
A Pattern Recognition Scheme for Large Curvature Circular Tracks and an FPGA
Implementation Using Hash Sorter

Jinyuan Wu and Z. Shi

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
jywu168@fnal.gov

Abstract
Strong magnetic field in today's colliding detectors causes

track recognition more difficult due to large track curvatures.
In this document, we present a global track recognition
scheme based on track angle measurements for circular tracks
passing the collision point. It uses no approximations in the
track equation and therefore is suitable for both large and
small curvature tracks. The scheme can be implemented both
in hardware for lower-level trigger or in software for higher-
level trigger or offline analysis codes. We will discuss an
example of FPGA implementations using “hash sorter”.

I. INTRODUCTION
In today's colliding detectors such as CMS, strong

magnetic field causes large curvatures of tracks in the r-
φ plane. Track recognition, especially for the middle and low
transverse momentum ones, becomes more difficult due to the
following two reasons:

1. The large curvature tracks are not restricted in
small φ region. The tracks may hit many detector
sections. Some tracks may even loop back in the
opposite portion of the tracker.

2. The “high Tp ” approximation for the track
equation is not valid globally.

These challenges exist from lower-level trigger stage all
the way to the higher-level trigger code and even in offline
analysis software.

To overcome the difficulties due to large track bending,
we investigated a global track recognition scheme using no
approximation in the track equation. Consider a circular track
passing through the collision point O as shown in Fig. 1 with
initial angle 0α and curvature R/1 :

)sin(2 0αφ −= Rr
In a small region of the detector, if the tangent angle α of

the track segment (or “cluster”, or “doublet”) can be
measured, the two track parameters, initial angle and
curvature can be calculated very simply without any
approximation:

αφα −= 20)sin(5025
0 φα −==

r
cm

R
cmc

Figure 1: A circular track passing through the collision point O with
initial angle 0α and curvature R/1 .

After calculating 0α and 0c of the doublets, the doublets
are stored into an array of bins indexed by these two track
parameters, or, one may visualize this as booking a 2-D
“histogram”. The doublets that belong to a track must all
have common parameters. Therefore the doublets from one
track will be primarily found in one bin (plus its neighbouring
bins to account for the boundary effects). The grouped
doublets are then sent to later stages for track reconstruction
and multiple track separation.

The processes of binning and grouping of the doublets can
be implemented in FPGA using various schemes. The
implementation we choose in this document is based on the
“hash sorter” [3] that we developed in the trigger system for
the Fermilab BTeV experiment [1][2].

There are many techniques of measuring tangent angleα .
For example, it can be measured by joining two hits in two
detector layers. In this case, we can reach similar formula as
in reference [4][5].

This scheme can also be viewed as a special case of the
combinatorial version of the Hough transform[5].

II. PRINCIPLE OF TRACK RECOGNITION
We attempt to explain the track recognition scheme

through a simulation example.
Imagine a simple detector layout containing 5 super

layers. From the inner most super layer 0 to outer most super
layer 4, the radii of them are 20, 35 50 75 and 100 cm.

FERMILAB-CONF-04-271-E

In each super layer, two layers of silicon detectors
separated by 1 cm measures the hit coordinate in the φ
direction with 50 µm sensor pitch.

Generated tracks are shown in Fig. 2. One can see that
some of the highly curved tracks with minimum radius

cmR 50min = barely hit all 5 super layers in our example.

Figure 2: Tracks in a simulated example.

The close-by hits on the two detector layers in a super
layer are paired together as “doublets”. In our detector
configuration, up to 5 doublets can be generated by a charged
track. It is also possible that different tracks hit a detector
layer too closely so that fake doublets are formed. We will
include all possible combinations of the doublets at this stage.

(a)

 (b)
Figure 3: Histograms used to explain track recognition scheme.
Horizontal axis: initial angle (rad). Vertical axis: curvature 0c of
the circular track. (a) Raw histogram. (b) Non-zero clusters.

The tangent angle α of the track is coarsely calculated for
each doublet. Then, through equations given above, the two

track parameters, initial angle 0α and curvature 0c are found
for each doublet.

The doublets are stored into bins indexed by these track
parameters. We booked a 2-D histogram as shown in Fig.
3(a) to illustrate this process. Note that in the real
implementation, not only the count of the doublets, but also
the whole information of all doublets must be stored into a bin
and retrieved out later. This is different than just booking a
histogram.

The track parameters should be approximately equal for
the 5 doublets generated by one track. Therefore, they are
concentrated into clusters, which can be seen in Fig. 3(a).

Using simple PAW commands, we checked coincident of
doublets in super layer 3 and ones in other super layers for
each cluster. The result is shown in Fig. 3(b).

Comparing Fig. 3 (a) and (b), we can see that the entries in
a cluster are collected together. Also, isolated fake doublets
are eliminated.

Ideally, the doublets in each non-zero cluster should form
a track. However, tracks may have similar parameters and
may fall into same bin. In our example above, we do see two
tracks with 6.10 =α and 06.00 =c merging together.

The fake doublets may also “contaminate” good clusters.
The overlapping will be resolved in later stage(s) when more
accurate track parameters can be calculated.

Nevertheless, the number of combinations must be
checked by the later stage(s) has been substantially reduced
after this process.

There are two possible clustering schemes as shown in
Fig. 4. The goal of clustering process is to start from a
seeding doublet stored in a bin to find all matching doublets in
nearby bins.

Figure 4: Two clustering schemes. (a) The 9-bin scheme. (b) The 4-
bin scheme.

Assume the total width of the measurement errors for

0α and 0c are αw and cw , respectively. The two clustering
schemes differ in the bin size and offset of the bins:

1. In the 9-bin scheme as shown in Fig. 4(a), the size of a
bin in the parameter space is cww ×α . For a seeding

doublet in bin (i, j), the matching doublets can be
found in 9 bins within 1±i and 1±j .

2. In the 4-bin scheme as shown in Fig. 4(b), the bin size
is cww 22 ×α . The seeding bins and the matching

bins are shifted with each other by αw and cw in each
direction. For a seeding doublet in bin (i, j), the
matching doublets can only be found in 4 bins, i.e., (i,
j), (i-1, j), (i, j-1) and (i-1, j-1).

The total phase space in the 9-bin scheme is smaller than
the one in 4-bin scheme, which will have a better overlapping
suppression. However, the number of storage bins must be
accessed simultaneously in the 4-bin scheme is a lot less
which is suitable for FPGA implementation. In Fig. 3(b) and
remaining of this document, we will use the 4-bin clustering
scheme.

III. FPGA IMPLEMENTATIONS BASED ON HASH
SORTER

A. The Hash Sorter
 The hash sorter can be visualized as a memory block

organized into bins that are indexed by a key number, K. (see
Fig. 5).

The data items with a particular key number are stored in
the particular bin. The data items stored in the hash sorter can
be retrieved quickly later.

Figure 5: Hash sorting process.

We have developed the hash sorter in FPGA with
considerations in the following aspects:

• The hash sorter is designed using pipeline
structure so that the writing, reading and
refreshing functions are performed in single clock
cycle.

• Memories are organized as link lists for efficient
usage. Therefore, there is no separate limit on
number of data items a bin can store. The only
limit is total number of items in all bins.

The logic of hash sorter itself does not require specific
operation sequence. However, we normally first push entire
set (such as a whole event) of data items into the hash sorter
and then pop them out one by one. There is normally a
refresh operation after the last popping operation of the
previous set of data and before the first pushing operation of
the new set.

The block diagram of the FPGA implementation for the
track recognition using hash sorters is shown in Fig. 6.

Figure 6: Block diagram of the FPGA implementation of the track
recognition scheme.

B. Track Recognition Operations
We have chosen doublets from super layer 3, 2 and 1 in

our track recognition example. The hits in other super layers
can be collected after the track segments with hits from these
three super layers are identified. We use super layer 3 as
seeding layer since doublets in this layer provide more
accurate measurement on curvature than the inner super
layers.

The initial angle and curvature dimensions are divided into
256 and 64 bins, respectively, for the range of],[0 ππα −=
and]5.0,5.0[0 −=c . It is possible to build a hash sorter
with 256 X 64 = 16,384 bins to accommodate the 2-D binning
with one stage of hash sorter. However, less silicon resource
is used if it is done in two stages, one for each parameter. The
initial angle hash sorters in the first stage will have 256 and
curvature hash sorter 64 bins.

The doublets from super layers 3, 2 and 1 are sent into the
input FIFO. The bin index numbers 3aK , 2aK and 1aK
representing a small range in the 0α dimension are picked
out for pushing into the initial angle hash sorters.

After all doublets from an event are pushed into the initial
angle hash sorters, they are popped out bin by bin. We may
visualize these bins as columns in the 2-D histogram. The
output doublets are buffered by a set of FIFO and then pushed
into the curvature hash sorters.

The pushing operation into the curvature hash sorters are
indexed by bin numbers 3cK , 2cK and 1cK in the 0c
dimension.

After doublets from a column (rather than from the entire
event) are pushed into the curvature hash sorters, they are
popped out bin by bin. These bins represent the rows in the 2-
D histogram.

The curvature hash sorters for super layer 2 and 1 need
additional internal logic to support clustering function.

As we mentioned above, the data storage in the hash sorter
are organized as link lists. The refresh operation does not
destroy the data in the previous set. Therefore, in the
curvature hash sorters, while popping doublets in column i,
the doublets in the previous column, column i-1 can still be
retrieved.

The clustering in the 0c dimension requires reading the
row j and j-1, which are simply adjacent bins in the curvature
hash sorters.

Normally, not all bins in the curvature hash sorters are
occupied. We can use bit registers to record the occupied bins
in each super layer.

Coincident logic is performed among the registers to
eliminate random fake doublets. The non-zero bits after the
coincident logic represent occupied clusters containing
doublets from good tracks.

The locations of the non-zero bits are encoded sequentially
as indices for the curvature hash sorters.

The doublets popped out from a cluster will be further
checked by the “Fit, Cut and Arbitration” functional block.

Sometimes, there may be several doublets for a super layer
in a cluster. Then multiple combinations must be checked.
The simplest way to produce these combinations is to use re-
transmittable FIFO blocks to loop over the doublets in a
cluster for super layer 2 and 1.

IV. TEST DESIGNS AND SILICON RESOURCE
USAGE

We have test compiled the hash sorter in an Altera
Cyclone [6] device (EP1C12).

The compiling results are shown in Table 1. As we can
see, the Tiny Triplet Finder fit today's middle sized FPGA
comfortably.

Table 1: Silicon Usage of the Hash Sorter

Reference Devices: EP1C12 $118 (04/2004)
Numbers
Needed

Logic
Cells (ea.)
(12,060)

Memory
Blocks (ea.)

(52)
Hash Sorter 6 143 (3%) 2 (4%)

V. SIMULATION RESULTS
Using a simple simulation, we have evaluated the track

recognition scheme for events with numbers of tracks from
100 to 1000. The tracks are generated with even distribution
in both 0α and 0c . The minimum radius of curvature of the

track is cmR 50min = .

We assume the z coordinate is not measured, but the
region along z-axis of a detector hit is know, since the silicon
sensor chips have a finite length. To reduce number of fake

doublets we assume that hits can be distinguished into at least
8 regions in z direction effectively.

Programs are written in C to emulate the function shown
in Fig. 6.

Cuts on parameters, both explicit and implicit ones, are set
as loose as possible so that final missing track rate is
controlled to less than 0.1%.

 (a)

 (b)
Figure 7: A simulation event with 200 tracks. (a) The event display.
(b) The initial angle distribution.

A simulated event with 200 tracks and its initial angle
distribution are shown in Fig. 7.

Figure 8: Simulation results with 100 to 1000 tracks/event. Circle:
number of doublets on super layer 3. Triangle: number of non-zero
clusters. Square: number of combinations that pass all cuts.
Connected dot: number of correct tracks after cuts. Star: number of
correct tracks with just one doublet per super layer in the cluster.
The horizontal axis is number of tracks/event. The raw numbers and
their ratios scaled by the numbers of tracks are plotted in the left and
right graphs, respectively.

The hits are paired together as doublets. The range for
pairing the doublets is chosen so that tracks with

o45<−φα at super layer 3 will be included.

The simulation results are shown in Fig. 8.
One can see that extra doublets are generated when more

tracks are involved in an event.
After two stages of hash sorting process, 3-fold coincident

logic in cluster is checked for super layer 3, 2 and 1. The
clusters with non-zero coincident are mostly real tracks.

Since in each of the non-zero clusters, there may be
several doublets for a super layer, so the numbers of total
combinations of doublets to be checked by the later stage(s)
will be larger. We simulated a simple fit and cut stage to
eliminate extra combinations. The numbers of combinations
that pass the cut are in acceptable range.

Most of original tracks we generated in the simulation are
found. The missing track rate is less than 0.1%.

VI. OTHER FAST TRIGGER PRIMITIVES
Useful trigger primitives can be established without full

reconstruction of all tracks. An example is shown in Fig. 9.
The event shown here has 200 back ground tracks with the

same distribution as in Fig. 7. Two “soft jets” are added, with
8 tracks each and same wide curvature distributions. The
initial angles of the two groups of tracks are generated in
narrow ranges: [1.00, 1.05] and [1.80, 1.85], respectively.

The “soft jets” are not easy to be seen in the event display.
However, when the distribution of the initial angles of the
doublets, including both correct and fake ones, is plotted,
distinct features of the “soft jets” are obvious.

 (a)

 (b)
Figure 9: A simulated event with 200 back ground tracks and two
“Soft jets”. (a) The event display. (b) The initial angle distribution..

VII. DISCUSSIONS
We should point out that this scheme is insensitive to the

asymmetry of the detector configuration. As long as the angle
of the doublet can be measured appropriately, this scheme
will work in virtually any detector structures.

The offset of the collision point can be viewed as a special
case of detector asymmetry. If the offset is known, it is not
necessary to tune the collision point to the geometric centre of
the detector, (if the centre exists).

The tangent angle measurement is normally very coarse.
Therefore, multiple scattering will not affect the track
recognition process in most cases.

Some times, tracks from secondary decay are detached
from primary vertex. This type of tracks introduces errors
essentially in the φ measurement. However, large impact
parameter of the detached track can be tolerated since the
baseline of φ measurement is a lot longer than the one of α.

Although we used silicon detector in our example, this
scheme can be used in other detector types. There are mature
techniques in drift chamber or straw detectors for measuring
cluster parameters. The tangent angle of the cluster can be
directly used. Sometimes, a cluster may yield two
possibilities of the segments due to, for example, left-right
ambiguity. In the track recognition process, the correct
possibility will be chosen, and the “ghost” possibility can be
eliminated, if the event is not too messy.

VIII. REFERENCES
[1] Kulyavtsev et al., BTeV proposal, Fermilab, May 2000,

BTeV-doc-66.
[2] G. Y. Drobychev et al., Update to BTeV proposal,

Fermilab, March 2002, BTeV-doc-316.
[3] J. Wu, M. Wang, E. Gottschalk, G. Cancelo and V.

Pavlicek [for BTeV collaboration], “Hash sorter:
Firmware implementation and an application for the
Fermilab BTeV level 1 trigger system,” Presented at
IEEE 2003 Nuclear Science Symposium (NSS) and
Medical Imaging Conference (MIC), Portland, Oregon,
19-24 Oct 2003

[4] P. Schildt, H.-J. Stuckenberg and N. Wermes, “An On-
line Track Following Microprocessor for the Petra
Experiment Tasso.” Nuclear Instruments and Methods,
178, 571, (1980)

[5] R. Fruhwirth et al., “Data Analysis Techniques for High-
Energy Physics”, 2nd ed., Cambridge, 2000

[6] Altera Corporation, “Cyclone FPGA Family Data Sheet”,
(2003)

