

 FERMILAB-Conf-04/054-AD April 2004

Parallelizing the MARS15 Code with MPI for
Shielding Applications*†

M.A. Kostin and N.V. Mokhov

Fermilab, P.O. Box 500, MS 220, Batavia, Illinois 60510-0500, USA

April 27, 2004

Abstract

 The MARS15 Monte Carlo code capabilities to deal with time-consuming deep penetration
shielding problems and other computationally tough tasks in accelerator, detector and shielding
applications, have been enhanced by a parallel processing option. It has been developed, implemented
and tested on the Fermilab Accelerator Division Linux cluster and network of Sun workstations. The
code uses MPI. It is scalable and demonstrates good performance. The general architecture of the code,
specific uses of message passing, and effects of a scheduling on the performance and fault tolerance
are described.

* Presented paper at the 10th International Conference on Radiation Shielding, Funchal (Madeira),
Portugal, May 9-14, 2004.
† This work was supported by the Universities Research Association, Inc., under contract DE-AC02-
76CH03000 with the U.S. Department of Energy.

–2–

PARALLELIZING THE MARS15 CODE WITH MPI FOR
SHIELDING APPLICATIONS

M.A. Kostin* and N.V. Mokhov
Fermi National Accelerator Laboratory, P.O. Box 500, MS 220, Batavia, Illinois 60510-0500, USA
*Corresponding author: phone +1-630-840-8460, fax +1-630-840-6039, e-mail: kostin@fnal.gov

Abstract – The MARS15 Monte Carlo code capabilities to deal with time-consuming deep penetration shielding problems and
other computationally tough tasks in accelerator, detector and shielding applications, have been enhanced by a parallel
processing option. It has been developed, implemented and tested on the Fermilab Accelerator Division Linux cluster and
network of Sun workstations. The code uses MPI. It is scalable and demonstrates good performance. The general architecture of
the code, specific uses of message passing, and effects of a scheduling on the performance and fault tolerance are described.

INTRODUCTION

 Shielding applications are known to be time
consuming. A usual way to overcome a low rate of
statistics accumulation in such applications is to run
many jobs with different initial seeds for random
number generators and average their results. The
procedure, however, may result in biased estimates for
values of interest and their errors if the results of the
jobs are not statistically significant.
 There is a natural way to deal with the problem. A
code can be created that combines the local jobs in one
system, collects intermediate statistics from the jobs,
and evaluates the final results. The job integration is
done via a so-called middleware. This approach was
recently implemented in the MARS15 code(1,2) by
means of the Message Passing Interface (MPI)
libraries(3).

CHOICE OF MIDDLEWARE

 Several candidates were considered for the
middleware: MPI(3), CORBA(4), sockets and PVM(5).
CORBA provides extensive functionality and is
especially appropriate for distributed Object-Oriented
applications. The drawbacks of CORBA is that it is
relatively hard to use, and its communication overhead
may be significant. Sockets, on the other hand, involve
little overhead for communications but much of the
necessary high-level functionality is absent. PVM has a
long and successful history. The MCNP
collaboration(6), however, has recommended MPI over
PVM provided substantial experience with both the
packages. MPI has the following advantages. It is a
standard for programming parallel systems, available
on machines of all architectures, i.e. massive parallel
systems, clusters and networks of workstations. The
performance of MPI is optimized by many vendors for
their systems. At least one of the MPI implementations
(namely LAM(7)) is Grid capable, which may be
important for future applications of the MARS code.

Also, LAM uses the TCP/IP protocol that imposes
virtually no communication overhead. Another
advantage of MPI is that its functionality seems to
match data structures and structure of the MARS code
quite well. Summarizing, MPI seems to be the most
appropriate choice among all the other considered
middlewares.

CODE ARCHITECTURE

 The general architecture of the parallel MARS15
code consists of one master process and an arbitrary
number of slave processes. All the processes replicate
the entire geometry of a studied system. The
parallelization is job-based, i.e. processes are running
independently with different initial seeds for the
random number generator. The master process collects
intermediate results from the slaves from time to time
according to a scheduling algorithm, and computes the
final results when a required total number of events has
been processed. Besides performing the control task,
the master also runs event histories. This is especially
important for systems with a small number of
processors. Since the processes are loosely coupled,
one expects good scalability, and load balancing is not
an issue.
 The slave processes are passive, they do not perform
self-scheduling tasks. Information exchange is initiated
by the master whenever the scheduling algorithm
decides. All the slaves are inquired consecutively
according to their rank. In order to avoid possible
interference with running event histories, the slaves
probe the signals from the master in asynchronous
mode. A slave starts processing the next event if no
signal from the master is received at the time of the
probing. If such a signal exists, then the slave sends
back a number of locally processed events. The master
makes an estimate of the total number of events
processed by all the processes including that new
number. The slave process is terminated if the estimate
is in excess of the requested total number of events.

–3–

Otherwise, all the intermediate information is
transferred to the master and the slave process
continues. All communications are performed in MPI
standard mode except for the signal probing
mentioned above. The order of all the corresponding
'send' and 'receive' functions is carefully matched in
order to avoid a deadlock.
 Information exchange between two processes has
two stages. At the first stage, all the relevant MARS
arrays are sent. There are three general methods of
sending the data in the MPI:

1. Sending array elements positioned
contiguously in memory.

2. Sending with the packing and unpacking
subroutines.

3. Sending with derived types.
The second and third methods work with data located
in arbitrary places. MARS arrays are positioned in a
number of common blocks, therefore the arrays are not
in contiguous memory. The first method can only be
used for one array at a time. This would lead to
excessive communications since each array should be
sent separately. The second method involves some
overhead for packing the arrays into a buffer every
time a slave sends the information. The third method is
an optimal one for our case. An overhead for type
creating occurs only once at the beginning of the run.
Later on, all the arrays pertained to the new type are
sent by a single send call.
 The last two methods can be mixed in a send/receive
session as long as type signatures of sent and received
messages are same. This is used for receiving the data
by the master. If the same derived type were used by
the master to receive the information then all the arrays
in the master's memory would be overwritten. A buffer
is required to store the data received from the slave
processes. The FORTRAN’77 standards do not
provide utilities for dynamic memory allocation. Even
though many vendors provide those for their
implementations, the free distributed and commonly
used gnu FORTRAN’77 compiler, g77, does not do
that. The maximal possible number of zones in a
studied system has to be hardwired, and all the arrays
that keep the data associated with the zones must have
fixed sizes. Therefore, one can safely fix the size of the
exchange buffer to the maximal possible integrated
size of all those arrays, that is ~40 MB.
 At the second stage, the slave processes send
accumulated HBOOK histograms. The code reuses the
same buffer mentioned above to do this. The
histograms are sent one by one in the current version of
the code. It might be possible to further optimize the
performance by packing as many histograms as
possible into the exchange buffer and reducing the
number of send calls. A histogram can be created at

any time, even between exchange sessions. The master
checks dynamically whether a received histogram with
a given ID already exists. It will be created if it is not
found among the master histograms.

SCHEDULING

 Scheduling is an important issue which is directly
related to performance, scaling and fault tolerance.
 Communications are quite expensive for the current
generation of commodity clusters. Therefore, a
common sense approach is important to design an
effective code: the less communications the better. In
the most extreme case, the result exchange
(rendezvous) would happen only once at the end of
computation. Moreover, performance can be good only
if communication time, Tm (the subscript 'm' stands for
'messages'), is much smaller than computation time, Tc.
On the other hand, the rendezvous must be frequent
enough in order to provide some fault tolerance. It is
important to be able to restart computation from the
last checkpoint if a system failure occurs. Even though
this functionality has not been implemented in MARS
yet, the scheduler compromises between these two
time requirements in order to satisfy them.
 The scheduler in the MARS15 code decides when to
suspend the computation and start a rendezvous. The
decision is based on the knowledge of an estimated
time needed for a rendezvous and to process one event,
T1. The master process may wait for a response from a
slave for a long time during rendezvous in a case of
long histories. The waiting time may significantly
prolong the rendezvous. For the code to be effective, a
time between rendezvous has to be significantly longer
than max{Tm, T1}.
 As described above, a slave process is terminated at
a rendezvous if the number of locally processed
histories combined with the number of events already
collected by the master is in an excess of the total
number of requested events. This would most likely to
happen when the jobs are close to their end. Time to a
next rendezvous has to be shortened to avoid that and
use the resources more effectively. In the opposite
case, the master will have to process the rest of
histories by itself. This may lead to a sizeable
computation time increase if a number of terminated
jobs is large and the balance of events is still
significant. Two previous time conditions must be
corrected for this effect. The time till a next
rendezvous is calculated according to the formulae

},1,8.0},,max{100min{ 1 hrendm Τ×ΤΤ×=Τ
where Tend is an estimated time to the end of all
calculations. The requirement of 1 hour is based on a
human factor. The exchange time must not exceed a

–4–

sizeable fraction of a working day. This is to let people
deal with potential problems in their codes.
 Fig. 1 illustrates a communication time scheme. The
first rendezvous is occurring in a fixed time period of
10 sec. The fixed time period is needed to calculate
trial values for T1, Tm and Tend. These values are
calculated at the end of each rendezvous later on.

Figure 1. Communication time scheme.

PERFORMANCE TEST

 A performance test has been conducted on the
Fermilab Accelerator Division Linux cluster. The
cluster consists of 32 dual CPU nodes. Each CPU is a
1.4 GHz AMD Athlon 1600+ processor with 256
kbytes of cache. The nodes are equipped with 1 Gbytes
of memory and connected via a 100 Mbits/sec
network. LAM MPI is installed on the cluster. Job
management is handled by the Portable Batch System
(PBS)(7).
 The test was conducted on a MARS model of the
secondary beam line of the Fermilab fixed target
experiment E907 (another name is MIPP - Main
Injector Particle Production Experiment)(9). The model
includes last 130 m of the beam line and beam
enclosure with concrete shielding and soil around it.
An elevation and horizontal views of the system are
shown in Figs.2 and 3. The model contains ~2,000
geometry zones. An event in the model starts with
transport of a 120 GeV/c proton. Then the proton
interacts with a primary copper target, and secondary
particles are transported further and their interactions
in material of the beam line elements and shielding are
simulated.
 The performance test has measured the speedup, SN,
and efficiency of the code, EN, as functions of the used
number of processors, N. The speedup is defined as a
ratio of the time spent by one processor to perform a
given job, t1, over the time tN required for N processors
to execute the same job, SN=t1/tN. The efficiency of the

code is defined as EN=t1/(N × tN). For this test, t1 and tN
were averaged times to process one event. The results
of the performance test are presented in Figs. 4 and 5.
A number of requested events was 10,000 per
processor per each point on the plot. The jobs took ~90
min to complete. Only one processor per node was
used during the test. The test has demonstrated an
almost linear speedup. The test could not be conducted
on a large number of processors due to the limited
resources.

Figure 2. Elevation view of the MIPP secondary beam line.

Figure 3. Horizontal cross-section of the MIPP beam line
enclosure.

–5–

Figure 4. MARS15 code speedup, SN.

CONCLUSIONS

 Code parallelization has been implemented in
MARS15 using MPI. The code is expected to be
scalable because the processes are weakly coupled.
There is no issue of the load balancing due to the same
reason. The scheduler is an important part of the code.
It comprises time conditions to provide efficiency and
fault tolerance. A performance test conducted on the
Fermilab Accelerator Division Linux cluster has shown
a good speedup. There is potential for further
improvement of the code.

Figure 5. MARS15 code efficiency, EN.

 Only computation and histograming are supported in
the current version of the parallel MARS15 code. All
other options such as graphics, event dumping and so
on shall be used with a sequential run on one
processor. All the nodes in a cluster must have some
output capabilities because the code writes multiple
files. Therefore, the code most likely will not run on
disc-less clusters. However, only the master node
needs to have the output capabilities to print out the
results. The current version of the code also assumes
an unlimited input, i.e. each node must be able to read
in the configuration files.

ACKNOWLEDGEMENTS

 We are thankful to J.-F. Ostiguy for fruitful
discussions and constructive comments.

REFERENCES

1. Mokhov, N.V. Status of MARS Code. Fermilab-Conf-03/053 (2003); http://www-ap.fnal.gov/MARS/.
2. Mokhov, N.V., Gudima, K.K., James, C.C., Kostin, M.A., Mashnik, S.G., Ng, E., Ostiguy, J.-F., Rakhno, I.L., Sierk, A.J. and
 Striganov,S.I. Recent Enhancements to the MARS15 Code. In these proceedings.
3. Message Passing Interface Forum, http://www.mpi-forum.org/;
 The Message Passing Interface Standard, http://www.mcs.anl.gov/mpi/.
4. Object Management Group, http://www.omg.org/.
5. Parallel Virtual Machine (PVM), http://www.csm.ornl.gov/pvm/pvm_home.html.
6. MCNP – A General Monte Carlo N-Particle Transport Code – Version 5, http://laws.lanl.gov/x5/MCNP/index.html.
7. LAM/MPI Parallel Computing, http://www.lam-mpi.org/.
8. Portable Batch System (PBS), http://www.openpbs.org/.
9. E907 Experiment, http://ppd.fnal.gov/experiments/e907/.

