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Abstract 
Strong magnetic field in today's colliding detectors causes 

track recognition more difficult due to large track curvatures.  
In this document, we present a global track recognition 
scheme based on track angle measurements for circular tracks 
passing the collision point.  It uses no approximations in the 
track equation and therefore is suitable for both large and 
small curvature tracks.  The scheme can be implemented both 
in hardware for lower-level trigger or in software for higher-
level trigger or offline analysis codes.  We will discuss an 
example of FPGA implementations using “hash sorter”. 

I. INTRODUCTION 
In today's colliding detectors such as CMS, strong 

magnetic field causes large curvatures of tracks in the r-
φ plane.  Track recognition, especially for the middle and low 
transverse momentum ones, becomes more difficult due to the 
following two reasons: 

1. The large curvature tracks are not restricted in 
small φ region.  The tracks may hit many detector 
sections.  Some tracks may even loop back in the 
opposite portion of the tracker. 

2. The “high Tp ” approximation for the track 
equation is not valid globally. 

These challenges exist from lower-level trigger stage all 
the way to the higher-level trigger code and even in offline 
analysis software. 

To overcome the difficulties due to large track bending, 
we investigated a global track recognition scheme using no 
approximation in the track equation.  Consider a circular track 
passing through the collision point O as shown in Fig. 1 with 
initial angle 0α and curvature R/1 :
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In a small region of the detector, if the tangent angle α of 

the track segment (or “cluster”, or “doublet”) can be 
measured, the two track parameters, initial angle and 
curvature can be calculated very simply without any 
approximation: 
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Figure 1: A circular track passing through the collision point O with 
initial angle 0α and curvature R/1 .

After calculating 0α and 0c of the doublets, the doublets 
are stored into an array of bins indexed by these two track 
parameters, or, one may visualize this as booking a 2-D 
“histogram”.  The doublets that belong to a track must all 
have common parameters.  Therefore the doublets from one 
track will be primarily found in one bin (plus its neighbouring 
bins to account for the boundary effects).  The grouped 
doublets are then sent to later stages for track reconstruction 
and multiple track separation. 

The processes of binning and grouping of the doublets can 
be implemented in FPGA using various schemes.  The 
implementation we choose in this document is based on the 
“hash sorter” [3] that we developed in the trigger system for 
the Fermilab BTeV experiment [1][2]. 

There are many techniques of measuring tangent angleα .
For example, it can be measured by joining two hits in two 
detector layers.  In this case, we can reach similar formula as 
in reference [4][5].  

This scheme can also be viewed as a special case of the 
combinatorial version of the Hough transform[5]. 

II. PRINCIPLE OF TRACK RECOGNITION 
We attempt to explain the track recognition scheme 

through a simulation example. 
Imagine a simple detector layout containing 5 super 

layers.  From the inner most super layer 0 to outer most super 
layer 4, the radii of them are 20, 35 50 75 and 100 cm.   
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In each super layer, two layers of silicon detectors 
separated by 1 cm measures the hit coordinate in the φ
direction with 50 µm sensor pitch. 

Generated tracks are shown in Fig. 2.  One can see that 
some of the highly curved tracks with minimum radius 

cmR 50min = barely hit all 5 super layers in our example. 

Figure 2: Tracks in a simulated example. 

The close-by hits on the two detector layers in a super 
layer are paired together as “doublets”.  In our detector 
configuration, up to 5 doublets can be generated by a charged 
track.  It is also possible that different tracks hit a detector 
layer too closely so that fake doublets are formed.  We will 
include all possible combinations of the doublets at this stage. 

 

(a) 

 (b) 
Figure 3: Histograms used to explain track recognition scheme.  
Horizontal axis: initial angle (rad).  Vertical axis: curvature 0c of 
the circular track.  (a) Raw histogram. (b) Non-zero clusters. 

The tangent angle α of the track is coarsely calculated for 
each doublet.  Then, through equations given above, the two 

track parameters, initial angle 0α and curvature 0c are found 
for each doublet. 

The doublets are stored into bins indexed by these track 
parameters.  We booked a 2-D histogram as shown in Fig. 
3(a) to illustrate this process. Note that in the real 
implementation, not only the count of the doublets, but also 
the whole information of all doublets must be stored into a bin 
and retrieved out later.  This is different than just booking a 
histogram.  

The track parameters should be approximately equal for 
the 5 doublets generated by one track.  Therefore, they are 
concentrated into clusters, which can be seen in Fig. 3(a). 

Using simple PAW commands, we checked coincident of 
doublets in super layer 3 and ones in other super layers for 
each cluster.  The result is shown in Fig. 3(b). 

Comparing Fig. 3 (a) and (b), we can see that the entries in 
a cluster are collected together.  Also, isolated fake doublets 
are eliminated. 

Ideally, the doublets in each non-zero cluster should form 
a track.  However, tracks may have similar parameters and 
may fall into same bin.  In our example above, we do see two 
tracks with 6.10 =α and 06.00 =c merging together. 

The fake doublets may also “contaminate” good clusters.  
The overlapping will be resolved in later stage(s) when more 
accurate track parameters can be calculated.  

Nevertheless, the number of combinations must be 
checked by the later stage(s) has been substantially reduced 
after this process. 

There are two possible clustering schemes as shown in 
Fig. 4.  The goal of clustering process is to start from a 
seeding doublet stored in a bin to find all matching doublets in 
nearby bins. 

Figure 4: Two clustering schemes.  (a) The 9-bin scheme. (b) The 4-
bin scheme. 

Assume the total width of the measurement errors for 

0α and 0c are αw and cw , respectively.  The two clustering 
schemes differ in the bin size and offset of the bins: 

1. In the 9-bin scheme as shown in Fig. 4(a), the size of a 
bin in the parameter space is cww ×α . For a seeding 



doublet in bin (i, j), the matching doublets can be 
found in 9 bins within 1±i and 1±j .

2. In the 4-bin scheme as shown in Fig. 4(b), the bin size 
is cww 22 ×α . The seeding bins and the matching 

bins are shifted with each other by αw and cw in each 
direction.  For a seeding doublet in bin (i, j), the 
matching doublets can only be found in 4 bins, i.e., (i, 
j), (i-1, j), (i, j-1) and (i-1, j-1). 

The total phase space in the 9-bin scheme is smaller than 
the one in 4-bin scheme, which will have a better overlapping 
suppression.  However, the number of storage bins must be 
accessed simultaneously in the 4-bin scheme is a lot less 
which is suitable for FPGA implementation.  In Fig. 3(b) and 
remaining of this document, we will use the 4-bin clustering 
scheme. 

III. FPGA IMPLEMENTATIONS BASED ON HASH 
SORTER 

A. The Hash Sorter 
 The hash sorter can be visualized as a memory block 

organized into bins that are indexed by a key number, K. (see 
Fig. 5). 

The data items with a particular key number are stored in 
the particular bin.  The data items stored in the hash sorter can 
be retrieved quickly later. 

Figure 5: Hash sorting process. 

We have developed the hash sorter in FPGA with 
considerations in the following aspects: 

• The hash sorter is designed using pipeline 
structure so that the writing, reading and 
refreshing functions are performed in single clock 
cycle. 

• Memories are organized as link lists for efficient 
usage.  Therefore, there is no separate limit on 
number of data items a bin can store.  The only 
limit is total number of items in all bins. 

The logic of hash sorter itself does not require specific 
operation sequence.  However, we normally first push entire 
set (such as a whole event) of data items into the hash sorter 
and then pop them out one by one.  There is normally a 
refresh operation after the last popping operation of the 
previous set of data and before the first pushing operation of 
the new set. 

The block diagram of the FPGA implementation for the 
track recognition using hash sorters is shown in Fig. 6.   

Figure 6: Block diagram of the FPGA implementation of the track 
recognition scheme. 

B. Track Recognition Operations 
We have chosen doublets from super layer 3, 2 and 1 in 

our track recognition example.  The hits in other super layers 
can be collected after the track segments with hits from these 
three super layers are identified.  We use super layer 3 as 
seeding layer since doublets in this layer provide more 
accurate measurement on curvature than the inner super 
layers. 

The initial angle and curvature dimensions are divided into 
256 and 64 bins, respectively, for the range of ],[0 ππα −=
and ]5.0,5.0[0 −=c . It is possible to build a hash sorter 
with 256 X 64 = 16,384 bins to accommodate the 2-D binning 
with one stage of hash sorter.  However, less silicon resource 
is used if it is done in two stages, one for each parameter.  The 
initial angle hash sorters in the first stage will have 256 and 
curvature hash sorter 64 bins. 

The doublets from super layers 3, 2 and 1 are sent into the 
input FIFO.  The bin index numbers 3aK , 2aK and 1aK
representing a small range in the 0α dimension are picked 
out for pushing into the initial angle hash sorters.   

After all doublets from an event are pushed into the initial 
angle hash sorters, they are popped out bin by bin.  We may 
visualize these bins as columns in the 2-D histogram.  The 
output doublets are buffered by a set of FIFO and then pushed 
into the curvature hash sorters. 

The pushing operation into the curvature hash sorters are 
indexed by bin numbers 3cK , 2cK and 1cK in the 0c
dimension.   

After doublets from a column (rather than from the entire 
event) are pushed into the curvature hash sorters, they are 
popped out bin by bin.  These bins represent the rows in the 2-
D histogram. 



The curvature hash sorters for super layer 2 and 1 need 
additional internal logic to support clustering function.   

As we mentioned above, the data storage in the hash sorter 
are organized as link lists.  The refresh operation does not 
destroy the data in the previous set.  Therefore, in the 
curvature hash sorters, while popping doublets in column i, 
the doublets in the previous column, column i-1 can still be 
retrieved.   

The clustering in the 0c dimension requires reading the 
row j and j-1, which are simply adjacent bins in the curvature 
hash sorters. 

Normally, not all bins in the curvature hash sorters are 
occupied.  We can use bit registers to record the occupied bins 
in each super layer. 

Coincident logic is performed among the registers to 
eliminate random fake doublets.  The non-zero bits after the 
coincident logic represent occupied clusters containing 
doublets from good tracks.   

The locations of the non-zero bits are encoded sequentially 
as indices for the curvature hash sorters. 

The doublets popped out from a cluster will be further 
checked by the “Fit, Cut and Arbitration” functional block. 

Sometimes, there may be several doublets for a super layer 
in a cluster.  Then multiple combinations must be checked.  
The simplest way to produce these combinations is to use re-
transmittable FIFO blocks to loop over the doublets in a 
cluster for super layer 2 and 1.   

IV. TEST DESIGNS AND SILICON RESOURCE 
USAGE 

We have test compiled the hash sorter in an Altera 
Cyclone [6] device (EP1C12). 

The compiling results are shown in Table 1.  As we can 
see, the Tiny Triplet Finder fit today's middle sized FPGA 
comfortably. 

Table 1: Silicon Usage of the Hash Sorter 

Reference Devices: EP1C12 $118 (04/2004) 
Numbers 
Needed 

Logic 
Cells (ea.) 
(12,060) 

Memory 
Blocks (ea.) 

(52) 
Hash Sorter 6 143 (3%) 2 (4%) 

V. SIMULATION RESULTS 
Using a simple simulation, we have evaluated the track 

recognition scheme for events with numbers of tracks from 
100 to 1000.  The tracks are generated with even distribution 
in both 0α and 0c . The minimum radius of curvature of the 

track is cmR 50min = .

We assume the z coordinate is not measured, but the 
region along z-axis of a detector hit is know, since the silicon 
sensor chips have a finite length.  To reduce number of fake 

doublets we assume that hits can be distinguished into at least 
8 regions in z direction effectively. 

Programs are written in C to emulate the function shown 
in Fig. 6. 

Cuts on parameters, both explicit and implicit ones, are set 
as loose as possible so that final missing track rate is 
controlled to less than 0.1%. 

 (a) 

 (b) 
Figure 7: A simulation event with 200 tracks. (a) The event display.  
(b) The initial angle distribution. 

A simulated event with 200 tracks and its initial angle 
distribution are shown in Fig. 7. 

 
Figure 8: Simulation results with 100 to 1000 tracks/event.  Circle: 
number of doublets on super layer 3.  Triangle: number of non-zero 
clusters.  Square: number of combinations that pass all cuts.  
Connected dot: number of correct tracks after cuts.  Star: number of 
correct tracks with just one doublet per super layer in the cluster.  
The horizontal axis is number of tracks/event.  The raw numbers and 
their ratios scaled by the numbers of tracks are plotted in the left and 
right graphs, respectively. 



The hits are paired together as doublets.  The range for 
pairing the doublets is chosen so that tracks with 

o45<−φα at super layer 3 will be included.   

The simulation results are shown in Fig. 8. 
One can see that extra doublets are generated when more 

tracks are involved in an event.   
After two stages of hash sorting process, 3-fold coincident 

logic in cluster is checked for super layer 3, 2 and 1.  The 
clusters with non-zero coincident are mostly real tracks. 

Since in each of the non-zero clusters, there may be 
several doublets for a super layer, so the numbers of total 
combinations of doublets to be checked by the later stage(s) 
will be larger.  We simulated a simple fit and cut stage to 
eliminate extra combinations.  The numbers of combinations 
that pass the cut are in acceptable range. 

Most of original tracks we generated in the simulation are 
found.  The missing track rate is less than 0.1%. 

VI. OTHER FAST TRIGGER PRIMITIVES 
Useful trigger primitives can be established without full 

reconstruction of all tracks.  An example is shown in Fig. 9.   
The event shown here has 200 back ground tracks with the 

same distribution as in Fig. 7.  Two “soft jets” are added, with 
8 tracks each and same wide curvature distributions.  The 
initial angles of the two groups of tracks are generated in 
narrow ranges: [1.00, 1.05] and [1.80, 1.85], respectively. 

The “soft jets” are not easy to be seen in the event display.  
However, when the distribution of the initial angles of the 
doublets, including both correct and fake ones, is plotted, 
distinct features of the “soft jets” are obvious. 

 (a) 

 (b) 
Figure 9: A simulated event with 200 back ground tracks and two 
“Soft jets”. (a) The event display.  (b) The initial angle distribution.. 

VII. DISCUSSIONS 
We should point out that this scheme is insensitive to the 

asymmetry of the detector configuration.  As long as the angle 
of the doublet can be measured appropriately, this scheme 
will work in virtually any detector structures. 

The offset of the collision point can be viewed as a special 
case of detector asymmetry.  If the offset is known, it is not 
necessary to tune the collision point to the geometric centre of 
the detector, (if the centre exists). 

The tangent angle measurement is normally very coarse.  
Therefore, multiple scattering will not affect the track 
recognition process in most cases. 

Some times, tracks from secondary decay are detached 
from primary vertex.  This type of tracks introduces errors 
essentially in the φ measurement.  However, large impact 
parameter of the detached track can be tolerated since the 
baseline of φ measurement is a lot longer than the one of α.

Although we used silicon detector in our example, this 
scheme can be used in other detector types.  There are mature 
techniques in drift chamber or straw detectors for measuring 
cluster parameters.  The tangent angle of the cluster can be 
directly used.  Sometimes, a cluster may yield two 
possibilities of the segments due to, for example, left-right 
ambiguity.  In the track recognition process, the correct 
possibility will be chosen, and the “ghost” possibility can be 
eliminated, if the event is not too messy. 
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