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EFFECTIVE THEORY APPROACH TO UNSTABLE PARTICLES
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L= (Dyp) Dl SFMEL, s (9, A1)
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4 Concluding remarks
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e the effective theory provides a set of simpler Feynman rules which allows one to comy

the minimal set of terms required at the given accuracy. Since one never computes

much”, calculations are as simple as possible;




o calculations can be extended in principle to any order in «, 0, at the price of performing
complicated, but standard loop integrals;

e since the expansion has been organized in such a way s0 as to account for kinematical
enhancements the DT series in the effective theory converges rapidly;

e gauge invariance is automatic.

Despite the simplicity of the model considered (abelian theory, scalar particle), all necessary

ingredients are provided for the formalism to be applied to any general case. Natural extensions

concern pon-inciusive kinematics, which requires a formalism to expand the real phase-space

and generally implies that more collinear directions are relevant, and to pair-production of
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