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The complete two-loop electroweak fermionic corrections to the effective leptonic

weak mixing angle, sin? OIEPt, are now available. Here we shortly present the

methods applied and illustrate the implications on indirect prediction for the Higgs
boson mass within the standard model.

1 Introduction

Present efforts on both the experimental and theoretical sides are focused on
the Higgs boson. As LEPII did not give a significant signal of its existence,
either a positive announcement at the Tevatron or the running of LHC are
awaited. In the meantime the standard model is being scrutinized in order to
indirectly predict the mass of the Higgs boson. The most valuable information
comes from the W boson mass, M, and sin? OLeﬂr’tbut also to some smaller
extent from other observables, e.g. the width of the Z boson. As far as M, is
concerned it is now known with one of the best precisions, both from experi-
ment and from theory®. On the other hand, the weak mixing angle is measured
with a relative precision that is almost a factor two worse and the two most
accurate measurements differ from each other by 2.90. Still, its dependence on
the Higgs boson mass, My, is three times more pronounced than in the My
case, demanding better theoretical precision for the goal of explicit tests of the
model and for the prediction of M.

Recently we performed a calculation of the two-loop fermionic corrections
to sin? Ql%pt 2. In this contribution we clarify some of the aspects which were
not discussed previously. In order to avoid errors which cannot be identified
with the help of general properties of the theory (gauge invariance and UV /IR
finiteness), two independent calculations were performed for most parts. Be-

@This work was supported in part by TMR, European Community Human Potential
Programme under contracts HPRN-CT-2002-00311 (EURIDICE), HPRN-CT-2000-00149
(Physics at Colliders), by Deutsche Forschungsgemeinschaft under contract SFB/TR 9-
03, and by the Polish State Committee for Scientific Research (KBN) under contract No.
2P03B01025.



low we sketch several details of both methods. Finally we demonstrate the
consequences of the new result on the Higgs boson mass prediction.

2 Calculation

The effective weak mixing angle, sin? Hiefft, can be defined through the vector
and axial vector couplings (gy and g4 respectively) of an on-mass shell Z boson
to a pair of fermions, such that

.2 plept 1 gv
sin”f g = 1 (1 —Re (g_A)> . (1)

The proper vector and axial-vector structure of the Feynman amplitude can
be extracted by a projector. Namely, using the Dirac equation we find that
the needed quantity is determined if we apply the following operator:

Ny = 29174 + 92vuV5)P1 (2)

and then take a trace over the amplitude. Here p; and ps denote momenta of
the external fermions multiplied by Dirac matrices,

1 i
g1 = — 3 g2 = ) (3)
g 2 (d—2) p? (95)2 2 (d—2) p?

where p? = (p1 + p2)?, g$ ) and gff) being the tree level values of the couplings

and d is the space-time dimension.

This calculation was performed in the on-shell scheme, for which the two-
loop counter-terms were already known and thoroughly tested in the past 3.
The only complications come from the two-loop one-particle irreducible vertex
diagrams. The evaluation of them was performed not only by two independent
calculations but whenever possible also by different methods.

2.1 Method I

The needed two-loop vertex diagrams may depend on two dimensionless vari-
ables: My, /M, and/or m,/M, (the Higgs boson mass does not appear due
to CP conservation). We considered two cases: diagrams with light fermions
only, which depend on one variable; and diagrams with top quark loops, which
depend on both variables.

The light fermion contributions can be reduced to a set of master integrals
with the help of standard methods of Integration By Parts and Lorenz Invari-
ance Identities. Still, at the two-loop level this is a nontrivial task, therefore
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Figure 1: Set of master integrals required for the calculation of the light fermion contri-
butions. The solid lines denote massive particles, W or Z bosons, the thin lines inside a
diagram denote massless particles.

it has been assigned to a newly written C++ library, IdSolver*. The set of the
identified master integrals, pictured in Fig. 1, was evaluated using differential
equations in the external momentum. This allowed to obtain analytical results
represented by polylogarithms of weight four at worst.

Obtaining an exact result for the heavy fermion contributions would be
more problematic. However, due to large scale differences we can safely apply
the heavy top mass expansion, which reduces the diagrams to two-loop tad-
poles at most. The series shows good convergence and in practice we used an
expansion up to m_1°, reaching sufficient precision.

For completeness we should also mention that the diagram generation was
performed by DiaGen * and most of the algebraic manipulations were done
with FORM ®. More details can be found in 2.

2.2  Method II

We have also performed an independent calculation based on numerical in-
tegrations for the master integrals. This method is based on a dispersion
representation of the one-loop self-energy function By,

[e%S) ABg(s,m?,m?2
Bo(p?,mim3) = = [0y ds SERIR), (4)
_ — A(d=3)/2 s,m?,mg
ABo(s,mi,m3) = (4mp?)t-d HEol) Ao (5)

where \(a,b,c¢) = (a — b — ¢)? — 4bc. Using this relation, any scalar two-loop
integral 7" with a self-energy sub-loop as in Fig. 2 (a) can be expressed as°

o 2) 00 2 2
TN+1(piami) = - fSO ds ABO(SamNamN+1)
4.1 1 .. 1
X fd 17 (g+p1)2—m? (g¢+p1i+..+pn_1)2—m% |~

(6)

Here the integral in the second line is an N-point one-loop function, and the
integration over s is performed numerically. While in principle it is also possible
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Figure 2: (a) General representation of a two-loop scalar diagram with self-energy sub-loop.
(b) Reduction of triangle sub-loop to self-energy sub-loop by means of Feynman parameters.

to introduce dispersion relations for triangle sub-loops, it is technically easier
to reduce them to self-energy sub-loops by introducing Feynman parameters ”,

(g +p1)% = m3) ™ [(q+p2)? —m3] ™! = [ da [(q + p)? — ™22
p=zp1+ (1 —2)p2, m=axmy+ (1 —2)mg —z(1 —2)(p1 — p2)>.

(7)
This is indicated diagrammatically in Fig. 2 (b). The integration over the
Feynman parameters is also performed numerically. As a result, all master in-
tegrals for the vertex topologies can be evaluated by at most 3-dim. numerical
integrations. Similar to before, the reduction of integrals with irreducible nu-
merators to a small set of master integrals in the case of propagator subloops
was accomplished by using Integration By Parts and Lorentz Invariance iden-
tities, which were implemented in an independent realization of the Laporta
algorithm ® within Mathematica.

3. Results and Conclusion

Our new fitting formula, presented in 2, contains all the recent results on two-
and three- loop corrections to sin’ 9:}“ (for references see?). Using this formula,
instead of the old one?, the central value of the Higgs boson mass is shifted
by about +18.6 GeV if My is determined from sin? Ogjtalone. b This should
be compared with an almost as large shift of +20 GeV given by the previous
formula only, which was generated by the recent change in the measured top
quark mass. These effects are shown in Fig. 3. We do not plot the uncertainty
on the theory curves; the theoretical error on sin? O}:fftdue to the neglect of
higher order contributions is estimated to be 4.9 x 1075 whereas the error on
the standard model parameters, mainly m, and Acyqq, gives around 2.6 x 104
for My in the range from 100 to 600 GeV. In the global standard model analysis

lept

2, except for the new experimental value on sin? 063 .

bWe use the same parameters as in
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Figure 3: sin®6
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off obtained with the previous and most recent fitting formulas. The blue

dotted and red dashed curves denote the results of 8 with m; = 174.4 GeV and m; = 178 GeV
respectively. The black solid curve represents the newest prediction of 2 for m, = 178 GeV.

of EWWG (see “blue-band plot” in'®) the net effect of these results is not so
strong setting the central value of the M, approximately at 117 GeV with
upper limit around 260 GeV (95%CL).
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