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ABSTRACT: Both galaxies and charged particle beamgan exhibit collisionless evolution on
surprisingly short time scales. This can be attribted to the dynamics of chaotic orbits. The
chaos is often triggered by resonances caused byné dependence in the bulk potential, which
acts almost identically for attractive gravitationa forces and repulsive electrostatic forces. The
similarity suggests that many physical processes atork in galaxies, while inaccessible to direct
controlled experiments, can be tested indirectly @ controlled experiments with charged-
particle beams such as those envisioned for the Wersity of Maryland Electron Ring currently
nearing completion.
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PREAMBLE

Henry Kandrup and Court Bohn had independently realized that therernmmrdant parallels
between the collisionless evolution of charged-particle beams agel $&ellar systems. Both
desired to pursue this matter explicitly by way of direct erpamtation with beams. Also
independently, Martin Reiser obtained funding to build the Universitjad/land Electron Ring
(UMER) for the expressed purpose of doing controlled experiments taureed® dynamical
consequences and evolutionary time scales associated with inBaal@mb forces, i.e., space
charge. All of these circumstances led to a strong collaboratidanry had been eagerly
anticipating the completion of UMER and experiments that the collaboration wasglanni

We all endeavored to introduce the notion of an analogy betweealyrlaenics of beams and
galaxies to a broad spectrum of investigators. Before Henrydassey, we had completed a
paper, one that excited Henry immensely, to review the pertinergtlire and introduce this idea.
Feedback from referees was generally negative toward pubfidatit positive toward pursuit of
the idea. Loosely translated, the referee reports stated éhfzawe a nice proposal, e.g., to submit
to a funding agency, but we should finish some new experiments prior to journal publication.

The paper has evolved considerably since Henry’s passing, batnisratuch of his language,
particularly as concerns galactic dynamics. We, his colleapeeshy offer this paper as part of
the Symposium that honors Henry. What follows is a version thatpocates all referee
comments and that is edited to mesh with other related Sympasiutnibutions, but that retains
the original flavor and Henry’s unique touch. It would surely have his imprimateur.

*Voice: (815) 753-6473; fax: (815) 753-8565; clbd@dniu.edu



[. INTRODUCTION

Many-body systems whose constituents interact via long-ranges@ésguare-law “Coulomb”
forces, both gravitational and electrostatic, can exhibit macrosagexation and loss of
coherence on time scales much shorter than might be expected on airaegsounds. This
process moves the system toward a long-lived ‘metaequilibritatg,sa state that differs from true
thermal equilibrium (which, in the case of galaxies, cannot bessededynamically). When a
galaxy has a sizeable gaseous component, the gas will intetactheistellar component and
thereby enhance its relaxation. However, observations and simulagi@esthat even a relatively
gas-poor (and thus presumably nearly dissipation-free) ellipticixyadisplaced from a
metaequilibrium state as a result of an encounter with anottextygzan readjust itself towards a
new metaequilibrium state within a few hundred million yeass, (within ~10% of the age of the
galaxy) although the nominal relaxation titaeassociated with ‘collisions’ is orders of magnitude
longer than the age of the Universe. And similarly, chargedcfmibeams, which would be
expected to maintain coherence while traveling some 100 km or motmglthan accelerator, can
lose coherence and disperse significantly within distances as short as 10 m.

Because collisions would cause relatively slow relaxation, apig relaxation must be due to
collisionless, i.e., collective, processes. More specifically, dbkective behavior must be
connected with mixing, i.e., the tendency of initially localized clumpsrioits to disperse. Mixing
is much more efficient in a chaotic system than in a system in wthiehbulk coarse-grained
potential is integrable or near-integrable. An initially loadizlump of regular, i.e., non-chaotic,
orbits will typically disperse secularly, i.e., as a power iawme; a clump of chaotic orbits will
instead disperse exponentially.

Allowing for a bulk potential that is strongly chaotic, thereby supportoigadtic mixing”,
would enable one to understand how a galaxy can ‘relax’ toward aquditagm state on a
comparatively short time scale. Such an understanding sactical importance in regard to
charged-particle beams. There, rapid collisionless relaxatioceglatrong constraints on
‘emittance compensation’, i.e., processes designed to confine thewmrigbarticles to a compact
volume of phase space, as is required for high-brightness beams.

Theoretical considerations and detailed numerical simulations sufgésin this setting, the
origin of the chaos that drives the evolution is largely irrelevdntparticular, whether the two-
body forces are attractive or repulsive should not be crucial. Wiraportant is that the long-
range scalings of gravitational and electrostatic forceslargical and that, in both cases, the early
stages of evolution should be driven by long-range, collective int@mactacting ‘globally’) as
opposed to short-range collisional encounters (acting ‘locally’).thall seems to matter is whether
the bulk potential associated with the many-body system admits a largerenefshaotic orbifs

A complete understanding of these phenomena requires a synthesis yfshmeolations, and
experiments. Performing experiments on self-gravitating systémsgalaxies is impossible.
However, controlled experimentan be performed with charged-particle beams, and combining
the results of such experiments with simulations and theory should lead to a cleargdithe role
of chaotic phase mixing in beams. Moreover, as we will exemplifgec. Il below, the physics
should not depend crucially on whether the force between parschtractive or repulsive, and
one would thus expect that many results about beams should transtat®@miess directly into
detailed predictions about the structure and evolution of galaxies. Imoe®dian go one step
further and argue that, in a real sense, carefully constructedragp&siinvolving charged-particle
beams can be used as semi-direct probes of the physics of self-gravitagngsdikst galaxies.



[I. THE BEAM-GALAXY ANALOGY: THEORETICAL CONSIDERATIONS

That collisional relaxation should be largely irrelevant in maatiirgys involving galaxies and
beams is easily seen. Viewing such effects as an incoherenbfstmary encounters, one
computes, respectively, for galaxiesmd (in gaussian units) for charged particle bé4megaxation

times
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Herev is a typical speed associated with random motiGnie gravitational constant) andq the
typical stellar mass and patrticle charge, respectively;characteristic number density, andAog
the so-called Coulomb logarithm*, which scales as a positive pofntie number of constituent
‘particles’N.

In either case, assuming the bulk random kinetic and potential enargiesomparable in
magnitude implies thatr ~ (N/logA)tp, with tp ~ R/v denoting the ‘dynamical time’, a
characteristic orbital time scale defined in terms of ‘Hiee’ R of the system. For largh
(typically N ~ 10-10" in realistic, large stellar and particle-beam systemsjetfasation timex is
clearly orders of magnitude longer than the dynamical tgneollisional relaxation is slow. By
contrast, mixing of chaotic orbits, i.e., ‘chaotic mixing’, can proceed regigefast; thee-folding
time associated with the dispersal of an initially localiz#dmp’ of particles, given as the inverse
of the largest positive Lyapunov exponent respective to that &Jumpypically comparable in
magnitude tdp. This is, for example, the case for the systems illustratéths. 2 and 4 discussed
below in Secs. Ill.A.3 and 111.B.3, respectively

Presently there is no known generic algorithm permitting accunatigtie or quasi-analytic
estimates of the largest Lyapunov exponent in three-dimensional buikiglste However, recent
work”® has shown that, in many cases, an analytic technique developedtEmsywith many
degrees of freedoth can be adapted to provide reasonable estimates for lower-dimensional
systems, the breakdown of that approach reflecting typically systernwhich autocorrelation
functions for properties of representative orbits have long tiit&'ta It is therefore relevant to
recall the analytic results for the largest Lyapunov expopemt a three-dimensional time-
independent bulk potential, for this then becomes a quantitative medtbeerate of collisionless
relaxation by way of chaotic mixing:

2(8) - 13 2
x@ =8 L(f)=[T(<‘)+\/M} ;T(£)=3ﬂ«/§ ¢ 2

V3 L&) 8 2/1+&+7
The auxiliary quantities and¢ are determined from the potentigk):
_ 1/ 000, _ 1 2/ R\ _ 2,
K—§<D % =7 <(D v) > (o) 3)

wherein the averages are taken over the microcanonical ensemble in the manner

*If one assumes that collisions act as a sourdgrofvnian motionfz can be related to the time integral of the qugntit
N(F(0)sF (1)), where(F(0)sF(t)) is the autocorrelation function for the test ‘g€ interacting with a single field
‘particle’.”



[ dx [ dpA(x)&[H (x, p) - E]
dejdpJ[H(x p) — E] '

Here,E denotes the total particle energy. Upon invoking Poisson’s equation, we see imgnediate
that the auxiliary quantities are determined from the density distribution. dadava;, we have

0% =4nGp; « =21Gp(0)(¢ */_‘/ (5)

whereg = p(X)/p(0), p(x) denoting the mass density. Fdveam we take the external focusing
potentialV; to be quadratic in the coordinatesomoving with the bunch, i.a/(x) = (w-x)%2,
whereine = (wywy,0;) corresponds to the focusing strength; the total potendeki¥; + V.

Then we have
V2,(¢%)~(¢)°
(a)/a)po)z _<C> 1

where wp is the plasma frequency at the bunch centroid /R now refers to charge density.

Now, the time scale for chaotic mixingtis= 1/ o< f(&)x2 The analogy between chaotic mixing
in beams versus galaxies becomes apparent: for both classeteofssyhe dynamical time is ~

x2, the auxiliary quantity involves a ratio of the dispersion in the density profile to thersopfa
the dynamlcal time, anf{¢ ) is the same function for both systems. For beams, space tharge
repulsive collective force that acts to lengthen the dynariioal by weakening the net focusing
force acting on a particle (resulting in what is called thecsgdnarge-depressed period’). For
galaxies no such weakening appears; gravity is strictly attractive.

To do a computational test of this result, one chooses an eBeayyl integrates a large
number (say, 2,000) tightly localized initial conditions corresponding &nargy very close tg.
These trajectories then spread, and one can calculate mornehtagsc(t)), of the corresponding
distribution of trajectories versus time and assess whether they grow exalbneiftthey do, then
one can extract the-folding time and compare it to the analytic estimate. Exampilesuch
comparisons in galactic and beam systems appear in Fig. 1. Hotgalystem is a uniform-
density ellipsoid containing a supermassive black hole at its a#htrdihe beam system is a
configuration of thermal equilibrium having triaxial symmétry

The preceding analytic results follow from a geometric treatment of scleoursafamiltonian
systems in the spirit of Pettini and his collabordfor$ does not apply to time-dependent systems,
and thus it is not presently possible to point to an unambiguous analogehéhgedynamics of
beams and galaxies involving rheonomous Hamiltonians. A geometitnget of the latter
would be based on a Finsler metric, i.e., a metric that incorporatesities and time, but it
becomes unclear how to define an invariant measure to use in gflatbe microcanonical
ensemble for evaluating phase-space averages, particularly wherommsiders that resonances
between orbital frequencies and the frequency spectrum of thelépesdent potential come into
play. Nonetheless, a reasonable ansatz is that a sucepssfiotric treatment of rheonomous
systems would result in a connection between beams and galaxies andtdgbat of time-
independent systems. The underlying reason is that both system ianokwerse-square long-
range force, and this force is what drives chaotic mixing.

(A)= (4)
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Figure 1. (left) Numerical results (diamonds) amdhlytic (solid line) estimates of the mixing rébe chaotic orbits
evolved in a triaxial galactic potential as a fumctof black-hole masklgy and for total particle enerdy = 1.0, (b)E

= 0.6, (c)E = 0.4. (right) Numerical (diamonds) and analygtimates (dashed line) of the mixing rate for ticao
orbits in a triaxial thermal-equilibrium beam aguaction ofE. In both figures the unit gfist,™. Further details can
be found in Refs. [8,9] from which these figures geprinted by permission of the American Phystadiety.

[ll. REGULAR VS. CHAOTIC ORBITS: A TORTURED HISTORY

Chaos has been largely ignored until comparatively recently in bothgdlectic and
accelerator-dynamics communities. For example, although the famous Héitemmhtedel” arose
originally in attempts to understand meridional motions in axisymengailaxies, as recently as 15
years ago the potential role of chaos in galaxy structure and ewolyis almost completely
neglected (with the exception of a handful of groups in Europe). Oiitytihae advent of high-
resolution photometry, facilitated in part by the Hubble Spacestepe, did many galactic
astronomers begin to recognize that the bulk potentials associ#tecalistically shaped galaxies
are likely to admit significant measures of chaotic orbits.

A. Galaxies

It has been long recognized that the dominant mechanism for relaxagataxies cannot be
‘collisional’. For example, in the 1940s Chandrasekbhowed that the relaxation time scalen
which binary encounters between individual stars could significaltgliythe trajectories of stars in
the Milky Way must be ~18 years or more. Shorter-time relaxation must somehow involve
collective effects. Two decades later, Lynden-Bafiroposed a theory of ‘violent relaxation’
which argued,inter alia, that regular (i.e., nonchaotic) phase mixing associated with a time-
dependent potential might explain such collective effects. Subsewitiance for rapid relaxation
accumulated over the next twenty years derived both from numenmnalations of many-body
systems and from the interpretation of observations of galaxi¢shédwe been involved in



collisions with other galaxiés Despite this, however, when subjected to closer scrutiny, it seemed
that, at least in its simplest guise where the orbits thatphasare assumed to be regular, violent
relaxation could not explain why relaxation was as fast as it appears to be. Sodienhge=med
to be missing. Today there is good reason to think that the missing ingredigabss

In the early 1990s Kandrup and Mafiomecognized that, because of their exponentially
sensitive dependence on initial conditions, chaotic orbits should mmdes rapidly than regular
orbits, in fact exponentially fast. In the astronomical commuhiyy phenomenon, now termed
‘chaotic mixing®®, led to speculations that chaos could play a critical role in ntiokdaxation.
However, chaotic mixing in itself does not constitute a complete atigfestory explanation. It
cannot drive collective relaxation unless many/most of the aab#t<haotic, a prerequisite whose
fulfillment is far from obvious. However, a few years lat@igtivated in part by the work of
accelerator physicists’® astronomer8 recognized that time-dependent pulsations in the bulk
potential of a galaxy readjusting toward a metaequilibrium staigd, via resonant couplings,
make many/most of the orbits in a galaxy chaotic with lamjeeftime Lyapunov exponents+2
and that the resulting ‘resonant phase mixing’ might be sufficientbhgtand ubiquitous to
explain violent relaxation.

B. Charged-Particle Beams

Concerns about collisionless relaxation in charged-particle beawes drsen with recent
advances in technology for the production of high-brightness beams, wiieeeioollective
Coulomb self-force, i.e., the space-charge force, becomes importattie laboratory frame this
force decreases inversely as the square of the beam #nefgy the transverse component, this is
due to the partial cancellation between the self-magnetic ahelegostatic forces; for the
longitudinal component, it is due to Lorentz contraction. Nonetheless, dnerestill many
situations involving high-brightness beams where space charge is ampofExamples include
both low-to-medium-energy hadron accelerators such as thoseoardisio drive spallation-
neutron sources or heavy-ion fusion or that serve as boosters feert@gfy machines, as well as
low-energy lepton, (e.g., electron) accelerators such as photoinféctors

One of the earliest papers to treat space charge in beamsbywa&pchinskij and
Vladimirskij*®, who considered a direct-current beam with uniform charge densityllgitad
cross section confined by linear external focusing forces, and deneeztjiations governing the
motion of the beam envelope. The corresponding distribution function irotinalimensional
transverse phase space of a single charge, commonly called YhediStribution’, is a
hyperellipsoidal shell. A decade later, Sactfémoted that these results can readily be generalized
to three-dimensional bunched beams (i.e., to six-dimensional phase spaag)to include the
influence of space charge on bunch length and energy spread. Thesepérs) pegarded as
classics by the accelerator community, set the stage foh miuthe subsequent investigations
concerning space charge, from which evolved now-conventional designgissafter high-
brightness accelerators, strategies based on controlling root-meae-§gus) properties of the
beam.

However, the past decade has brought the realization that, albasamceontrolling the rms

*Finite-time Lyapunov exponents probe the averagmgeential instability of orbit segments over fantime intervals.
. 1, 240]

Formally, they satisfy)== lim <In
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numerically using an algorithm introduced by BenetGalgani, and Strelcyh

}, where §ZF = prf + Ppv>. The largest such exponent can be estimated



properties of a beam is not sufficient. Perhaps the most promxenpke concerns beam halos,
i.e., particles that reach large orbital amplitudes due to ad@pendent space-charge potential
arising because irregularities in the beamline prevent the beamm rfeaching a long-lived
equilibrium staté®. The concern is that a tiny impingement of particles on the legm1 W/m
for beam energies exceeding ~20 MeV, can generate sufficientatiidian to preclude routine,
hands-on maintenance. Efforts to push our understanding of space clyay that required for
computing bulk moments of the beam brought, as a spin-off, the realizaabrearly-time
dynamics in fully self-consistent charged-particle systeresmbled that of violent relaxation in
stellar systemtS. However, that resemblance was explored no further — until now.

IV. EVIDENCE FOR CHAOS AND CHAOTIC MIXING

A. Chaos in Galaxies

1. The inevitability of chaos

High-resolution observations of galaxies over the past decade ors@twided compelling
evidence that many galaxies are more irregularly shaped than éiadssumed as recently as 15
years ago; and attempts to model such irregularly shaped objeatsldth many galactic
dynamicists to conclude that the bulk potentials associated vattstie galaxies admit large
measures of chaotic orbits. It has been arglibdt nonaxisymmetric elliptical galaxies containing
central density cusps of the form inferred from observafioage very likely to admit large
numbers of chaotic orbits. And similarly, models of rotating barrediggalaxies suggest® that
breaking axisymmetry with even a comparatively weak bar ¢ggetr large numbers of chaotic
orbits, especially near certain resonances. More generallyjrsassfressed by Udry and
Pfenniget’, making a galaxy less symmetric, e.g., by deforming it from axisstmic to triaxial or
by introducing ‘local’ asymmetries, tends generically to incrdasth the relative measure of
chaotic orbits and the size of the largest Lyapunov exponents. Althoisgho$sible to contrive
models of cuspy, nonaxisymmetric galaxies that are integrable pintegrablé®*’, they are not
generic. Instead, there has emerged a general sense in much dad¢khie ggnamics community
that ‘generic’ irregularly shaped galaxies might be expected t@icolairge numbers of strongly
chaotic orbits.

2. Are galaxies really ‘in equilibrium’?

One intriguing possibility is that, perhaps because of the presenbaas, ®volving galaxies
will find it difficult, if not impossible, to approach a true equiliom. Rather, it may well be that,
at the time of formation, a galaxy settles down toward a lorgHimetaequilibrium’ rather than a
true equilibrium; and subsequently, in response to, e.g., external irregslassociated with a
densely populated galactic cluster, exhibits a slow, secular eréfuff To the extent that this be
true, a basic question is whether a galaxy originally in a nonamisynt metaequilibrium will
evolve toward a more nearly axisymmetric Stat®r whether instead a galaxy originally
containing large numbers of strongly chaotic orbits might evolve toother metaequilibria, not
necessarily more nearly axisymmetric, which contain smallebatsrof chaotic orbifd In any
event, it is generally accepted that a robust, stable metaeiguiibrust contain large measures of



regulaf® and/or sticky chaotf¢ orbits to provide the ‘skeleton’ (i.e., foundation) of the interesting
configurations that support chaotic orbits in the first place.

3. The role of a time-dependent bulk potential

There is also emerging evidence that chaos should be even more ubiquitous in sysfeels tha
a strongly time-dependent bulk potential, especially a time depeniobdang roughly periodic
oscillations. Nonlinear dynamicists argue that chaos typicagsvia resonance overlpand
this time-dependent chaos is simply another example thereof. Whehméhedependence
influencing stellar orbits in a galaxy has power at frequencies sufficienig & (multiples of) the
frequencies at which the orbits themselves have power, the onblittha time dependence can
resonate with the result that the orbits become strongly chdbtibe time dependence is weak,
such resonances may require a near-perfect frequency match, bubfmer time dependence it
often suffices for the pulsation and orbital time scales to agit®n an order of magnitud®
However, in a nearly collisionless system like a galaxy, dirnaaBy there is only one natural
time scale, the dynamical timie ~ (Gp) ™2 with G the gravitational constant apda characteristic
density.* Consequently the pulsation and orbital times are likehetcomparable in magnitude
throughout much of the galaxy, thus rendering chaos extremely common. Siogéds suggest
that galaxies subjected to damped oscillations could (i) become atoroptetely mixedand (ii)
settle down towards a nearly integrable metaequilibrium withinme tas short as ~1@.
Analogous effects can also be triggered by other nearly periodic pheacsueh as localized,
nonstationary collective modes, or a supermassive black hole lrzting near the center of a
galaxy’®. Indeed, such a binary could produce anomalous ‘dips’ observed in theedonifghtness
profiles of galaxies like NGC 3706 or NGC 4406 which suggest thaiemive mass densities do
not decrease monotonically with distance from the c&nter

An example of such resonant phase mixing is illustrated in Fig. 2racks three initially
localized clumps of test stars evolved in a galactic poteniihlperiodic driving that damps as a
power law in time. The left and center panels exhibit #y-Coordinates at several different
times; the right panel exhibits the exponential growth of components ehidtancelike quantity
& (i=xy,2), which measures the area of the occupied phase-space plansparuliey to the

coordinater;.” Here, e.g.,
£y = \/<x2><v§> = (xv)?, (7)

where(...) denotes an average over the clump. As was argued in Secidllyititcalized clumps
of regular orbits typically diverge secularly, whereas clumps of chaotic dibéigye exponentially
at a rate set by the typical value of the largest finite-time Lyapunov exippone

& O(t/ty)P (regularorbits) and & O et (chaoticorbits), (8)

with p a constant of order unity.

12

*Assuming the bulk kinetic and potential energies eomparable in magnitude, theBof ~“ ~ R/v, which is the time

scale of a typical orbit.

"In the context of charged-particle beams, emittascgven a more precise definition, which will Bescribed in Sec.
IV.B.
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Figure 2. Left-hand and top middle panelsindy coordinates for three different clumps of 160Q gtars evolved in
the time-dependent galactic potentiél)=-A(t)/(1-HC+y?+2)*2, with A(t)=1+(@sinwt)/(1+/ty)? for a=0.5,w =1.25, and
t,=100. From top to bottom, the snapshots are atgiwO, 32, 64, and, for the top middle panell28. The
dynamical timetp~20. The clumps had initial sizx=5y=0.04. Bottom middle panel: A snapshott=t28 for the
same clumps evolved in a time-independent potewithl A=1. Right-hand panel: The quantity(e,+s,”)"? for the
time-dependent clumps where, in terms of velodityponents, the emittancesande, satisfy, €.9.6=(C) V) -(X\%)’.
Here the angular brackets represent an averagetm@600 stars. Right-hand panel (inset): Sama#a.

4. Experimental evidence for chaos in galaxies

There can, of course, be no direct experimental evidence for amaymsaixies. However,
careful analysis of observable velocity fields in suitablyered galaxies provides compelling
evidence that the gas flows in such spirals as NGC 3632 couldaloéic, especially near various
resonancé$,

B. Chaos in charged-particle beams

Intense charged-particle beams are, like galaxies, typicaligionless Hamiltonian systems
wherein the density distribution self-consistently governs the dysama Poisson’s equation.
Transients in the beam distribution often arise as the accelenanipulates the beam, whereby
qguestions of equilibration, damping, and reversibility become fundamentalbpprtant to
establishing and preserving the desired phase-space properties ofathe eor example,
equipartitioning of anisotropic beams involves nonlinear energy traasteevolution towards an
isotropic metaequilibrium stdfe As will be shown, this is a consequence of chaotic mixing.
Strictly speaking, chaotic mixing is a reversible process inttiggoverned by Vlasov’'s equation.
However, an essential question for the accelerator designer tisewli@s process igperationally



reversible. While it may be possible in principle to compengagdeationally against phase-space
dilution®®, this compensation must be completed before any mixing has smeaigdificant
number of particles through global regions of phase &acd&he question then becomes one of
time scales. It arises regarding any process for manipulatep® with space charge, be this
changing the beam’s transverse geometry (flat-to-round or routaktadnsformatiorts), its
longitudinal geometry (bunch compressidnor controlling the beam through sudden changes or
imperfections in the beamlirfe

1. Emittance and space charge

Consider, for simplicity, an infinitely long, i.e., direct-current, betimat coasts without
acceleration in the-direction while confined by an external transverse focusing foltces then
natural to compute particle dynamics in a reference plane tmabves with the beam and is
oriented transversely with respect to the beam motion. Thelpavelocities may in general
exhibit both a systematic and a random component. Regarding the fornf{es)theordinates are
then measured from the beam centroid. Regarding the latter, ageakaratic temperature can
then be defined for each transversg)faxis. Roughly speaking, the product of this temperature
and the rms beam size is defined as the ‘rms emittance’ betra, and this quantity is conserved
for the special case that thgyj-components of the total transverse force (focusing plus space
charge) are decoupled, linear, and time-independent in the referanoe ¢domoving with the
beam. More precisely, the rms emittance fondaérection is calculated as

e, = [(x*)(p2)-(xp,)° 9)

- Bymc

where the averages involve moments defined with respect to nigee-particle distribution
function f(x,px.y,py). Here py,py) are the components of the transverse particle momentum with
respect to the reference trajectgtyy./c, y=(1-8°)*2 mis the particle rest mass, ans the speed

of light. The ‘effective emittance’, often called simply ‘dance’, is 4, a quantity that
corresponds to the area of thepf) phase space subtended by the beam and which has units of
length. The respective emittances inykdirection are calculated analogously.

Suppose the external transverse focusing force is linear, axissimraed time-independent.
For a beam with a small number of particles, the individual ghestiwill oscillate harmonically
(they execute what accelerator physicists call ‘betatronlatsmils’) at the ‘undepressed’ betatron
frequency,wz, determined solely by the external force. The amplitude of tikation for each
particle depends on its total energy, and this is determined compigtéhe initial position and
velocity of that particle. Now, as the beam current is inedtathe superimposed electric field
generated by the particles themselves becomes non-negligible, a phenokmewn as space
charge. Space charge alters the net force seen by the indpadtiales in a way that is generally
nonlinear and dependent on the density distribution of the beam. One cafyqgpEade charge
using a single parameter: the dimensionless intensity paramatéined as the ratio of the average
space charge force to the external focusing force at the beam edge.

Since space charge is repulsive, it lowers the frequency of tdedpeoscillations, resulting in
a ‘depressed’ betatron frequenoy< wsz. The average ‘tune depression’, defineq asovs/wpo, IS
related to the intensity parameter by the formuka (1 -z)*2 Another important effect of space
charge is the tendency to induce waves in the beam, a colleftast. e These waves are
characterized by the plasma frequeagywhich in turn relates to the intensity paramgtesw, =

10



(2w)Y2. Thus, in the limit of zero space charge=(0), the plasma frequency is zero, the tune
depression is unity, and the particles behave as individual parti@désonly see the external
focusing force. At the opposite end, the space charge limitl], the tune depression is zero, and
the plasma frequency reaches its maximum value, meaning thettizel oscillations dominate
over the individual particles’ betatron motion. At intermediatkies of u, excepting certain
contrived theoretical distributions, e.g., the KV distribuffprthe net force acting on individual
particles is typically nonlinear. Inasmuch as real beamx@memonly out of equilibrium and
subject to time-dependent focusing, the net force is often time-dependent as well.

2. Chaos and equipartitioning

Anisotropy in a beam can be caused by essentially any anisotrbpinad influence, such as
anisotropic focusing. In addition, a recent computational study providedgsavidence that
chaotic mixing due to nonlinear forces from space-charge waveginsaiely connected with
equipartitioning, i.e., the tendency of the velocity ellipsoid (or edgiNty, the temperature) to
isotropize rapidly*. These computations were done using the ‘2+1/2’-dimensional* versibie of t
particle-in-cell code WAR®B, which tracks macroparticles with prespecified initial conditions
through external electric and magnetic fields while including theceakistently computed self-
fields. The work concerned a highly space-charge-dominated, direebwylindrical beam in
which the initial momentum space reflected a temperaturetespy. Accordingly, the initial rms
emittancess, ande¢, were unequal, but the external focusing was axisymmetric. As #ra be
evolved, the temperature isotropized rapidly. Full equipartitioningroed within just ~5 m, after
which the temperature exhibited anisotropic oscillations that lard@mped by ~50 m. The
equipartitioning time scales were found to correlate with the egolof initially localized clumps
of globally chaotic particles. These clumps dispersed exponentidiiiyane-folding ‘time’ ~2 m
(roughly two plasma periods) and filled their accessible phase spaces in ~50 m.

This first study concerned a form of ‘symmetry breaking’, withliheken symmetry appearing in
momentum space rather than configuration space. The beam began imaliomen state and
evolved toward a metaequilibrium in which the particle orbitsdian invariant measure of phase
space. The transient dynamics reflected an intricate, evatetvgork of space-charge waves that
set up a complicated time-dependent potential in which a substampialation of particle orbits
became globally chaotic. By contrast, an analogously evolved syimmmisbtropic system
exhibited a near-static potential that was essentially integrablthat the orbits were essentially
regular. The character of the orbits is evident in Fig. 3, which shajesttries of 20 test particles
randomly selected from a given initially localized clump in kdetitropic and anisotropic systems.
Progressively reducing the area of the phase space initially spanned by theasumould be done
in a calculation of finite-time Lyapunov exponents, reveals tieatdst-particle orbits are regular in
the isotropic beam. However, the orbits are clearly chaotiweimnisotropic beam, this reflecting
the complicated network of space-charge waves that arise inprésnce of anisotropy.
Equipartitioning did not lead to a significant halo because the rms pespeftthe beam were
‘matched’ to the strength of the focusing forces, thereby minimiangeiscale time-dependent
oscillations*.

*Distance down the accelerator is viewed as a ‘ticoerdinate; hence the appellation ‘2+1/2’-dimemsil.
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Figure 3. Trajectories of 20 test particlesxjy)tspace for the isotropic beam (top); and the arapa: beam (bottom).
The initial clump ‘emittance’ decreases progredgiby factors of 10 from left to right, thereby exging the chaotic
behavior of orbits in the anisotropic beam.

3. Merging beamlets: analysis of a real laboratory experiment

A unique laboratory experiment concerning violent relaxation in chgpgettle beams,
conducted in the early 1990s, involved the propagation and merging of &wddbe in a periodic
solenoidal (hence axisymmetric) transport channel of length slighthe han 5 > The
beamlets were initially oriented in a quincunx pattern and wese atnough to each other that
mutual interactions were important. The beam was nonrelativistic and subjectittecarie time-
dependent space charge. Given such a highly anisotropic initiatyddissiibution and isotropic
focusing, and considering that the time scale for collisional ritexes orders of magnitude longer
than the transport channel, one might naively expect the beamlets to merge (heagpeati) and
reappear periodically. However, the beamlets were observedgpaaonly onceat a point ~1 m
from the source, regardless how well (or poorly) the rms beam pesparere matched to the
transport channel. Moreover, rms-mismatched beams led to thetitorroé an extended halo,
with the density of the halo increasing with the degree of mismddetailed simulations with a
particle-in-cell code successfully reproduced the measureterfthe failure of the beamlets to
reappear again would seem to reflect a collisionless processtbéect, causes the particle orbits
to lose memory of their initial conditions.

To explore to what extent chaotic mixing influences the dynamics df aumanifestly
nonequilibrium beam, we redid the simulations using WARP. Our new siomdaiffer slightly
from the experiment in that we considered a simpler transport ehame that imparts a constant,
linear external focusing force, whereas in the experiment the dhaanstituted a periodic
solenoidal focusing lattice. We used a total of £xidrticles distributed equally between each of
the five beamlets. The idea was to generate a reasonatdglspotential. Our results correlated

*A beam is said to be ‘matched’ to the transpodruiel if its transverse density profile is statignaver the length of
the channel. Otherwise, the density profile evelv€onsider the rms transverse radius of an evpldensity profile.
If the rms radius is stationary (equaling that lé matched beam), then the beam is ‘rms-matchédérwise, it is
‘rms-mismatched. The density profile, hence spawege potential, is normally more weakly time-defent in a
rms-matched beam than in a rms-mismatched beanly i@the case of the strictly matched beam wi #pace-
charge potential be stationary.
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well with measurements of the density profile versus position along the beamline

One might expect the strongly time-dependent space-charge potentialveo adiarge
population of globally chaotic orbits. That this is the caseustithted in Fig. 4, which shows that
clumps of representative test particles initially localizeghhase space grew exponentially to fill
much of their accessible phase-space regions. In each casdjaamxtiemely fast growth rate
subsequently gave way to a slower rate, the transition occurrergaatistance ~5 m at which time
the beamlets had lost their identity and the phase-space distrilvatiobecome rounder. This
computational finding is completely in keeping with the experimental findings.
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Figure 4. Left-hand and middle panebsy) plots (unit = m) for two different initially lodaed clumps of 20,000 test
particles evolved in the total potential self-cetesitly computed using WARP. The snapshots arentdfom a
simulation of an rms-mismatched beam, at locatiers0, 10.08, 14.4, and 20.16 m along the beamliith the
exception of the bottom middle snapshot, whichtis=81.68 m and pertains to a simulation with the maehed
beam. The plasma wavelength is 0.47 m and thérbet&avelength is 2.0 m. The initial emittancesath clump is
£x=£,=6.48x10" m, which is 10 the full beam emittance. Right-hand panel: Ndtiogarithm of the emittances¢for

5 clumps, each sampling a progressively smalletiggoiof the ‘red’ clump on the left, hence progiresly smaller
initial emittances. Right-hand panel (inset): Sdar¢he rms-matched beam.

4. Halo formation

Los Alamos recently completed a laboratory experiffieimvolving the production and
measurement of halo generated in a proton beam that was intentiorsatigtched to a periodic
focusing channel comprised of quadrupole magnets. The beam energy andveenee®i7 MeV
and 75 mA, respectively, meaning the beam was nonrelativistic aod sparge was strong. The
length of the focusing channel spanned ~10 mismatch oscillations. Thealrinéerences from
this experiment and corresponding simulatfdmeere that (i) the phase-space volume of the beam
grew in conjunction with the conversion of free energy from mismatohthermal’ energy of the
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beam, and (ii) parametric resonance was the principal mechanigngdralo formation. These
inferences correspond to expectations from idealized theoretiodelgi® However, the
guantitative data appeared to be sensitive to the exact phasedégtabution of the input beam,
which could not be measured with precision, and the finite sensitivitye diagnostics precluded
characterization of the tenuous outermost wings of the halo prdfilereover, the theoretical
models provide no prediction of growth rates; the simulations wesktosextract this information
for comparison with the experiment.

As is documented in a companion paper in these Afinakcent work has revealed that
parametric resonance is not the whole story respecting halo forffidti The presence of colored
noise (noise with a nonzero autocorrelation time), a real phenomesooiaed with hardware
imperfections and/or charge-density fluctuations, in combination withmedria resonance, can
lead to much larger halos and remove the hard upper bound to the halaidgenplierred from
parametric resonance acting alone. Basically, this happens betiaisnoise can keep a
statistically small number of particles more in phase leirorder oscillatory modes of the beam.
Here the fact that the orbits are chaotic is extremely itapbr Because chaotic orbits have power
over a continuous set of frequencies, their coupling to both the modes andigeecan be
significantly enhanced relative to the couplings which would aosedgular, multiply periodic
orbits.

Recent theoretical studies indicate that precisely the sanmempleeology applies to galaxies,
as well. Bohn and Sideffsfound that substantial halo appears in gravitational systemsllaaswe
in beams. Colored noise in galaxies arises from the ambiergataetic environment through the
influence of neighboring stellar systems and/or clumpy dark-madies, as well as from internal
density fluctuations within the subject galaxy. Subsequent work iedicttat galactic halo
formation is insensitive to the details of the bulk potential; galyeall that is required are
collective modes and nofSe This finding raises interesting questions: Are the observed light
profiles of real galaxies primarily the product of violent reletatat early epochs? Or can
remanent oscillations act over a Hubble time to alter substgritial product of violent relaxation
alone? An effort toward answering these questions is underwawg, areiiminary study indicates
that long-time evolution and its associated halo formation can inumdleeénce observational
properties of large galaxi¥s

5. The smooth-potential approximation

The foregoing discussion implies that, viewed ‘on the whole’, dis@gtgems of stars or
charged particles, if sufficiently large, can be approximated bynéntious density distribution
and a smooth bulk potential. As pointed out in the aforementioned companiaf® pHje
assumption has been questioned in both the g&faatid accelerat8t®’ communities. To what
extent is it really true that there actuallya smooth continuous-density limit? And assuming this
limit exists, how large must the system be before discretaffesds (i.e., granularity associated
with finite particle number) can safely be ignored? Can one, eegt, a realistic beam bunch
comprised of 1910" particles as a continuous charge distribution?

Numerical computations performed over the last several yiearspth self-gravitatinf and
self-electrostatically interactiigCoulomb systems, suggest strongly that, viewed macroscopically,
there is a well-defined continuum limit, and that discretenesscteffcan be extremely well
modeled, even for individual orbits over comparatively short titmg$;aussian white noise in the
context of a Fokker-Planck description. Indeed, one can estimate spwtetitial Lyapunov
exponents fronN-body simulation.
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That a Fokker-Planck description can be justified is nontrivial simeestandard derivatiohs
and most experimental tests focus on the long-time behavior of esrtbémbles. Even more
interesting, however, is the fact that, when applied to chaotiocnsysteFokker-Planck description
implies that discreteness effects can be important on tinkesstaich shorter than the collisional
relaxation timetg! Discreteness effects can dramatically accelerafasiih through a complex
phase space, both by facilitating transport along the Arnol'd”veelnl, in some cases, by
transforming regular orbits into chaotic orbits and vice versa. dhds®ler certain circumstances,
e.g., for systems with ‘lumps’ and/or asymmetries and/or pronouncedtydegradients,
discreteness effects can be important on relatively short time svatesorN as large as ~16

It is important to stress that, even if discreteness effexteme important over comparatively
short time scales, their effect ot to induce collisional relaxation. Suppose, e.g., that, in the
absence of discreteness effects, the bulk potential, albeit chaditactly time-independent and
the energies of individual ‘particles’ are thereby conserved atiedpl Discreteness effects can
then act to accelerate diffusion through a complex phase spacigsasva source of what
nonlinear dynamicists call ‘extrinsic diffusidnbut, over time scales much smaller tharthey do
notinduce significant changes in energy.

6. Summary

There is growing evidence that physical processes involving chaogegc similarly in
galaxies and charged-particle beams. In both cases a time-depgotiemial can trigger
resonances which lead to large measures of strongly chaotic aithifange Lyapunov exponents,
even if, as for the model used to generate Fig. 2, the potential beauegrable when the time
dependence is ‘turned off.” Manifestations of chaos can also besijuitar in time-independent
systems. For example, a systematic investigatidnhow the amount of chaos in a thermal-
equilibrium bearft varies with the beam’s geometry yields results very amtd what is fount
in triaxial generalizations of the Dehnen potentials of galagti@uhic<® that have been proposed
to model cuspy, triaxial galaxi€s

V. PLANS FOR FUTURE EXPERIMENTS

Charged-particle beams differ from galaxies in that beamsadjilist themselves to screen the
external focusing force. The screening distance is the Debye lemgthn a configuration of
thermal equilibrium, the density profile in the outer region of thenbéecreases to a low-density
tail over a few Debye lengths as a result of screening thenekt®cusing force By contrast,
galaxies do not exhibit any analog of this Debye shielding*. Consequeritiya beam, the bulk
potential (focusing plus space charge) cannot generally be moldeddo pmatisely that of an
evolving stellar system. For example, structures mimicking the preseneeti@ density cusps or
black holes in galaxies cannot be preserved in a beam becauselspgeds repulsive. Nor can a
beam mimic effects from space-time evolution over cosmolodgica¢ scales. However,
phenomenology inherent to time-dependent collective dynamics in gataxié® mimicked with
beams. Gravitational examples (and their beam analogs) includéngplind merging galaxies
(merging beamlets), collapsing galaxies (rms-mismatched beanmgrtarbed but comparatively
quiescent galaxies (beams with evolving density inhomogeneities). Thauskey dynamics

*Concerning gravitation, the length scale of ingtiie the Jeans length over which a gravitatiomstiability arises,
thereby leading, e.g., to the formation of galaxies
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underlying galactic systems can be studied in the laboratory.

As implied in Sec. IV.B, to date there have been no laborakmsrienents designed explicitly
to explore the role of chaotic phase mixing via Coulomb forces on thetievobf nonequilibrium
beams. Our simulations and interpretation of the merging-beamlet expennsad. ilV.B.3 point,
however, to the importance of chaotic dynamics in real beams. Angrédponderance of
simulations that we have highlighted herein suggests strongly thednii@ned effects of transient
chaos and resonances are the keys toward a full understanding of retdgation in both beams
and galaxies. Accordingly, we are planning a series of expesnergtudy phase mixing and
attendant collisionless relaxation using the University of Mad/l&lectron Ring (UMER), a
facility that is just now coming on liié@ The ring is designed to transport the beam through many
turns spanning over 1 km, a distance spanning some 500-1000 plasma periods, raladivibe
strength of the collective space-charge force is adjustable over a wideQ2gey < 0.97.

The evolution and mixing of initial perturbations can be tracked usingotn@rehensive suite
of diagnostics incorporated into UMER. As a whole, the diagnosti@ quermits direct
measurement of mixing time scales in units of the charactedigtiamical time, and the degree of
mixing in both configuration space and in energy, by enabling the evolution @bsoapic
features to be observed and quantified. It should thereby be posgiidértguish observationally
between chaotic (i.e., exponential, global) phase mixing versus régelasecular, more local)
phase mixing. We also plan, of course, to confirm our interpretatiomg sisnhulation codes. We
project an added benefit, as well: establishing the phenomenology of pirdag in time-
dependent beam potentials both experimentally and numerically shouldsékgnovide an
unambiguous mechanism for validating codes and simulation techniques inelaothphysics and
galactic dynamics.

VI. CONCLUSIONS

It is clear that, in principle, chaotic mixing can account for rapatroscopic dynamics,
including collective ‘relaxation’ to a metaequilibrium state. Bwer, there is substantial
numerical evidence that such mixing could play an important role ieviblation of both galaxies
and charged-particle beams. While a portion of this numerical evidence arogedligtas part of
interpreting real laboratory experiments with beams, there is need for consiseoaélwork. Our
idea is to look for evidence of chaos and chaotic phase mixing in contetli@@tory experiments
involving large Coulomb systems. Unfortunately and obviously, it igossible to perform
controlled experiments on self-gravitating systems like galaxXi®wever, in view of the strong
indications, both theoretical and numerical, that the relevant physiwirtually identical in
galaxies and charged-particle beams, it seems possible — and deghigble — to use beamlines
like UMER as laboratories in which to perform indirect teststhed predictions of galactic
dynamics. The key quantities to be measured in such experimetiie &wlutionary time scales
attendant to charged-particle beams with well-diagnosed and &djeistable initial conditions, as
well as the efficacy of mixing in both configuration space and energy.

The suite of diagnostics on UMER is capable of detailed, tis@vwed measurement of the
distribution function in the six-dimensional phase space of a single Ipeaticle. These
diagnostics are designed to measure the same macroscopic blesemad their respective
evolutionary time scales as are generated in numerical siomdatAccordingly, UMER serves as
a platform for a virtually unlimited range of experiments to esg@ihonlinear, transient dynamics
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of Coulomb systems, and our overarching plan is to exploit this capabikycess the physics of
collisionless relaxation that large charged-particle and salfitgting stellar systems share in
common.
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