
RECENT DEVELOPMENTS IN THE ROOT I/O

Ph. Canal#, FNAL, Batavia, IL 60510, USA

René Brun, Fons Rademakers, CERN, Geneva, Switzerland

Abstract

Since version 3.05/02, the ROOT I/O System has gone
through significant enhancements. In particular, the STL
container I/O has been upgraded to support splitting,
reading without existing libraries and using directly from
TTreeFormula (TTree queries). This upgrade to the I/O
system is such that it can be easily extended (even by the
users) to support the splitting and querying of almost any
collections. The ROOT TTree queries engine has also
been enhanced in many ways including an increase
performance, better support for array printing and
histograming, addition of the ability to call any external C
or C++ functions, etc. We improved the I/O support for
classes not inheriting from TObject, including support for
automatic schema evolution without using an explicit
class version. ROOT now support generating files larger
than 2Gb. We also added plug-ins for several of the mass
storage servers (Castor, DCache, Chirp, etc.).

We will describe in details these new features and their
implementation.

STATUS
The ROOT development release 4.01/02 was issued on

September 24th, 2004. We expect to issue the production
release of the 4/01 series in December 2004.

There have been many improvements made to ROOT
since CHEP 2003. This paper will concentrate on the
improvements made to the I/O and TTree sub-system.
Some of the other improvements have been described in
other papers of the conference CHEP 2004 [1]. This
includes the description of XROOTD, a novel ROOT File
server which main characteristics are high performance,
reliability and scalability [2]. The authentication layer
using by PROOF and ROOTD was also completely
overhauled [3]. The graphical interface was greatly
improved with the introduction of “Object Property
Editors” , including the TH1Editor, TH2Editor, and
TGraphEditor and the introduction of many new widget
classes [4]. A GUI builder is now available and we added
a brand new GL viewer. There were also many additions
to the mathematical and statistical libraries, including a
new more efficient implementation of the Matrix package,
new functions in the TMath namespace and a new
Quadratic programming package.

ROOT I/O

TFile and TDirectory
We introduced support for 64 bits integers on all

platforms via the portable typedef Long64_t (and
ULong64_t), which maps to long long on Unix, _int64
with VC++ (and there unsigned counterpart). This
allowed us to implement support for file larger than 2Gb
added in ROOT 4.00. Files smaller than 2Gb are still
readable by older version of ROOT. We also were able to
add support for TTree with more than 2**31 entries.

A new data type, Double32_t, is now available for the
case where the calculation should be done in double
precision but where the resulting precision is less than
single precision (float). Double32_t is stored as a
Double_t in memory but is stored as Float_t on disk. This
allows for a much better compression of the data on disk.
ROOT also provides support for automatic schema
evolution to and from float and double. Note that too
many read and write cycles could result in some loss of
precision.

XML output format
An update to the I/O classes (TBuffer in particular)

allowed the customization of the storage backend. It has
been first used to implement an XML back-end. It will
also be used for SQL support in TTrees.

XML files will allow the interchange of data with
applications unable to read ROOT file directly.

Refer to Sergey Linev’s presentation for more detail
[5].

ROOT I/O History
• Version 2.25 and older:
Only hand coded and generated streamer functions are

supported. The end users must add support for schema
evolution by hand. Enabling the I/O for a users class
requires adding the ClassDef, ClassImp macros, to inherit
from TObject, and to generate the CINT Dictionary

• Version 2.26:
This version saw the introduction of a mechanism for

automatic schema evolution. This mechanism uses the
class TStreamerInfo (which reads the information
available in the dictionary) to drive a generic I/O routine.

• Version 3.03/05:
The macro ClassDef and ClassImp are no longer

necessary to enable the I/O for classes not inheriting from
TObject. Any non-TObject class can now be saved inside
a TTree or as part of a TObject-class.

__
#pcanal@fnal.gov

FERMILAB-CONF-04-474-CD

• Version 4.00/00:
Classes, which do not inherit from TObject and do not

have a ClassDef macro, now benefit for an “Automatic
versioning”. This allows for a fully automatic schema
evolution support.

• Version 4.00/08:
Introduction of an interface so that object not deriving

from TObject can be saved directly in TDirectory.
• Version 4.01/02
TTree were updated to support more than 2 billions

entries and to be able to automatically load the branch
containing an object referenced by a TRef.

Foreign Objects
Since ROOT 4.01/02, the only thing needed to store a

object in a ROOT file, is to generate a dictionary for its
class. For versioning, a default value is provided using a
Checksum based on the type and name of the persistent
data members. When this default versioning is used,
TBuffer stored the value ‘0’ where it would otherwise
store a class version number. Following this ‘0’ , the
Checksum is stored as an additional 4 bytes.

Using ClassDef still presents a few advantages.
ClassDef provides an IsA function which speeds up
considerably the access to the TClass for a given object.
In addition, when using ClassDef the version number (2
bytes maximum) consumes less space on disk than the
“0+checksum”.

TDirectory now has a new, safer interface to store and
retrieve object:

ptrclass *ptr=…; directory->WriteObject(ptr,"name");
ptrclass *ptr; directory->GetObject("name",ptr);
This new interface can be used both for TObject and

non-TObject classes. When calling
TDirectory::GetObject, the 2nd parameter (ptr in the
example) will be set to 0 unless an object whose name is
the 1st parameter exist and is of an appropriate type to be
used with a pointer of the type of ‘ptr’ .

TClonesArray
TClonesArray is a ROOT specific collection of TObject

that has been designed to optimize I/O operations. In
particular it optimizes the number of calls to new and
deletes by pre-allocating the memory needed for its
content. TClonesArray were also (until the introduction
of TVirtualCollectionProxy) the only collection where the
content could be split in a TTree. This splitting improves
the compressions factor and run time and allows a partial
retrieval of the contents.

Similarly, the content of TClonesArray can be saved
“member-wise” . This means that the same data members
of all the elements of the collections are stored
consecutively. This improves compression (because the
buffered data more homogeneous). This also improves
run-time, by avoiding n-1 tests on the data type of the
data members. TClonesArray was also the only collection
that was recognized by TTree::Draw. TClonesArray also
enable the possibility to retrieve the content of the object
even without the original compiled code.

Old STL Container Support
In versions of ROOT older than 4.00/00, all STL

collections were always stored object wise. The nesting
of STL collections within other STL collections was
extremely limited and any addition required extensive
modification of rootcint. No splitting of the content was
possible. All STL containers were stored using a
generated function. The compiled version of these
functions required for writing and also for reading

New Container Support
For the new support of STL collections, and a priori

any user collections, we introduced a new abstract
interface: TVirtualCollectionProxy. It should be possible
to implement this abstract interface for almost any
collections.

This new interface enabled us to implement code that
allows:

• Splitting (for collection of homogenous objects)
• Use in Tree Query (with automatic looping)
• Member-wise streaming (as opposed to Object

wise streaming)
The rewrite was also done such that we now support

effortlessly any arbitrary nesting of STL containers. It
also enables to implement the reading of STL containers
without the original compiled code (Emulated mode).

As of ROOT 4.01/02 only std::vector has an implement
of TVirtualCollectionProxy.

The early prototype and some of the fundamental
concepts were provided by Victor Perevoztchikov, BNL.

STL Support
Each STL container instance now has an associated

TClass object. This makes the STL container an integral
part of the ROOT class information system.

There are several co-existing streaming
implementations:

• Generated Streamer
• Template Proxy (e.g. TVectorProxy)
• Emulation Proxy (e.g. TEmulatedVectorProxy)
The generate streamers are used for object-wise

streaming. They fully respect custom allocators and
comparators and are easier to implement and have similar
run-time cost as a templated implementation.

The templated proxies (e.g.. TVectorProxy) are used for
splitting and member-wise streaming. They fully respect
custom allocators and comparators.

The emulation proxies (e.g.. TEmulatedVectorProxy)
are used for reading without a compiled version. They
allow the easy sharing of ALL ROOT files that have no
custom streamers.

Why not rely only on the Emulation Proxy
Since the emulation proxies are implementing the full

reading of the STL containers, we first thought of only
using those emulation proxies. However this proved to
have several insurmountable problems.

Implementing an emulation proxy that needs to act on a
“ live STL object” requires a few tricks and assumptions.
One such trick is to assume that the memory footprint of
the STL container object is independent from the template
parameter. However even if this assumption is true, it
still lead to some inelegant and limiting code. For
example the list proxy would need a series of list of
increasing fixed size content (i.e. list<char[1024]>,
list<char[2048]>) to encapsulate each of the possible user
object size!. In addition it proved almost impossible to
implement this emulation proxies such that they would
respect the custom allocators and comparators.

In addition, a template base implementation of the
proxy can be much faster and more memory efficient.

If the emulation layer does not need to touch actual
“ live STL objects” , then their implementation can be
greatly simplified for example by using alternative
collections (of similar run-time characteristics).

Container I/O Implementation
The new container I/O implementation is based on the

idea that any container can be summarized by the
sequence of its content’s addresses. In particular,
TVirtualCollectionProxy requires the implementation of
an “At” member function. This member function is called
via the operator [] by the I/O sub-systems.

This implementation allowed us to make the I/O sub-
system completely independent of the collection. It
reduced code duplication in TStreamerInfo and had no
run-time cost for TClonesArray (and C-style array).

On the other hand, the implementation of
TVirtualCollectionProxy for containers with no random
access iterator will probably need to cache the iterator.

To differentiate the Member-wise saving of a collection
from the object-wise saving, we are using the highest bit
of the class ‘ version number’ that is already saved for
each STL collection. An API will be provided to select
whether to save member-wise or object-wise for each data
member that are STL collections

TTREE

TRef autoload
We added an optional support for the auto-loading of

branches referenced by a TRef object. This is
implemented by generating one table of references to
branches per entry. TRef::GetObject uses this table to
find and load the branch containing the referenced object.
To enable this feature, call: tree->BranchRef();

TTree::GetUserInfo
This is a new method that can be used to store along

side the TTree object any user-defined objects that are not
depending on the entry number, for examples:
Luminosity, Calibrations, etc.

In memory circular buffer
A new method, TTree::SetCircular enables a circular
buffers for memory resident Trees. Once the TTree reach

the given amount of entries, before appending any new
entries, it first drops the oldest entries.

Copying a TTree
There are several very flexible and simple tools to copy

TTree and TChain objects allowing cut on:
• Number of entries
• Number of branches
• Selection of entries base on a Formula
In ROOT 4.00, we removed the requirement for the

user to explicitly set the addresses for all the branches.
For example to copy all the branches except for one,
simply use:

tree->SetBranchStatus(“ br” ,kFALSE”);
newtree=tree->CloneTree();

To copy only a portion of the entries using a cut use:
tree->CopyTree(“ fTracks.fPx<=1.2”);

TTree Queries
There have been many improvements to the TTree

query engine. In particular we implemented a “Boolean
expression optimization” for the operators && and ||,
where the right operands of the expressions are evaluated
only if the left operands’ value are not enough to know
the complete result of the expressions.

A new histogram editor was introduced which allows
the rebinning of histograms generated from a TTree using
the full information from the TTree (instead of being
limited to just the binned information stored in the
histogram).

We made several enhancements to the output of
TTree::Scan, including the ability to properly display
array content and adding the possibility to customize the
size of the column being displayed.

The TTree queries can now contains calls to free
standing functions or class static member functions.
These functions can be either compiled or interpreted.
They need to have only numerical arguments and return a
numerical type. For Example:

tree->Draw("TMath::Prob(var,5)");
TTreeFormula now treats any collection class that has a

TVirtualCollectionProxy in the exact same way as a
TClonesArray:

• Automatically loops over the elements
• Can access a specific element
• Synchronized with other collections and arrays in

the formulas

Connecting several TTrees
There are currently two ways to extend a TTree. A

TChain can be used to extend the TTree vertically by
collating several TTrees together and make them look like
a single long TTree with the same structure but with more
entries.

TTree Friends can be use to extend the TTree
horizontally by virtually adding more branches to the
hierarchy. Prior to ROOT 4.00/08 the correlation made
between TTree Friends was only based on the entry
number. This represents a serious problem if the TTree

objects have two sequences of entries that are
semantically different. In ROOT 4.01, the TTree Friends
can now be connected using an index.

Let’s take the example where we have two trees each
with a column for the Run Number and a column for the
Event Number. One of the TTree (the main tree) is well
sorted by Run Number and Event Number while the
second tree (the user tree) is shorter but is not sorted by
run number and event number. If these two trees are
connected using a friend relation without an index, this
will result in the loading of entries in both trees that
corresponds to two different events. However if we index
the main tree and make it a friend of the user tree, then
when the user call GetEntry on the user tree, before
loading the corresponding branch in the main tree, the
tree will lookup in the index table the correct entry to
read.

The MakeClass Revolution
There are currently several Fast Analysis Frameworks

provided in ROOT. These include:
TTree::Draw
• For Fast histograming
• Load branch on Demand
• Only simple expressions
MakeCode
• C-Style
• Flat representation of the tree
• Obsolete
MakeClass
• Flat representation of the tree
• Difficulties with variable size arrays
• Branch loaded explicitly
MakeSelector
• Proof Ready
• Flat representation of the tree
• Difficulties with variable size arrays
• Branch need to be loaded explicitly
We are now implementing an elegant replacement for

MakeClass/MakeSelector. It is currently named
MakeProxy. The generated selector creates a C++ context
where the branch names (including periods) can be used
as a C++ variable. This new environment also provide on
demand loading of branches. It respects or recreates the
original class structure. It provides array bound checks
and uses the user’s shared libraries when it is available

MakeProxy Examples
The first tool to use MakeProxy is TTree::Draw when it

is requested to draw a script. This feature of
TTree::Draw allow the user to use complex looping, to
call to any C++ functions or member functions, to write
any arbitrary C++ and still provide on-demand loading of
the branches.

RDBMS

New RDBMS interface: Goals
In ROOT 4.02 we want to provide access to any

RDBMS tables from TTree::Draw interface.
We also want allow the creation a Tree in split mode

which would create on the fly the equivalent DBMS table
and fill it. The resulting table would then be able to be
processed by SQL directly. This new interface would use
the normal I/O engine, including support for automatic
schema evolution.

New RDBMS Interface
We currently have a prototype that allows the creation

of a table from a simple TTree (branch with leaf list) and
the reading of simple RDMBS table.

This prototype already has two backends to access the
database. One is implemented via ROOT’s net package,
including the TSQLServer and TSQLRow classes. We
also have an implementation using the RDBC for reading
[8]. The near future extension of this prototype should
include support for branches of objects. For this, we
would need to implement a way to store and retrieve
TStreamerInfo(s) and TProcessID(s) in the database. We
will probably use SQL binary ‘blob’ to store non-split
objects.

FUTURE PLANS FOR I/O AND TTREE
In the next few months we intend to implement

member-wise storing for std::vector and to develop the
TVirtualCollectionProxy for each of the STL containers.

We also want to add support for auto loading of TRef
branches across trees, to enhance the TTree indexing
scheme to nicely work for TChain objects, especially
when they are used in TTree Friendship.

We also want to enhance TTree::Draw so that it can
follow transparently any TRef and TRefArray

REFERENCES
[1]http://indico.cern.ch/materialDisplay.py?contribId=85

&sessionId=6&materialId=slides&confId=0 slide 3
[2] Andrew Anushevsky. “The Next Generation Root

File Server” , Chep2004
[3] Gerardo Ganis, “Authentication/Security Services In

The Root Framework” , CHEP 2004
[4] Ilka Antcheva “Guidelines For Developing A Good

Graphical User Interface” , Chep2004
[5] Sergey Linev, “Xml I/O In Root” , CHEP 2004
[6] Fons Rademakers, “Global Distributed Parallel

Analysis Using Proof And Alien” , CHEP 2004
[7] Maarten Ballintijn, “Super Scaling Proof To Very

Large Clusters” , CHEP 2004
[8] http://carrot.cern.ch/~onuchin/RDBC

