
The CDF Central Analysis Farm
T.H.Kim

�
,M.Neubauer

�
, I.Sfiligoi

�
,L.Weems

�
, F.Würthwein

� �
MIT, Cambridge, MA

�
UCSD, La Jolla, CA�

Laboratori Nazionali di Frascati, INFN, Frascati, Italy
�
FNAL, Batavia, IL

Abstract— With Run II of the Fermilab Tevatron well underway,
many computing challenges inherent to analyzing large volumes
of data produced in particle physics research need to be met. We
present the computing model within CDF designed to address the
physics needs of the collaboration. Particular emphasis is placed
on current development of a large O(1000) processor PC cluster at
Fermilab serving as the Central Analysis Farm for CDF. Future
plans leading toward distributed computing and GRID within
CDF are also discussed.

Index Terms— CDF, high energy physics, computing, batch,
grid, physics analysis

I. INTRODUCTION

RUN II at the Fermilab Tevatron began in March 2001
and will continue to probe the high energy frontier in

particle physics until the start of the LHC at CERN. The
accelerator facility underwent a major upgrade for increased
energy ( � 10%) and instantaneous luminosity ( � 10) over that
attained in Run I. With a goal of attaining 9 fb ��� of integrated
luminosity over Run II for each experiment, a very rich and
exciting physics program[1] at Fermilab is expected over this
decade.

In order to operate at the upgraded Tevatron and to exploit the
physics potential of the new beam conditions, the CDF detector
also underwent a major upgrade[2]. By the end of Run II, it is
expected that the CDF collaboration will write up to 6 PB of
data onto tape. Providing efficient access to such a large volume
of data for analysis by hundreds of collaborators world-wide
will require new ways of thinking about computing in particle
physics research.

II. COMPUTING REQUIREMENTS

It is important to understand the data and software char-
acteristics involved before one sets out to solve an analysis
computing problem.

The data produced by the CDF reconstruction is permanently
stored in an STK tape robot. The Enstore software system
developed at FNAL provides the interface layer to network-
attached tape drives in the robot. In cases where fast, frequent
access to large amounts of tape data is required, significant
read and write cache disk is employed. The dCache[3] software
system from DESY provides a scalable network-attached front-
end disk cache to Enstore. In addition, an Oracle-based database
system is used to store and provide access to metadata and
calibrations.

In the context of CDF data analysis, we are trying to process
a very large number ( 	�

� or more) of relatively small (tens to

TABLE I

CDF COMPUTING NEEDS FOR RUN II.

Fiscal Year CPU (THz1) Disk (TB)
2003 1.0 180
04 3.7 280
05 9.0 610

2006 13.9 840

hundreds of kBytes) independent data elements. As such, we
have the relative luxury of speeding up a typical analysis job
through parallel processing of independent subsets of the job.
Some additional characteristics of the CDF data are:

� Root I/O as the persistent data format
� Typical reconstructed (raw) data size of 30-150 (250)

KB/event
� Typical Run dataset size of 	�
 � events, with some of them

going into the 	�
�� range

The AC++ framework is used within CDF to develop the
analysis software. Several standard modules are available to be
used by the final user, while he has to write his own modules
for his specific analysis. The typical analysis job is meant to
select the interesting events and write out a standard ntuple
ROOT file. Some additional characteristics of the CDF analysis
software:

� Typical analysis jobs run at 5 Hz on 1 GHz P3 (or 11 Hz
on a 2.66 GHz P4), corresponding to a few MB/sec input
rate

� Analysis jobs are CPU rather than network I/O bound over
Fast Ethernet

The CDF collaboration is composed of a large number of
physicists, with several of them being active at the same time.
Our current experience is showing us that roughly 100 of them
are active on a typical day, each submitting 100-400 jobs a day.
We expect to scale to roughly 200 concurrent users in the near
future.

Our goal is to provide sufficient computing resources to allow
each of these users to process a typical secondary dataset (e.g.
produce standard ntuples) in one day.

The computing requirements to achieve this goal given our
data and software characteristics are shown in Fig. I.

III. CENTRAL ANALYSIS FARM (CAF)

The CAF grew out of the need to maximize the amount
of computing we can provide for CDF at more or less fixed

1“THz” is relative to 1 GHz P3 performance

FERMILAB-CONF-04-365-CD



cost both in terms of hardware as well as human capital to
operate the system. Fiscal pressures as well as the scale of the
analysis computing challenge lead to a large batch based cluster
of commodity PC hardware.

A. Computing model for CDF central analysis

A user develops and debugs his application on his desktop
anywhere in the world. Real data are used to verify the
correctness of the executables. To do so we provide low
bandwidth access to all CDF data files from anywhere in the
world interactively.

When the user produces the desired executable, he submits it
to the CAF, splitting the dataset in several independent subsets.
The CAF user interface forms a gzipped tar archive and sends
it for execution to the CAF cluster.

At the CAF site as many instances of the user tar archive are
submitted to the batch system as defined by the user at submis-
sion time. At execution time, the archive is unpacked, and the
user’s shell script is invoked with whatever input parameters
declared at submission time. One of the input parameters is an
integer to distinguish between different instances of the same
archive. It is then up to the user to implement the details of the
parallelization based on this integer.

After the user shell script terminates the CAF creates a tar
archive of the user working directory on the local node in the
cluster. An intelligent user will thus delete all temporary files
from their working directory before exiting their shell script
except. This tar file is then copied to a location defined by the
user at submission time for job status verification or for input
into a subsequent CAF analysis job. In principle, the output
location may be anywhere in the world.

In practice most of the time the user selects the CAF local
scratch space (50 GB allocated per user). This scratch space
may be accessed transparently using a set of environment
variables defined by the CAF for the user. The user may access
their scratch space via ftp and rootd from outside the CAF, and
via ftp, rsh, rcp, fcp, and rootd from inside the CAF. We refer
to this as icaf to indicate that the intended use is as staging
area for CAF output, sort of like imap for email.

The CAF is thus receiving one tar archive with the applica-
tion, and sending out as many tar archives as there are instances
of the user application requested at submission time.

Once all instances of a given submission have terminated,
the CAF will parse a set of CAF logfiles created for this
submission, and write a summary report to be emailed to the
user. The objective with this email report is to provide the user
with a quick overview of how well their submission completed.
The body of the report provides sufficient information for the
user to determine which instances have failed, as well as the
reason for failure if known. It is thus very easy for a user to
go back and debug individual instances by either inspecting
the core and log files they received back with the output tar
archive, or by running a specific instance interactively through
a debugger.

User desktop

CafGui

Head node

submitter

Disk servers
Data

Job

Worker node

CafExe

untar

Job.sh

...

tar

fbsng

Fig. 1. CAF Overview

B. Hardware Details

The CAF is functionally comprised of three types of hard-
ware :

� worker nodes, where users’ jobs are executed,
� storage nodes, which host the data accessed by the analysis

jobs running on worker nodes,
� infrastructure nodes, which provide important utilities for

the CAF (head node, database nodes, code servers, etc.).

The CAF is currently composed of � 300 worker nodes, with
another � 250 to be rolled in by the year end. The present
worker nodes are a mixture of 1U and 2U dual CPU machines,
each with a single Fast Ethernet interface and a reasonably
sized scratch disk.

The mass storage is composed of � 90 2 TB storage nodes,
with another � 20 5 TB storage nodes to be rolled in by the
year end. The server nodes are selfcontained IDE RAID 4U and
5U server units (disk, CPU, network device, etc.), each with at
least one Gigabit Ethernet interface and hot swap capabilities.

Of the currently installed storage nodes, � 25 are used for
the CAF scratch space, while the others are integrated into the
CDF dCache pool.

The CAF scratch space can be accessed using either ker-
berized rcp, kerberized FTP or kerberized rootd. Files on the
dCache servers are instead served via dCache’s protocol which
is similar to rfio. i.e. a remote file I/O that is POSIX like.

C. Software Details

The design goal for the CAF software is to provide users with
secure access to CAF resources (batch CPU, scratch disk, data
handling system) from their desktops anywhere in the world.
To successfully implement such a system, we need to work
within several somewhat contradictory design constraints and
desirables:

� FNAL security policy: Kerberos authentication lab-wide



� Job scheduling: proven batch system, configurable, fair
share capability, local support � FBSNG[4]

� Administrative ease: no user accounts, jobs run under
single ’cafuser’ UID

� User identity: Unique privileges for batch jobs and disk
resources

Before submitting a job, the user groups all the necessary
data under a subdirectory. The needed data include the exe-
cutable, all the necessary shared libraries, the startup script and
any other configuration file needed by the job.

Once everything is in place, the user can invoke a kerberos
client interface, specifying the required information about the
job (local path to the subdirectory, startup script to run, num-
ber of desired parallel sections, output URL). The interface
authenticates the user (i.e. presents a valid kerberos ticket) to
a submitter server daemon running on the head node which
receives the job information and a tarball containing the speci-
fied subdirectory. The communication is achieved by means of
a proprietary protocol via a kerberized TCP/IP socket. Once all
the information has been received, the server daemon performs
the actual job submission to the FBSNG Batch Manager (bmgr),
one FBSNG job for every user requested section, plus a mailer
job that will send the final e-mail.

Once a user’s job is scheduled and sufficient CPU resources
become available, a standard executable (CafExe) common to
every worker node is launched with

� a common ’cafuser’ UNIX user ID
� appropriate parameters to completely specify the user’s job
� a kerberos principal unique to the user, generated from a

single “service” principal on the farm
CafExe copies over and unpacks the user’s tarball from the

head node, sets up the proper environment for CDF analysis
software, and runs the user’s shell script which in turn executes
whatever the user has specified.

After the user shell script terminates, CafExe tars up the
user’s working directory and sends the tar archive to the loca-
tion requested by the user. The user-specific kerberos principal
is used for unique access privilege to the output location(s).

Have also a look at Fig. 1.

D. Batch manager policy

Fair share is implemented using the concepts of queues and
process types (ptypes). FBSNG allows us to specify parameters
that govern the fair share algorithm between queues and allows
to set quotas and time limits for process types.

We use these to create small, medium, and large ptypes with
time limits ranging from 2 to 24 hours of CPU and form 4 to
48 hours of wall clock time. To guarantee sufficient response
time for small we restrict medium and large to a total quota of
less than the total number of CPU’s available in the farm. Fair
share between users is established by having a queue per user.

While most of the CPU and disk resources are owned by the
collaboration as a whole and commonly funded, we also allow
institutions to contribute funds to the CAF. We then guarantee
that their users receive first pick of idle resources up to the

Fig. 2. Monitoring example - Number of job sections waiting to be run

level of their contribution. As a result, roughly 1/3 of the CAF
was funded from sources outside the common fund.

We implement this by requiring the user to select the proper
group queue. The drawback of this method is the arising of
anomalous situations where, due to high group activity, users
sometimes get less CPU if submitting to the group queue
instead of the general one.

IV. THE ICAF SERVICE

The CAF scratch space is spread over several physical
storage nodes, but the user should not be aware of this.
Moreover, when a user needs to be moved from a storage
node to another due to administrative needs, this should be
completely transparent to the user and as simple as possible
for the system administrator.

The icaf service is our solution to the problem. Running on
the head node, the icaf server daemon works as a directory ser-
vice. After identifying the requester (by means of the presented
kerberos ticket), information about the user’s physical storage
node and remote directory name is sent back.

The information about users and storage nodes is kept in a
plain text file, one line for every registered user. This format is
the most readable one both for humans and programs for this
type of information.

To make the service more useful, a full set of tools has been
developed:

� icaf info simply prints out the information obtained by the
icaf server,

� icaf get, icaf put, and icaf rm implement the most used
operations of data movement,

� icaf quota shows the users quota,
� while icaf gftp implements a full featured X-based kerber-

ized ftp client with a one-click pointer to the icaf area

V. CAF MONITORING

While the CAF is fundamentally a batch based system, we
were unwilling to sacrifice the core functionality provided by
an interactive system. We thus implemented not only the usual
batch monitoring functionalities but also a core set of services
that allow a user to watch their jobs as if they were running on
their local desktop instead of a remote cluster.



User
Desktop

(D)CAF
Farm

Analysis

(D)CAF
Farm

Analysis

User
Desktop

User
Desktop

User
Desktop

(D)CAF
Farm

Analysis

(D)CAF
Farm

Analysis

Broker
Resource

Fig. 3. A distributed CAF

The standard batch functionalities are Web based. Using his
favorite browser, a user can monitor both the status of his jobs
and the status of the system as a whole. Among other details,
the web based monitoring provides the number of jobs waiting
to be executed, as can be seen in Fig. 2.

The interactive like services are ls, tail, top, and debug
equivalents. The first three allow the user to obtain information
about the local environment a given instance of their job is
executing on without the need to know where that environment
is located. All the user needs to specify is the instance and
submission ID. The debug service allows the user to attach a
gdb session to their running executable. To do this the user
needs to specify the UNIX PID in addition to section and job
id. The user may look up the latter on the CAF monitoring
pages.

VI. TOWARD THE GRID

SAM[5] is another product under intensive evaluation for use
in CDF data handling. SAM provides distributed data access,
flexible dataset history and management, and optimizations for
limited fabric resources (e.g. network or tape bandwidth), and
has been demonstrated to work with Enstore and the CDF
analysis software framework.

The distributed nature of the collaboration and the ever
increasing demand of CPU power is pushing the CDF collab-
oration to distribute its CPU and disk resources all over the
world. Especially institutions outside the USA want to keep
their resources inside the funding country.

To address these needs, we are looking toward a more
distributed structure, like the one described in the Fig. 3.

We have started by installing the current software in several
locations and were running real analysis jobs on them for
a while. Although these sites are working, they have some
drawbacks:

� The sites are independent and they do not communicate
with each other.

� The user must explicitly select the site to run on.
� Each site has its own (sub)set of available data.
� The use of FBSNG outside FNAL is very limited, so it

was difficult to find local expertise at the remote sites.

For all of the above reasons, we are now preparing to move
our CAF software to a Condor batch manager. This will solve
all our problems except the data problem; Condor is able to
move jobs between sites and, due to much wider establised
user base, expertise is much easier to find around the globe.

To solve also the data problem, we are integrating SAM in
our CAF infrastructure and into the CDF analysis framework.
We envision to use SAM as the resource broker inside the
distributed CAF and as the input interface for the CDF analysis
jobs.

VII. CONCLUSIONS

The Central Analysis Farm has proved to be a very good
solution for the CDF computing needs. Since its introduction,
the resources available to the user has been increased by 2
order of magnitude over the SMP model used in Run 1, with
the same amount of money spent. Users are also pleased by the
system and find it very easy to use and very helpful in error
diagnosis.

As more and more users are using the system, the system is
proving to be stable and scalable, and we are able to add new
resources keeping the needed manpower essentially constant.

We feel very satisfied with the current implementation inside
FNAL, but the need of a distributed model is pushing us for
some serious rework of the software. We are though looking
forward to the substitution of FBSNG with Condor and to the
introduction of SAM into the core CAF services.

REFERENCES

[1] D. Acosta et al., The CDF Collaboration, The CDF Experiment at the
Tevatron - The First Two Years of Run II, FERMILAB-PUB-03/162-E,
2003.

[2] CDF Collaboration, The CDF II Technical Design Report, FERMILAB-
Pub-96/390-E, 1996.

[3] M. Ernst et. al., dCache, a distributed storage data caching system,
Proceedings of CHEP 2001, Science Press, 2001.

[4] J. Fromm, K. Genser, T. Levshina, I. Mandrichenko, FBSNG - Batch
System for Farm Architecture, Proceedings of CHEP 2001, Science Press,
2001.

[5] A. Baranovski et. al. , SAM Managed cache and processing for clusters
in a worldwide grid-enabled system, FERMILAB-TM-2175, 2002.


