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We give some details of the recently completed calculation of the full two-loop fermionic corrections to the

effective leptonic weak mixing angle, sin2
θ
lept
eff . Among others, we describe the C++ library DiaGen/IdSolver,

which was used to reduce the two-loop light fermion vertex diagrams to linear combinations of master integrals
with rational function coefficients.

1. INTRODUCTION

Two masses play at present an extremely im-
portant rôle among the parameters of the Stan-
dard Model. These are MW and MH , the masses
of the W and Higgs bosons respectively. As long
as experiments will not reach a satisfactory level
of precision for MW and will not be able to give a
value to MH by direct observation, we are bound
to seek indirect predictions for these observables
based on theoretical calculations of suitably cho-
sen processes. It is well known that MW can be
predicted with the help of the precisely measured
muon decay lifetime, while MH from the Z peak
observables, most notably from the effective lep-

tonic weak mixing angle, sin2 θlept
eff .

The theoretical program for the W boson mass
prediction has been completed with an error es-
timate of 4 MeV [1], which is even below the ex-
pected precision of measurement at a future lin-
ear collider, not to mention the much closer Large
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Hadron Collider (LHC), where the error should
be of the order of 15 MeV. This achievement
required among others the two-loop electroweak
result finished with a calculation of the bosonic
part [2], following a long study of the fermionic
part [4, 5]. To be complete we have to mention
more than twenty years of various works starting
from the original analysis [6], going through QCD
corrections to the one-loop result [7,8] and finally
some three-loop leading contributions in the top
quark mass [9].

In the case of the effective leptonic weak mixing

angle, sin2 θlept
eff , the situation is not so satisfac-

tory. Most of the corrections listed above still
apply, but a complete calculation at the two-loop
level in the electroweak interactions does not ex-
ist, and only the m4

t and m2
t terms in the top

quark mass expansion are available [3, 10]. Since
the current measurement has an impressive pre-

cision, sin2 θ
lept
eff = 0.23150 ± 0.00016 [11], and

prospects are to reach an absolute error of 10−5

at a future linear collider, it is still necessary to
compute several contributions. Recently, we took
a step in this direction by performing a complete
calculation of the two-loop electroweak contri-
butions generated by diagrams with one or two
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closed fermion loops [12]. In this contribution,
some aspects of this calculation will be described.
We will first present the method used for the top
quark vertex diagrams, then that for the light
fermion diagrams. Finally we will discuss some
details of the C++ library DiaGen/IdSolver [13]
used for the decomposition of diagrams to com-
binations of master integrals.

2. TOP QUARK CONTRIBUTIONS

sin2 θlept
eff is defined through the form factors of

the leptonic Z boson vertex. Namely, if the vertex
is i lγµ(gV − gAγ5)l Zµ, then

sin2 θ
lept
eff =

1

4

(

1 − Re

(

gV

gA

))

. (1)

The main complication in the calculation comes
from the two-loop vertices that one has to evalu-
ate. All other irreducible two-loop diagrams enter
through renormalization constants and can be ob-
tained from propagator diagrams at nonvanishing
external momentum at worst. The algorithm to
obtain numerical values of these has been com-
pleted in [14].

We decided to divide the fermionic two-loop
vertices in two groups, one with top quark lines
and one that has only light fermion lines. The
contribution of the former is expressed through
three massive parameters (we neglect the light
fermion masses), MW , MZ and mt, and is thus
a nontrivial function of two dimensionless vari-
ables2. Although it is conceivable that the result
could be expressed in some closed analytic form,
this is absolutely not needed. It turns out that
it is better to exploit the smallness of the ratio
M2

Z/m2
t ∼ 1/4, which corresponds to decoupling

of the top quark. Obviously the construction of a
high precision effective theory would be very dif-
ficult, since high order tensor operators would be
needed. Instead, we simply performed a diagram-
matic large mass expansion.

We checked that inclusion of terms of order
(M2

Z/m2
t )

5 is sufficient to obtain an intrinsic pre-
cision of 10−7, which is by far enough for prac-
tical purposes. An example of a scalar diagram
2The fermionic vertex diagrams do not depend on the
Higgs boson mass due to CP conservation.

Z Zt tt

Figure 1. Example of a diagram with a top quark
subloop treated with the large top quark mass
expansion.

entering the calculation is given in Fig. 1. With
x = M2

Z/m2
t , the expansion reads

x

3
ζ2 +

x2

4

(

1

3
ζ2 −

5

9
+

1

3
log x

)

+
x3

5

(

1

9
ζ2 −

79

240
+

1

4
log x

)

+ . . . . (2)

Numerically, this gives

0.1483 − 0.0081 − 0.0019 + 0.0003 + . . . . (3)

Such excellent convergence is typical of all neutral
current diagrams. The charged current diagrams
do not converge so rapidly presumably because
of the splitting of the W boson lines into a top-
bottom pair as opposed to double top pairs in the
previous case.

Let us stress that we performed the expansion
exclusively for the vertex diagrams. This means
that the propagator diagrams from renormaliza-
tion, which contain one massive parameter more,
the Higgs boson mass, were evaluated by ex-
act one-dimensional integral representations. Our
approach is therefore different from that of [10],
where expansion was performed in MH as well. In
that case, though, only the leading and sublead-
ing terms in mt were computed, whereas we ob-
tained the complete result for the fermionic two-
loop contributions.

3. LIGHT FERMION CONTRIBU-
TIONS

The light fermion vertex diagrams contain one
scale less and are, therefore, functions of only one
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dimensionless variable. It turned out, that this
case allows to perform an exact calculation and
obtain the result in closed analytic form expressed
through polylogarithms. To this end we used the
differential equation method [15].

An example of a scalar integral entering the
calculation is given in Fig. 2. Since the subloop
is massless it can be integrated to give a massless
line with a non-integer power of the denominator.
In fact using harmonic tensors it is also possible
to perform the full tensor reduction of any scalar
integral corresponding to this topology. To get rid
of the higher powers of denominators we devised
a reduction scheme with the help of integration
by parts identities for general indices.

The integral corresponding to Fig. 2, denoted
by LF1, satisfies the following differential equa-
tion

M2
d

dM2
LF1(M, m) = (4)

1

2

M2

M2 + m2
((4 − d)(4 + 5

m2

M2
) LF1(M, m)

+(10 − 3d) LF0(M) − (2 − d)
1

m2
T134(0, 0, m)),

where LF0 is the same integral without the mas-
sive line, T134 [14] is the sunset vacuum integral,
M2 is the external momentum squared and m is
the mass on the massive line. Both LF1 and LF0
have been made dimensionless with the help of
the external momentum.

Equation 4 may be integrated in the class
of Nielsen polylogarithms. The polylogarithmic
terms of the finite part read

−Li2(−x)(−2+2 log(m2)+3 log(−x)+log(1+x))

+4Li3(−x) − S1,2(−x) + . . . (5)

where x = M2/m2. We should note that LF1 has
also been calculated in [16].

We were able to integrate analytically all of
the integrals but one. The last remaining inte-
gral was then evaluated numerically. Recently,
another work appeared [17], where several inte-
grals of interest to us have also been calculated.
However, the authors of that calculation intro-
duced an extension of the polylogarithm class and

ǫ

Figure 2. Example of a light fermion subloop in-
tegrated using the differential equation technique.
The thick line is massive.

Figure 3. Most complicated light fermion proto-
type.

represented their result in terms of this extension.
In the end, to obtain a numerical result one would
need to perform multiple integrals.

Finally, let us note that all integrals have been
checked by different expansions in physical and
unphysical regimes and by numerical integra-
tions based on dispersion relations [14] and Feyn-
man parameterizations [18]. We have also per-
formed two independent calculations of the on-
shell renormalization procedure and the necessary
counterterms for establishing a finite and mean-

ingful result for sin2 θ
lept
eff .

4. DIAGEN/IDSOLVER

The calculation of the light fermion diagrams
described in the last section necessitates a reduc-
tion of integrals with irreducible numerators and
denominators with higher powers to a small set
of master integrals. In the case of the LF1 inte-
gral mentioned above, the procedure is relatively
simple, since after integration of the subloop it
is similar to a one-loop integral. However, in the
case of Fig. 3, this is much more difficult.
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Figure 4. Structure and interrelationships in Id-
Solver.

To solve this and similar problems, a complete
system has been designed and programmed in
C++. This system is built upon the DiaGen [13]
library which provides tools for diagram gener-
ation and topological analysis. The new part,
called IdSolver [13], implements, among others,
the Laporta algorithm [19]. The major difference
compared to the system described in [19]3 is the
automated topological analysis part.

The general structure and interrelationships
with other software used by IdSolver are shown in
Fig. 4. Internally, the library is organized around
two pairs of classes

• Prototype and PrototypeList

A prototype is a topology with masses as-
signed to lines (a mass of an external line
is defined through its momentum), i.e. a
colored undirected graph in graph theoret-
ical terminology. Identification of isomor-
phic prototypes is performed either through
momentum patterns for vacuum integrals
or through topological isomorphism modulo
tadpoles. The latter means that the original
prototype is decomposed into its subgraph
without tadpoles and tadpoles separately,
then isomorphism tests are performed on
each component. The reason for such so-
phistication is that (topologically) different

3see also [20].

prototypes may be associated with the same
integral. The procedure above is unique
only for vacuum graphs. However, in all
problems considered in practice4 no dupli-
cate integrals have been generated. Starting
from box graphs, there is a new problem as-
sociated with the exchanges of external lines
that have the same momentum squared.
An algorithm has been implemented which
identifies two prototypes as isomorphic only
if the necessary interchange does not per-
mute the invariants (e.g. s, t and u for
boxes). Besides prototype isomorphism, the
Prototype class provides, among others, the
topological symmetry group, automatically
assigned momenta (with optimization of
distribution) and numerator/denominator
cancellation rules.

The PrototypeList class manages hierar-
chies of prototypes. Upon insertion of a
prototype it generates all of its subproto-
types obtained by canceling lines together
with matching rules, i.e. momentum shift-
ing transformations between the prototype
and its subprototypes. Simultaneously, it
writes administration files to disk starting
from declarations needed by FORM [22]
and ending with precomputed Integration
By Parts (IBP), Lorentz Invariance (if re-
quested by user) or other identities (user
defined). Subsequently it manages the so-
lution of the system starting from the sim-
plest prototypes (those that have the least
number of lines).

• Integral and IntegralList

From the point of view of the system, an
integral is just a name and list of indices,
which represent powers of the irreducible
numerators and denominators. Integrals
may be equivalent, if they do not have nu-
merators and are equal by symmetry. This
property is automatically assigned by the
system based on the symmetry group of the
prototype. Once solved, integrals have as-

4this encompasses QED vertices and boxes [21], elec-
troweak vertices and tadpoles up to four loops.
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sociated expressions, which are linear com-
binations of other integrals (masters) with
rational function coefficients.

The system of integrals is represented by
the IntegralList class. The latter provides a
method for updating the list with an iden-
tity generated by FORM and for writing the
solution to disk. It also allows for master in-
tegral identification and keeps various sta-
tistical information.

The library has several other classes, the de-
scription of which we will skip.

The rational function arithmetic needed may
be done by any external software by means of
a specialized thin interface class. In practice,
Maple, Mathematica and Fermat [23] have been
used. The latter has proved to be the fastest and
most economic in terms of resources required.

An important step in the calculation is the mas-
ter identification. To be safe, one should solve the
system to high powers of numerators and denom-
inators. If the expressions were kept exact, this
would be time consuming and unnecessary. To
solve this problem, evaluation homomorphisms
are used, i.e. the system is solved by projecting
the coefficients to the rational numbers field with
suitably chosen values of the parameters.

The library DiaGen/IdSolver is a powerful tool
many possible applications. It is being cur-
rently used to calculate among others the two-

loop bosonic corrections to sin2 θ
lept
eff .
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F. A. Berends, M. Böhm and M. Buza, Nucl.
Phys. B 434 (1995) 383.

15. A. V. Kotikov, Phys. Lett. B 259 (1991) 314;

http://arxiv.org/abs/hep-ex/0312023
http://arxiv.org/abs/hep-ph/0407317


6

E. Remiddi, Nuovo Cim. A 110 (1997) 1435.
16. B. Feucht, J. H. Kühn and S. Moch, Phys.
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