
SYNERGIA: A MODERN TOOL FOR ACCELERATOR PHYSICS
SIMULATION

P. Spentzouris∗, J. Amundson, FNAL, Batavia, IL 60510, USA

Abstract

High precision modeling of space-charge effects, to-
gether with accurate treatment of single-particle dynamics,
is essential for designing future accelerators as well as op-
timizing the performance of existing machines. Synergia
is a high-fidelity parallel beam dynamics simulation pack-
age with fully three dimensional space-charge capabilities
and a higher order optics implementation. We describe the
computational techniques, the advanced human interface,
and the parallel performance obtained using large numbers
of macroparticles.

INTRODUCTION

In recent years, accurate modeling of beam dynamics in
high-current low energy proton synchrotrons has become
necessary because of new machines under consideration for
future applications, such as the High Energy Physics neu-
trino program, and the need to optimize the performance of
currently operating machines, such as the Spallation Neu-
tron Source or the Fermilab Booster. These machines are
characterized by high currents and require excellent con-
trol of beam losses, thus space-charge initiated halo for-
mation is an essential component of their modeling. Beam
halo causes losses which lead to irradiation of the beam
line tunnel. In order to obtain accurate predictions for re-
alistic conditions of operation, single-particle optics and
self-consistent multi-particle effects must be combined in
a single simulation code. Single-particle optics model the
effects of the external forces on the beam, i.e. magnet and
rf cavity generated forces. Space charge, a multi-particle
effect, involves the interaction of the beam with itself due
to its own charge. Since space charge depends on the beam
distribution it must be recalculated as the beam evolves.

Several computer simulations of space-charge effects in
circular accelerators using particle-in-cell techniques have
been developed [1, 2, 3]. These simulations have empha-
sized the transverse dynamics while using a less rigorous
approach for the longitudinal dynamics. Synergia [4] is a
package for state-of-the-art simulation of linear and circu-
lar accelerators with a fully three-dimensional treatment of
space charge, and the ability to use arbitrary order maps for
the single-particle optics modeling.

Synergia is designed to be a general-purpose tool with
an interface that is accessible to accelerator physicists who
are not experts in simulation. Space-charge calculations
are computationally intensive, typically requiring the use

∗ spentz@fnal.gov

of parallel computers. The implementation of Synergia
is fully parallel, including the particle tracking and space-
charge modules. The code itself is a hybrid system based
on previously developed accelerator physics codes. Syner-
gia includes enhancements to these codes as well as new in-
tegration and interface modules. There is at least one other
example of an accelerator code framework which reuses
existing codes [5]. Synergia is unique in that it is designed
to provide a high level framework specifically for studying
3D multi-particle dynamics in a massively parallel comput-
ing environment.

Development of Synergia has been funded by the United
States Department of Energy’s SciDAC Accelerator Sci-
ence and Technology Project. One of the goals of the
project is to create distributable codes. Since compiling hy-
brid code can be a complicated task which is further com-
plicated by the diverse set of existing parallel computing
environments, Synergia includes a build system that allows
it to be compiled and run on various platforms without re-
quiring the user to modify the code and/or build system.

COMPONENTS

The two packages at the core of Synergia are IM-
PACT [8] and the mxyzptlk/beamline libraries [9]. We have
added glue code and a human-interface wrapper to these
packages, together with necessary extensions of their mod-
ules, to form the Synergia package.

IMPACT

Synergia uses IMPACT for its parallel particle-in-cell
(PIC) implementation, rf modeling and, most importantly,
parallel space-charge calculations. IMPACT contains a
suite of three-dimensional, FFT-based Poisson solvers that
are invoked in the middle of each step of a split-operator-
based model. We split the Hamiltonian into two pieces,

H = Hext + Hsc, (1)

where Hext is the Hamiltonian for the external beamline
element part of the problem and Hsc is the Hamiltonian
for the space-charge part of the problem. In our case the
latter is simply proportional to the scalar potential, with a
proportionality constant that varies as 1

γ2 to account for the
azimuthal magnetic field associated with the longitudinal
beam current. Since the scalar potential depends only on
coordinates and not momenta, the effect of Hsc is a change
in momentum, i.e. a space-charge kick, which we denote
by Msc. The effect of Hext is described by the transfer

FERMILAB-CONF-04-488-CD

map for the associated beamline element, Mext. In the
split-operator approach, an approximation to the effect of
the full Hamiltonian, H , accurate through second order in
the step size h, is given by

M(h) = Mext(h/2)Msc(h)Mext(h/2) + O(h3). (2)

The problem of calculating beam propagation including
space-charge effects therefore factorizes into the problem
of calculating the two effects one at a time and combining
them as above. A key advantage of this splitting, as op-
posed to one that separates the Hamiltonian into pieces in-
volving only coordinates and only momenta, is that in our
approach the rapid variation of the external fields is sep-
arated from the more slowly varying space-charge fields.
In other words, we can take small steps to accurately re-
solve rf cavity fields, magnetic fringe fields, etc., needed to
compute external transfer maps, but the separation between
space-charge kicks can be large (typically a few tens of
kicks per betatron wavelength). Without the factorization
above, we would be forced to calculate the space-charge
effects on the time scale set by the magnetic optics effects,
which would be computationally prohibitive.

We have extended the original IMPACT in several ways.
IMPACT now includes an injection module, allowing
multi-turn injection modeling. We have extended the beam
generation module to include a six-dimensional Gaussian
distribution with general correlations. We have also im-
proved the memory management, allowing for an arbitrary
number of beamline elements. Finally, we have enhanced
the IMPACT particle data structure to allow following indi-
vidual particles throughout the simulation and calculating
particle tunes.

mxyzptlk/beamline libraries

The mxyzptlk/beamline package is a set of C++ libraries
covering a wide range of accelerator physics computations.
Even though the original code is over 10 years old, the li-
braries are written in a modern style, including real objects
with encapsulation and well-considered interfaces. The
package includes basic toolkit, a set of useful utility classes
such as Vector, Matrix, etc., beamline, objects for model-
ing elements of a beamline, mxyzptlk, classes for automatic
differentiation and differential algebra, and physics toolkit,
a set of classes for analysis and computation.

A desirable feature of the mxyzptlk/beamline package for
our purposes is the ability to read accelerator descriptions
in the MAD8 language [10]. Synergia passes a MAD8
file and lattice name to beamline which returns transfer
maps for an arbitrary number of lattice slices. The MAD8
parser in beamline is limited to processing accelerator lat-
tice descriptions since the Synergia interface is much more
flexible than the MAD8 command language. In a generic
Synergia run lattice elements from MAD8 files can be
combined in arbitrary ways and even mixed with native
IMPACT/Synergia elements. Synergia also takes advan-
tage of mxyzptlk/beamline’s arbitrary-order transfer maps.

Figure 1: Synergia components and their relation to outside
inputs.

The current implementation utilizes first- and second-order
maps, but generalization to arbitrary orders is planned for
the near future.

SYNERGIA

Synergia is the combination of IMPACT, the
mxyzptlk/beamline libraries, glue code to get the two
packages talking to each other, and a user interface
wrapper providing a straightforward, yet powerful, hu-
man interface. Figure 1 shows the relationship between
Synergia components, MAD8 files, and analysis tools.

Build System

Portability has been a major design concern in creat-
ing Synergia. We rely on multiple components written in
multiple languages. While using multiple components al-
lows us to quickly put together a powerful package, it also
creates a configuration management problem. Multiple-
language issues are particularly problematic because call-
ing conventions vary from platform to platform. We solve
the multiple language part of the problem by writing all
of the inter-language wrapper code in terms of macros that
can be redefined for various platforms. We solve configura-
tion management problem by incorporating a modern build
system based on the GNU Autotools to provide consistent
builds on all platforms.

In principle, building Synergia is as simple as execut-
ing “./configure && make && make install” in the
mxyzptlk directory followed by “./configure && make”
in the Synergia directory. In practice, many options to
configure are available. The two principles we have fol-
lowed in constructing the build system are (1) modifying
the source (including Makefiles) should never be neces-
sary, and (2) all options should come with reasonable de-
faults. To date, Synergia builds without modifications on
Linux systems using either the Portland Group F90 com-
piler or the Intel F90 compiler, g++ or Intel CC, and either

the MPICH or LAM implementations of the Message Pass-
ing Interface (MPI). Synergia also builds without modifica-
tions on AIX, using XL Fortran, Visual Age C++ and POE.

Figure 2: OpenDX visualization of a three dimensional his-
togram of particle density of a FNAL Booster simulation.

 1

 10

 100

 4 8 16 32 64 128 256 512

pe
rf

or
m

an
ce

 [t
ur

ns
/h

ou
r]

number of cpu’s

model
QCD80, Gigabit, Intel FC

QCD80, Gigabit, G95
QCD80, Myrinet, Intel FC

Seaborg

Figure 3: Synergia performance measured in simulated
turns per hour versus number of cpu’s for different con-
figurations.

Human Interface

The user-level interface to Synergia consists of a set of
Python classes that wrap the low-level interfaces to the
code. To run Synergia, the user writes a short Python script
utilizing these classes. An example script excerpt is shown
in Figure 4. The use of Python has several advantages:
There is no specialized syntax to learn. A user familiar
with Python will be able to understand the entire interface
easily. A user unfamiliar with Python will be able to copy
an example script and modify it with little difficulty. Al-
though most examples will only use Python trivially, the
full power of the language is available should it be needed.
Last, but not least, the use of an existing scripting language
greatly simplifies the implementation, minimizing both the
development time and the probability for introducing bugs.

Job Description Every Synergia job is a sim-
ple Python script. Synergia provides the class
Impact_parameters as an interface to the internal

parameters of IMPACT, including input beam, energy,
space-charge parameters, etc. The accelerator lattice can
be defined using elements from an external MAD8 file.

Synergia provides a simple matching module to gener-
ate matched beams, utilizing linear optics calculations from
mxyzptlk/beamline for lattice function determination. We
also provide an interface to our Octave utilities package
that generates a matched beam in the presence of space
charge by solving the r.m.s. envelope equations. The in-
terface uses Octapy, a Python module we have developed
to allow exchange of data structures between Octave and
Python, as well as arbitrary Octave code execution from
Python.

Job Creation and Submission Synergia jobs can be
arbitrarily complex. Typically, the user will want to run
several different jobs varying only a few of the many input
parameters. Synergia provides several facilities to assist the
user in creating, submitting and managing simulation runs.

A Python module options provides a simple method to
write scripts accepting command-line arguments for Syn-
ergia and user-defined parameters. When a Synergia job
script is run, the command-line options for that job are au-
tomatically recorded in a manner so that they can be edited
and/or reinvoked. Synergia also records all job parameters
in a database with a human-readable summary file.

Synergia automatically generates batch system submis-
sion scripts based on a user-supplied template. Several
example templates are provided, including templates for
single-processor machines, multi-processor machines, the
PBS batch system and more. Optionally, jobs can be de-
fined to run on remote machines. Synergia generates scripts
to export the input files to the remote machine, submit the
job, and retrieve the files from the remote machine once the
job is finished.

Diagnostics A number of diagnostics are provided by
default during the simulation run. In addition, we provide
tools to allow users to analyze simulated data after a simu-
lation has completed. The standard diagnostic utilities are
evaluated at each split-operator step and include calcula-
tions of the second, third and fourth moments of all six
degrees of freedom, two-, four-, and six-dimensional emit-
tances, and all pairwise correlations for beam components.

For post-processing, we provide the ability to dump the
entire beam, or a sampled subset of the beam, at any sim-
ulation step. Files can be dumped in plain text or HDF5
format [11]. Each particle is saved along with a unique tag
so that individual particles can be tracked throughout the
simulation. We provide tools for rearranging a series of
particle dumps into individual tracks, both for diagnostic
purposes and calculating particle tunes. The output format
of the particle information dumps can be easily interfaced
to visualization packages such as OpenDX [12]. An exam-
ple of such visualization of a Fermilab Booster simulation
is shown in Figure 2.

ip = impact_parameters.Impact_parameters()

ip.processors(4,16)

ip.space_charge_BC("trans finite, long periodic round")

ip.input_distribution("6d gaussian")

mad_file = "booster.mad"; mad_line = "booster"

energy = myopts.get_value("energy")

(alpha_x, beta_x, alpha_y, beta_y) = \

madcalc.twiss_initial(mad_file,mad_line)

Set horizontal parameters based on beam width measurement

width_x = myopts.get_value("xwidth")

eps_x = width_x**2/beta_x

(width_xprime, r_x, emittance) = \

matching.match_twiss_width(width_x,alpha_x,beta_x)

ip.x_params(sigma = width_x, lam = width_xprime * pz)

Set vertical parameters so that emittance_horizontal == emittance_vertical

(width_y, width_yprime, r_y) = \

matching.match_twiss_emittance(emittance, alpha_y, beta_y)

ip.y_params(sigma = width_y, lam = width_yprime * pz)

numinjturns = myopts.get_value("numinjturns"); numturns = myopts.get_value("numturns")

x_offset= 0; y_offset= 0; phase_offset=0; output_num = 0

Run the simulation for around the mad line for numturns turns

for turn in range(0,numturns):

ip.add(impact_elements.External_element(

kicks=96, steps=10, radius=0.04,

mad_file_name=mad_file, beamline_name=mad_line))

my_synergia = synergia.Synergia(ip,sys.argv,synergia.options)

my_synergia.prepare_run(myopts.get_value("dirname"))

Figure 4: Example excerpt of a Synergia Python script showing lattice description from MAD8 file, beam matching
utilizing Synergia’s matching module, geometry setup, and simulation run.

Performance

In Figure 3 we compare performance and scaling behav-
ior of Synergia on QCD80, a cluster of 700 MHz Pentium
III machines running Linux and Seaborg, the IBM SP at
NERSC. The simulation is of the FNAL Booster using a
33 × 33 × 257 grid. We include a comparision with our
model of parallel scaling, t = c0/N +c1N , where t is time
and N is the number of cpu’s. The parameters c0 and c1

are related to the computational and network performance,
respectively.

REFERENCES

[1] F. Jones, G. H. Mackenzie, and H. Schonauer, Particle Accel-
erators,vol. 31, 199 (1990).

[2] S. Machida, in Computational Accelerator Physics, edited by
R. Ryne, AIP Conf. Proc. No. 297 (AIP, New York, 1994),
459.

[3] J. Galambos, J. Holmes, D. Olsen, A. Luccio, and J. Beebe-
Wang, ORBIT User’s Manual, Oak Ridge National Labora-
tory, SNS/ORNL/AP Technical Note No. 011, 1999.

[4] http://cepa.fnal.gov/psm/aas/Advanced Accelerator Simulation.html

[5] N. Malitsky, R. Talman, in AIP Conf.Proc. No 391 (AIP, New
York, 1997), 337.

[6] Booster Staff 1973 Booster Synchrotron ed E L Hubbard
Fermi National Accelerator Laboratory Technical Memo TM-
405

[7] http://scidac.nersc.gov/accelerator/mli/manual.pdf

[8] J. Qiang, R. D. Ryne, S. Habib and V. Decyk,

[9] L. Michelotti, FERMILAB-CONF-91-159 Presented at 14th
IEEE Particle Accelerator Conf., San Francisco, CA, May 6-
9, 1991.

[10] F.Christoph Iselin, “The MAD program(Methodical Accel-
erator Design) Version 8.13/8”, Physical Methods Manual,
CERN/SL/92, 1992.

[11] The Hierarchical Data Format, http://hdf.ncsa.uiuc.edu/

[12] http://www.opendx.org

