = 90Æ and hmeei = 0:57 meV, well below the present or future limit of
observability, typical for a normal hierarchy spectrum. The lightest two neutrino states
have opposite CP-parity.

Note that the two lightest heavy right-handed neutrinos are nearly degenerate with

(M2 �M1)=M2 = 1:21� 10�4: (13)

Actually they are nearly degenerate in magnitude only, their opposite relative signs that
appear in the eigenvalues ofMR signify they have exactly opposite CP -parity, a feature which
enables them to evolve downward from the GUT scale without their separation receiving
large radiative corrections. The small relative separation of the quasi-degenerate states
N1 and N2 suggests that some resonance enhancement of leptogenesis may result from the
level crossing. As we shall see in the next Section, this separation is too large by more
than an order of magnitude to produce enough leptogenesis. Moreover, at least one of
the four parameters a; b; c and �R in the right-handed Majorana matrix de�ned in (5)
must be complex in order to generate a lepton asymmetry. We shall attempt to modify
the parameter assignments in MR to achieve satisfactory leptogenesis after discussing the
required conditions in the next Section.

III. LEPTOGENESIS WITH TYPE I SEESAW

Here we present the basic formulas for calculation of the lepton asymmetry which results
in baryogenesis with the type I seesaw mechanism. For this purpose, we can use as a guide
the recent phenomenological studies carried out by the authors of ref. [6]. There is an
important di�erence in our approaches, however. They chose to work in the charged lepton

avor basis with the right-handed Majorana mass matrix MR diagonal, while our model
was naturally developed in the SO(10) 
avor basis. Hence we must transform our neutrino
matricesMN andMR to the basis in whichMR is diagonal in order to apply the conventional
formulas in refs. [4{6].

The basic assumption is that a lepton asymmetry �i is generated by the CP -violating
out-of-equilibrium decays of the right-handed neutrino Ni. Since the right-handed Majorana
mass term violates lepton number by two units, Ni is identical to its charge conjugate state
and can decay in two ways:

Ni ! �j + �; ��j + �y; i; j = 1; 2; 3 (14)

where � is the Higgs �eld coupling the right-handed Ni to the light left-handed neutrino �j.
The Yukawa coupling involved is given by the ijth element of the Dirac matrix M 0

N in the
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basis where the right-handed Majorana neutrino mass matrix M 0
R is diagonal. Let us label

that Yukawa coupling by h0ij. The lepton asymmetry is then traced to the imaginary part of
the interference arising from the direct decay diagram and the one-loop diagrams depicted
in Fig. 1:

�i =
�(Ni ! �j �)� �(Ni ! ��j �

y)
�(Ni ! �j �) + �(Ni ! ��j �y)

=
1

8�

X
k 6=i

f
�
jMkj2=jMij2

�
Iki; (15)

where

Iki =
Im

h
(h0yh0)2ik

i
(h0yh0)ii

; (16)

f(x) =
p
x
�

1

1� x
+ 1� (1 + x) log

�
1 + x

x

��
: (17)

When summed over both neutrino and charged lepton �nal states for all three families, the
total lepton asymmetry is still given by the right-hand side of Eq. (15); hence we have
omitted the subscript j on �i. The �rst term in f(x) arises from the self-energy correction
while the second and third terms arise from the one-loop vertex. In the limit of quasi-
degenerate neutrinos, f(x) for x = jMkj2=jMij2 reduces to

lim
x!1

f(x) = � jMij
2(jMkj � jMij) : (18)

A resonance enhancement thus arises from the level crossing or near vanishing of the denom-
inator of f(x) in the case of nearly degenerate masses. The lepton asymmetry �1 associated
with the decay of N1 thus simpli�es to

�1 = � 1

16�

jM1j
jM2j � jM1jI21: (19)

The lepton asymmetry �2 associated with the decay of N2 is found to be equal to that of �1
for nearly degenerate states. In either case, the enhancement is limited by the decay widths
of the two states for jjM2j � jM1jj � �1=2 ' �2=2, cf. [20], where

�i =
1

8�
(h0yh0)iijMij: (20)

In Eq. (15) above, h0 is the Yukawa coupling matrix for the Dirac neutrinos in the
basis where the right-handed Majorana matrix MR is diagonal, which we shall call the
primed basis. Denoting mass matrices written in that basis with primes, one has then
h0 = M 0

N=(v sin �) with v = 174 GeV. In Eq. (2) the mass matrices are given in the original
SO(10) 
avor basis, which we call the unprimed basis.

If the various neutrino mass matrices are diagonalized as follows
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UT
NL
MNU

�
NR

= diag(mu; 9mc; mt);

UT
�L
M�U�L = diag(m1; m2; m3);

U y
MR

MRU
�
MR

= diag(M1; M2; M3);

(21)

then one has that

M 0y
NM

0
N = UT

MR
M y

NMNU
�
MR

; (22)

The transformation matrix UMR
is uniquely determined provided we require the mass eigen-

values in Eq. (21) be real and positive. The factor of 9 in the diagonalized MN can be
understood by comparing MN and MU in Eq. (2).

The lepton asymmetry produced by the decay of Ni is partially diluted by the lepton
number-violating processes themselves [21]. This washout is determined as a function of an
e�ective mass given by

~mi = (M 0y
NM

0
N )ii=jMij: (23)

The washout factor �i for i = 1; 2 with ~mi in the range 10�2 � 103 eV is approximated by

�i( ~mi) ' 0:3

 
10�3eV

~mi

!�
log

~mi

10�3eV

��0:6
: (24)

The lepton number asymmetry produced per unit entropy at temperature T > M1;2,
taking into account decays of both N1 and N2 and their nearly equal washout factors, is
then given by [22]

nL
s
' 2�1�1

s

gNT
3

�2
(25)

=
90

2�4
gN
g�
�1�1: (26)

We have used the expression for the entropy of the co-moving volume, s = (2=45)g��2T 3.
Here gN = 2 refers to the two spin degrees of freedom of each decaying Majorana neutrino,
while g� = 106:75 refers to the e�ective number of relativistic degrees of freedom contributing
to the entropy in the absence of supersymmetric particles. Hence we �nd

(
nL
s
)SM ' 8:66� 10�3�1�1: (27)

The corresponding B�L asymmetry per unit entropy is just the negative of nL=s, since
baryon number is conserved in the right-handed Majorana neutrino decays. While B � L
is conserved by the electroweak interactions following those decays, the sphaleron processes
violate B + L conservation and convert the B � L asymmetry into a baryon asymmetry.
Following the work of Harvey and Turner [3] the connection is

nB
s
' � 24 + 4NH

66 + 13NH

nL
s
; (28)
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where NH is the number of Higgs doublets. Again in the absence of supersymmetric con-
tributions, NH = 1 and the proportionality factor is �28=79. With the entropy density
s = 7:04n
 in terms of the photon density, the baryon asymmetry of the Universe, de�ned
by the ratio �B of the net baryon number to the photon number, is given in terms of the
lepton asymmetry �i and the washout parameter �i by

�SMB � nB
n


' �0:0216�1�1: (29)

Successful leptogenesis will require that the �nal result for �B should lie in the observed
range [23]

�B = (6:15� 0:25)� 10�10: (30)

In the case where supersymmetric particles are considered to contribute to the decays,
entropy and sphaleron interactions, the followingmodi�cations are in order: (a) The presence
of sleptons and higgsinos in the self-energy and vertex loops will double the interference terms
without a�ecting the tree-level decay rates, so the asymmetry is doubled. (b) The presence
of sleptons and higgsinos in the decay products of the right-handed neutrinos will double
the decay rates without a�ecting the asymmetry. (c) With the sneutrino counterparts of the
decaying heavy neutrinos taken into account, the lepton asymmetry is further doubled. (d)
The value of the e�ective number of relativistic degrees of freedom is now g� = 228:75. (e)
In Eq. (28) we must take NH = 2 for the two Higgs doublets present in the supersymmetric
case.

The result is that the lepton asymmetry is replaced by a factor of 4 times the value
of �1 given in Eq. (26), but since the widths of the decaying states are doubled, the mass
separation should be taken twice as large in the computation of the asymmetry. The washout
factor as determined by the Boltzmann equations is also a�ected, but in a very complicated
fashion with the supersymmetric particles present [24]. We shall assume that the expression
in Eq. (24) is still a good approximation although this is open to question. The appropriate
expressions now read

�
nL
s

�SUSY
' 1:62� 10�2�1�1; (31)

�
nB
s

�SUSY
' �5:62� 10�3�1�1; (32)

�SUSYB ' �0:0396�1�1: (33)

We now apply the above framework to the SO(10) model of [9,16] to determine just
how successful leptogenesis would be in inducing baryogenesis given the mass matrices and
parameters that lead to the observed neutrino masses and mixings. In this model, most of
the complex phases can be rotated away from the Dirac mass matrices MU , MD, ML, and
MN ; in fact all but two can, which were called � and � in [9]. The phase � gets set to zero
by �tting the quark masses which is why it does not show up in Eq. (2). The phase � is
more important and is responsible for the CP violating phase ÆCKM in the CKM matrix.
In order to get substantial leptogenesis in this model there must be a large phase in MR.
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Now, in [16] MR was taken to be real, as it was in in Sect. II, simply for convenience of
analysis, as the interest there was only atmospheric and solar neutrino oscillations rather
than leptonic CP-violating e�ects. An example of the �t with real MR is given in Table 1 as
case (I-0). Note that with the type I seesaw mechanism only four parameters, a; b; c and
�R, are required in addition to the eight present in the four Dirac mass matrices to obtain
excellent agreement with the neutrino mass and mixing data. However, there is no reason
for MR to be real, and so here we shall investigate complex values.

A simple choice of complex parameters for MR is

a = 1:2� 0:45i; b = 2:0;
c = 2:0; �R = 2:65� 1014 GeV:

(34)

This we call case (I-1), and the resulting observables are shown also in Table 1. Note
that while the neutrino mixing parameters are all within the present acceptable range, the
baryon asymmetry �B is much too small, as it is almost four orders of magnitude below
the observed value. This can be traced to the fact that the relative separation of the two
quasi-degenerate right-handed neutrino masses is too large compared with the widths of
their levels, (M2 �M1)=�1 = 34:2.

The best results we have been able to obtain in the model arise if we allow small non-zero
values in the 12, 13, 21, and 31 entries of the Dirac neutrino matrix. Consider, for example,
the choice

a = 0:25 + 0:15i; b = 1:2 + 0:9i;
c = 0:25 + 0:25i; �R = 2:9� 1014 GeV;
(MN )12 = (MN)21 = �0:65� 10�5; (MN)13 = (MN )31 = �1:0� 10�5;

(35)

which we call case (I-2). We have checked that the introduction of these non-zero values into
the Dirac neutrino mass matrix, and likewise for the up quark mass matrix, does not destroy
the good agreement for the quark masses and CKM mixings. We see from Table 1 that the
neutrino mixing parameters for case (I-2) are also in very good agreement with the present
known data. The splitting of two quasi-degenerate right-handed neutrino masses has now
been reduced to half the width of either state, which maximizes the resonance enhancement.
Note that the relative CP-parity of the two lightest neutrino states is no longer opposite
but di�ers from that by about 4Æ, a necessary condition to get satisfactory leptogenesis.
Moreover, for this type I seesaw model, the Dirac phase ÆCP is large and much closer to
maximal than in case (I-1). But the baryon asymmetry is �B = 2:2�10�10, which falls short
of the observed value by a factor of three. The biggest improvement over case (I-1) occurs in
the lepton asymmetry which has improved by three orders of magnitude, while the washout
factor is only slightly larger.

The numbers given for the three cases discussed so far for cases (I-0), (I-1), and (I-2) all
left out the contributions from the supersymmetric particles. In case (I-3) of Table 1, we
have taken those contributions into account. For this case we take

a = 0:2 + 0:1i; b = 1:15 + 0:9i;
c = 0:25 + 0:3i; �R = 2:84� 1014 GeV;
(MN )12 = (MN )21 = �0:65� 10�5; (MN )13 = (MN)31 = �1:05� 10�5;

(36)
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We see from Table 1 that although �B given by Eq. (33) in the SUSY case appears to be
twice as large as in the SM case, as calculated from Eq. (19) �1 is only half as large. The net
baryon asymmetries are thus nearly equal for cases (I-2) and (I-3), provided one is justi�ed in
using the same washout formula in both cases. It thus appears that, in this realistic model
of quark and lepton masses and mixings, obtaining suÆcient baryon asymmetry through
thermal leptogenesis is somewhat problematic.

IV. LEPTOGENESIS WITH TYPE III SEESAW

In a recent paper [12] a new type of seesaw mechanism was proposed for light neutrino
masses that can be implemented in grand uni�ed theories based on SO(10) or larger groups.
This was called the type III see-saw mechanism and can be implemented in the model of
[9,16], which we have been considering. Indeed, in [13] it was argued that when implemented
in this model, the type III see-saw can give both realistic neutrino masses and mixings and
suÆciently large leptogenesis without �ne-tuning of the forms of the matrices. Here we will
look at type III leptogenesis in more detail, giving numerical examples.

The type III seesaw involves introducing, in addition to the left- and right-handed neu-
trinos (�i, Ni) contained in the 16i, three SO(10)-singlet neutrinos 1i. Thus the neutrino
mass matrix is not 6� 6 but 9� 9, and is given by

Wneut = (�i; N
c
i ; Si)

0
B@

0 (MN)ij F 0
iju

(MT
N )ij 0 Fij


(F 0T )iju (F T )ij
 Mij

1
CA
0
B@

�j
N c
j

Sj

1
CA ; (37)

where the �i � 5(16i) are the usual left-handed neutrinos, the N c
i = 1(16i) are conjugates

of the usual right-handed neutrinos, and the Si = 1i are the SO(10)-singlet neutrinos. The
index i runs over families. The MN submatrix represents the usual Dirac mass matrix
contribution involving the doublet and singlet neutrinos in the 16i's as in the previous Sect.
The new terms in the third row and third column arise from couplings involving the three
singlet neutrinos Si as given by the additional contributions to the Yukawa superpotential:

WRH� = F a
ij(16i1j)16

a

H +Mij1i1j: (38)

The superscript a distinguishes the di�erent Higgs 16H representations, if there are more
than one. The F 0 matrix in Eq. (37) arises when at least one of the Higgs �elds, 5(16

a

H),
gets an electroweak VEV, ua, in the 5 SU(5) subgroup direction. Likewise, the F matrix
appears when at least one of the 1(16

a

H) �elds get a superheavy VEV, 
a, in the SU(5)
singlet direction. More explicitly, we mean

F 0
iju =

P
a F

a
ijua;

Fij
 =
P

a F
a
ij
a:

(39)

With the submatrixM also superheavy, Wneut can be diagonalized to yield the 3�3 matrix
in the light left-handed neutrino �� block

M� = �MNM
�1
R MT

N � (MNH +HTMT
N)

u



; (40)
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where

MR = (F
)M�1(F T
);

H � (F 0F�1)T : (41)

The �rst term in Eq. (40) is the usual type I seesaw contribution. The second term is
the new type III seesaw contribution and arises when the 16

a

H �elds develop an electroweak
VEV, so F 0 6= 0. If the elements of the matrixM are small compared to those of F
, then
it is easy to see from Eqs. (40) and (41) that the type I contribution becomes negligible
compared to the type III contribution. In the limit that M = 0 one sees from Eq. (37)
that the superheavy neutrinos have simply the mass term Fij
(N

c
i Sj). That is, the N

c
i and

Si pair up to form three Dirac neutrinos. On the other hand, if M is small (compared to
F
) but not zero, then these three Dirac neutrinos get slightly split into six eigenstates
forming three nearly degenerate pseudo-Dirac neutrinos. It is this fact that can be exploited
to enhance leptogenesis.

In Ref. [13] it was assumed that the matrices F , F 0 and M in the original 
avor basis
all have elements of the order 0

B@
�2 � �
� 1 1
� 1 1

1
CA ; (42)

where � � �=� = 4:1 � 10�5. This form is suggested by that of MN in Eq. (2), where the
11 element is much smaller than the other non-zero elements, possibly due to an Abelian

avor symmetry. It is convenient to go to a basis where F is diagonalized. This is done by
a biunitary transformation. We indicate quantities in this basis by the tilde symbol. These
are related to those in the original 
avor basis by

~F = UTFV; N c = U ~N c; S = V ~S: (43)

Then

~F
 =

0
B@�2F1 0 0

0 F2 0
0 0 F3

1
CA
 =

0
B@M1 0 0

0 M2 0
0 0 M3

1
CA ; (44)

where the Fi are of order unity. And

~M =

0
B@ �2g11 �g12 �g13

�g12 g22 g23
�g13 g23 g33

1
CAMS; ~F 0u =

0
B@ �2f 011 �f 012 �f 013

�f 021 f 022 f 023
�f 031 f 032 f 033

1
CAmU : (45)

Again we assume f 0ij; gij � 1. HereMS � 
 in order to obtain three superheavy quasi-Dirac
neutrino pairs.

Finally we transform the Dirac neutrino mass matrix according to ~MN =MNU . Because
of the assumed form of F , the matrix U has the form
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U =

0
B@

u11 �u12 �u13
�u21 u22 u23
�u31 u32 u33

1
CA ; (46)

where uij � 1 and by unitarity u11 ' 1. The transformed Dirac neutrino matrix then
becomes

~MN
�=
0
B@

�u11 ��u12 ��u13
��u31 �u32 �u33
�u31 u32 u33

1
CAmU � ~YmU : (47)

The type III seesaw mechanism given in Eq. (40) with dominance of the second term then
yields for the light left-handed neutrino mass matrix (recall that �=� = �)

M�
�= �

2
666664
2�
�
u11f

0
11

F1

�
�
�
u11f

0
21

F1

�
�
�
u11f

0
31

F1

�
�
�
u11f

0
21

F1

�
2�
P

j

�
u3jf

0
2j

Fj

� P
j

��
u3jf

0
2j

Fj

�
+ �

�
u3jf

0
3j
�u2jf 02j
Fj

��

�
�
u11f

0
31

F1

� P
j

��
u3jf

0
2j

Fj

�
+ �

�
u3jf

0
3j
�u2jf 02j
Fj

��
2
P

j

�
u3jf

0
3j

Fj
� �

u2jf
0
3j

Fj

�

3
777775
 
m2

U




!
:

(48)

This clearly has a well-de�ned hierarchical form which is similar to the corresponding M�

determined in Sect. III. for the type I seesaw mechanism.
Leptogenesis is almost exclusively produced by the decays of the lightest pair of the six

superheavy neutrinos. Neglecting, as is justi�ed, the mixing of the lightest pair of superheavy
neutrinos with the two heavier pairs of superheavy neutrinos, we �nd the e�ective two-by-two
mass matrix for the lightest pair to be

( ~N c
1 ; ~S1) �

2

 
0 F1


F1
 g11MS

! 
~N c
1
~S1

!
: (49)

If, as we assume, MS � 
, these form an almost degenerate pseudo-Dirac pair, or equiv-
alently two Majorana neutrinos with nearly equal and opposite masses. These Majorana
neutrinos are N1� �= ( ~N c

1� ~S1)=
p
2, with massesM1� �= �M1+

1
2
~M11 = �2(�F1
+

1
2
g11MS).

These can decay into light neutrino plus Higgs boson via the term Yi�(N1��i)H, where

Yi� �= (~Yi1 � ~F 0
i1)=

p
2�

~M11

4M1

( ~Yi1 � ~F 0
i1)=

p
2: (50)

Here ~Y is the Dirac Yukawa coupling matrix given in Eq. (47).
It is straightforward to show that the lepton asymmetry per decay produced by the

decays of N1� is given by [25,5]

�1 =
1

4�

Im[
P

j(Yj+Y
�
j�)]

2P
j[jYj+j2 + jYj�j2]

f(M2
1+=M

2
1�); (51)

where f(M2
1+=M

2
1�) comes from the absorptive part of the decay amplitude of N� and

was given earlier in Eq. (17). For the application here f(M2
1+=M

2
1�) �= �M1=2 ~M11 =
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�(F1=2g1)(
=MS) which can be large if MS � 
. The expression for f(M2
1+=M

2
1�) given

above is only valid when the mass splitting jM+j�jM�j = ~M11 is larger than half the widths
of the N1�, which from Eq. (20) are given by �� �= 1

8�
M1

P
k jYk�j2. From Eqs. (45), (47),

and (50), one sees that �1� � �2M1=8�. As we shall see with our numerical examples, this
condition that the splitting of N1� be comparable to or greater than their widths, is easily
satis�ed.

Making use of Eqs. (50) and (51) one obtains

�1 =
1

4�

P
j(j ~Yj1j2 � j ~F 0

j1j2)Im(
P

k
~Y �
k1
~F 0
k1)P

j(j ~Yj1j2 + j ~F 0
j1j2)

f(M2
1+=M

2
1�); (52)

This can be evaluated in terms of the parameters of the model using Eqs. (45) and (47),
giving

�1 �= �2

4�

"
(ju31j2 � jf 031j2)Im(u�31f 031)
ju31j2 + jf 031j2 + jf 021j2

#
f(M2

1+=M
2
1�): (53)

The washout parameter is given approximately as before by Eq. (24) where now

~m1 � 8�v2u�N1�

M2
N1�

�= �2
v2u
M1

(ju31j2 + jf 031j2 + jf 021j2): (54)

The lepton asymmetry is then translated into the baryon asymmetry for the Universe by
the same formulas which appeared earlier in Sect. III.

We now wish to give some numerical examples for this type III seesaw mechanism. The
�rst requirement, of course, is that we choose values of the parameters that reproduce the
neutrino mass and mixing data. One could search over the whole space of parameters,
but this is a cumbersome task, as in the type III mechanism there are many parameters
involved in the sector of superheavy singlet neutrinos, including the parameters uij and f 0ij.
A more convenient approach is to �nd values of uij and f

0
ij that make the matrix M� (given

approximately in Eq. (48)) have a form close to that shown in Eq. (6), since we already
know that that form can reproduce the neutrino mass and mixing data for suitable a; b, and
c. First let us choose values of uij that are simple and such that U in Eq. (46) is unitary.
They can not be too simple, i.e., have too many zeros, or else there will not be suÆcient
leptogenesis. We choose the following form for simplicity:

U =

0
B@ 1 ��(1 +p2)i �
��(1 +p2)i 1=

p
2 i=

p
2

� i=
p
2 1=

p
2

1
CA ; (55)

where � = �=� = 4:1� 10�5 as before. We can make M� very close numerically to the form
in Eq. (6) by taking
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f 011 ' 0; with f 012 and f 013 arbitrary;

f 021 = �F1=(b� a);

f 022 = �
h
(1 +

p
2)i + 1

2
p
2

�
c2�a2
b�a

�
� i �

2
p
2

�
c2�b2
b�a

�
� (b� a)1�

p
2p

2

f 0
31

F1

i
F2=(b� a);

f 023 = �
h
1� 1

2
p
2
i
�
c2�a2
b�a

�
+ �

2
p
2

�
c2�b2
b�a

�
+ (b� a)1�

p
2p

2
i
f 0
31

F1

i
F3=(b� a);

f 031 ' 0;

f 032 =
1

2
p
2

h
�i+ 2(2 +

p
2)i

f 0
31

F1

i
F2;

f 033 =
1

2
p
2

h
1 + 2

p
2
f 0
31

F1

i
F3;

(56)

For simplicity we take the ~M matrix of Eq. (45) to be diagonal and set g11 = g22 = g33 = 1.
Three examples are illustrated in Table 2, with the values of f 021; f

0
22; f

0
23 determined from Eq.

(56) by setting a; b; c set equal to 1.2 - 0.45i, 2.0, 2.0, respectively, as in case (I-1) of Table
1; in addition 
 appearing in the type III seesaw is set equal to �R = 2:7� 1014 appearing
in the case (I-1). In these examples, F1; F2; F3 and MS are allowed to vary. We have
considered only the contributions to leptogenesis from the SM particles, since the previous
results indicated little di�erence with the inclusion of the supersymmetric contributions,
given the uncertainty in the corresponding washout factor.

By using the type III formulas beginning with the transformed version of the light neu-
trino mass matrix given in Eq. (40), we clearly reproduce the neutrino mass and mixing
results obtained with the type I seesaw mechanism in Table 1 for Case (I-1), where no mod-
i�cation of the original Dirac neutrino mass matrix was introduced. In fact, these results
are independent of the actual values taken for F1; F2; F3 and MS, and their values are not
repeated in Table 2. In particular, the Dirac CP-violating phase remains far from maximal
at 172Æ. On the other hand, one sees that successful leptogenesis and observed baryogen-
esis are easily obtained in all three examples for those four input parameters chosen. The
masses of the lightest pseudo-Dirac pair of heavy neutrinos range from 4:5� 104 GeV up to
4:5 � 106 GeV. For this mass range, overproduction of gravitinos is not an issue [26]. The
mass separation of the two Majorana neutrinos in the lightest pair is well above their decay
widths. Hence we see that the type III seesaw mechanism has a much easier time simultane-
ously giving realistic light neutrino masses and mixings and successful leptogenesis. In the
realistic model we have examined, we see that it fails by at least a factor of three to give
enough leptogenesis with the conventional seesaw mechanism. By contrast, with the type
III seesaw mechanism as we have seen, the light neutrino mixing issue is decoupled from
the issue of leptogenesis; moreover, there are ready-made pairs of nearly degenerate heavy
neutrinos. Consequently, there is no diÆculty in the same realistic model getting successful
leptogenesis with the type III seesaw mechanism.

V. CONCLUSIONS

In this paper we have explored the issue of resonant leptogenesis in a very predictive
SO(10) grand uni�ed model which leads to reliable numerical results. Phenomenological
studies [6] by Ellis, Raidal, and Yanagida, as well as by Akhmedov, Frigerio, and Smirnov
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have previously suggested that successful leptogenesis can be easily obtained with resonant
enhancement, though they had not looked at any speci�c realistic models in detail to be
sure that both the leptogenesis and neutrino mass and mixing results can be simultaneously
satis�ed. In order to obtain the desired LMA solar neutrino solution in the model con-
sidered here, it was found that near degeneracy of the lightest two right-handed neutrinos
was required. This feature neatly favors the resonant enhancement scenario for leptogenesis
which can survive washout and be converted into the observed baryon excess by sphaleron
interactions in thermal equilibrium above the critical electroweak symmetry-breaking tem-
perature.

We have �rst studied this problem in the conventional type I seesaw framework. The
seven model parameters, including one complex one, in the Dirac matrices are �xed by
the charged lepton and quark mass and mixing data. The lopsided nature of the down
quark and charged lepton mass matrices neatly accounts for both the small value of the
Vcb quark mixing parameter and the near maximal mixing of the mu- and tau-neutrinos.
As originally proposed, the right-handed Majorana neutrino mass matrix depended on just
four real parameters which, in conjunction with the Dirac neutrino and charged lepton mass
matrices, then leads to a sub-maximal mixing of the solar neutrinos but no leptogenesis.

By allowing three of the four MR parameters to be complex and introducing two addi-
tional very small parameters into the Dirac neutrino mass matrix, we were able to achieve
a sizeable amount of leptogenesis; however, it falls short of the observed value by a factor of
three. The limiting factor is the requirement that the heavy neutrino M1�M2 mass separa-
tion must be comparable to or larger than half the decay width of either neutrino. For this
application the two masses are found to be of the order of 3�108 GeV and separated by 600
GeV. In the supergravity scenario of SUSY breaking, however, the gravitino problem which
requires an upper bound on the reheating temperature of TR <� 107 GeV at best makes this
solution somewhat problematic. This can be alleviated, however, if SUSY breaking occurs
via the gauge-mediated scenario.

We then considered a type III seesaw mechanism by which three SO(10) singlet neutri-
nos are added to the spectrum, so the neutrino matrix is 9� 9. With the singlet neutrinos
at some large intermediate scale, the e�ective \double seesaw" results in three pairs of
quasi-Dirac neutrinos in place of three right-handed Majorana neutrinos. In this scenario
resonant-enhanced leptogenesis is achieved by the lightest pair of quasi-Dirac neutrinos, for
which their mass separation is typically one hundred times the widths of the two states.
Hence successful leptogenesis is easily obtained. With this type III seesaw the leptogenesis
is completely decoupled from the neutrino mass and mixing issues, so the good agreement of
the latter with present-day observations is preserved as observed earlier by us in [13]. Here
we have seen that with one choice of parameters the masses of the lightest neutrino pair can
be of the order of 5 � 104 GeV, so the gravitino problem is no longer an issue. The only
drawback for this type III seesaw mechanism is the appearance of a large number of new
parameters needed to specify the expanded 9� 9 neutrino matrix.

The research of SMB was supported in part by the Department of Energy under contract
No. DE-FG02-91ER-40626. One of us (CHA) thanks the Theory Group at Fermilab for
its kind hospitality. Fermilab is operated by Universities Research Association Inc. under
contract No. DE-AC02-76CH03000 with the Department of Energy.
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TABLES

TABLE I. Type I seesaw results for the four cases considered in the text.

Case (I-0): (SM) Case (I-1): (SM) Case (I-2): (SM) Case (I-3): (SUSY)

Input: a 1.0 1.20 - 0.45i 0.25 + 0.15i 0.20 + 0.10i

b 2.0 2.0 1.20 + 0.90i 1.15 + 0.90i

c 2.0 2.0 0.25 + 0.25i 0.25 + 0.3i

�R (GeV) 2:65 � 1014 2:70� 1014 2:90 � 1014 2:84 � 1014

(MN )12; (MN )21 0.0 0.0 �0:65� 10�5 �0:65� 10�5

(MN )13; (MN )31 0.0 0.0 �1:0 � 10�5 �1:05� 10�5

Output: M1 (GeV) 2:31 � 108 2:16 � 108 3:06� 108 3:08 � 108

M2 (GeV) 2:31 � 108 2:16 � 108 3:06� 108 3:08 � 108

M3 (GeV) 2:71 � 1014 2:76� 1014 2:90 � 1014 2:86 � 1014

�M21=M2 1:21 � 10�4 1:31 � 10�4 1:96 � 10�6 3:87 � 10�6

�1=M1 3:83 � 10�6 3:83 � 10�6 3:84 � 10�6 3:83 � 10�6

m1 (meV) 5.1 5.3 2.8 2.8

m2 (meV) 9.1 9.8 8.8 8.8

m3 (meV) 52.0 52.0 51.0 52.0

�m2
32 (eV

2) 2:6� 10�3 2:6 � 10�3 2:5� 10�3 2:6� 10�3

�m2
21 (eV

2) 5:6� 10�5 6:9 � 10�5 6:9� 10�5 6:9� 10�5

sin2 2�atm 0.991 0.988 0.979 0.981

sin2 2�sol 0.87 0.86 0.80 0.80

tan2 �12 0.48 0.46 0.39 0.39

sin2 2�13 0.0012 0.0006 0.0012 0.0014

jUe3j 0.017 0.012 0.018 0.019

ÆCP 177Æ 172Æ 76Æ 71Æ

�1; �2 �180Æ; 90Æ 24Æ; 117Æ 102Æ; �170Æ 102Æ; �170Æ

hmeei (meV) 0.57 0.58 0.44 0.44

�1 0.0 �6:4� 10�7 �1:2 � 10�3 �6:1� 10�4

~m1 (eV) 12.6 13.5 9.5 9.5

�1 6:2� 10�6 5:8 � 10�6 8:3� 10�6 8:4� 10�6

�B 0.0 0:80 � 10�13 2:2 � 10�10 2:0 � 10�10
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TABLE II. Type III seesaw results for three examples patterned after case (I-1) in Table 1.

The light neutrino mass and mixings results obtained are identical to those in case (I-1) of Table 1

and are not repeated here.

Case (III-1): (SM) Case (III-2): (SM) Case (III-3): (SM)

Input: 
 (GeV) 2:7 � 1014 2:7 � 1014 2:7� 1014

F1 1.0 10. 0.1

F2 1.0 0.1 0.1

F3 1.0 1.0 1.0

MS 4:3� 105 8:5� 108 1:0� 105

f11=F1 0.0 0.0 0.0

f12=F2 1.0 1.0 1.0

f13=F3 1.0 1.0 1.0

f21=F1 -0.950 + 0.534i -9.496 + 5.341i -0.095 + 0.053i

f22=F2 -2.279 - 1.537i -0.227 - 0.154i -0.228 - 0,154i

f23=F3 -0.194 + 1.523i -0.194 + 1.523i -0.194 + 1.523i

f31=F1 0.0 0.0 0.0

f32=F2 -0.354i -0.035i -0.035i

f33=F3 0.354 0.354 0.354

g11 1.0 1.0 1.0

g22 1.0 1.0 1.0

g33 1.0 1.0 1.0

Output: M1 (GeV) �4:50� 105 �4:50 � 106 �4:50 � 104

M2 (GeV) �2:70 � 1014 �2:70 � 1013 �2:70� 1013

M3 (GeV) �2:70 � 1014 �2:70 � 1014 �2:70� 1014

(M1+ +M1�)=M1+ 1:6 � 10�9 3:15 � 10�7 3:7� 10�9

�1=M1 6:9� 10�11 3:88 � 10�9 3:82 � 10�11

�1; �2 �156Æ; 113Æ 24Æ; �67Æ �156Æ; 113Æ

�1 2:5 � 10�5 1:6� 10�4 �1:4� 10�4

~m1 (eV) 0.10 0.57 0.48

�1 1:2 � 10�3 1:8� 10�4 2:1� 10�4

�B �6:2� 10�10 �6:1� 10�10 6:3 � 10�10
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Figure 1: Tree-level and one-loop Feynman diagrams in the computation of

the lepton asymmetry. A similar set of diagrams exists for the decays into

the antineutrino channels.
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