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Abstract – The MARS15 Monte Carlo code capabilities to deal with time-consuming deep penetration shielding problems and 
other computationally tough tasks in accelerator, detector and shielding applications, have been enhanced by a parallel 
processing option. It has been developed, implemented and tested on the Fermilab Accelerator Division Linux cluster and 
network of Sun workstations. The code uses MPI. It is scalable and demonstrates good performance. The general architecture of 
the code, specific uses of message passing, and effects of a scheduling on the performance and fault tolerance are described. 
 
INTRODUCTION 

    Shielding applications are known to be time 
consuming. A usual way to overcome a low rate of 
statistics accumulation in such applications is to run 
many jobs with different initial seeds for random 
number generators and average their results. The 
procedure, however, may result in biased estimates for 
values of interest and their errors if the results of the 
jobs are not statistically significant. 
   There is a natural way to deal with the problem. A 
code can be created that combines the local jobs in one 
system, collects intermediate statistics from the jobs, 
and evaluates the final results. The job integration is 
done via a so-called middleware. This approach was 
recently implemented in the MARS15 code(1,2) by 
means of the Message Passing Interface (MPI) 
libraries(3). 
 
CHOICE OF MIDDLEWARE 

    Several candidates were considered for the 
middleware: MPI(3), CORBA(4), sockets and PVM(5). 
CORBA provides extensive functionality and is 
especially appropriate for distributed Object-Oriented 
applications. The drawbacks of CORBA is that it is 
relatively hard to use, and its communication overhead 
may be significant. Sockets, on the other hand, involve 
little overhead for communications but much of the 
necessary high-level functionality is absent. PVM has a 
long and successful history. The MCNP 
collaboration(6), however, has recommended MPI over 
PVM provided substantial experience with both the 
packages. MPI has the following advantages. It is a 
standard for programming parallel systems, available 
on machines of all architectures, i.e. massive parallel 
systems, clusters and networks of workstations. The 
performance of MPI is optimized by many vendors for 
their systems. At least one of the MPI implementations 
(namely LAM(7)) is Grid capable, which may be 
important for future applications of the MARS code. 

Also, LAM uses the TCP/IP protocol that imposes 
virtually no communication overhead. Another 
advantage of MPI is that its functionality seems to 
match data structures and structure of the MARS code 
quite well. Summarizing, MPI seems to be the most 
appropriate choice among all the other considered 
middlewares. 
 
CODE ARCHITECTURE 

    The general architecture of the parallel MARS15 
code consists of one master process and an arbitrary 
number of slave processes. All the processes replicate 
the entire geometry of a studied system. The 
parallelization is job-based, i.e. processes are running 
independently with different initial seeds for the 
random number generator. The master process collects 
intermediate results from the slaves from time to time 
according to a scheduling algorithm, and computes the 
final results when a required total number of events has 
been processed. Besides performing the control task, 
the master also runs event histories. This is especially 
important for systems with a small number of 
processors. Since the processes are loosely coupled, 
one expects good scalability, and load balancing is not 
an issue. 
    The slave processes are passive, they do not perform 
self-scheduling tasks. Information exchange is initiated 
by the master whenever the scheduling algorithm 
decides. All the slaves are inquired consecutively 
according to their rank. In order to avoid possible 
interference with running event histories, the slaves 
probe the signals from the master in asynchronous 
mode. A slave starts processing the next event if no 
signal from the master is received at the time of the 
probing. If such a signal exists, then the slave sends 
back a number of locally processed events. The master 
makes an estimate of the total number of events 
processed by all the processes including that new 
number. The slave process is terminated if the estimate 
is in excess of the requested total number of events. 
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Otherwise, all the intermediate information is 
transferred to the master and the slave process 
continues. All communications are performed in MPI 
standard mode except for the signal probing 
mentioned above. The order of all the corresponding 
'send' and 'receive' functions is carefully matched in 
order to avoid a deadlock. 
    Information exchange between two processes has 
two stages. At the first stage, all the relevant MARS 
arrays are sent. There are three general methods of 
sending the data in the MPI: 

1. Sending array elements positioned 
contiguously in memory. 

2. Sending with the packing and unpacking 
subroutines. 

3. Sending with derived types. 
The second and third methods work with data located 
in arbitrary places. MARS arrays are positioned in a 
number of common blocks, therefore the arrays are not 
in contiguous memory. The first method can only be 
used for one array at a time. This would lead to 
excessive communications since each array should be 
sent separately. The second method involves some 
overhead for packing the arrays into a buffer every 
time a slave sends the information. The third method is 
an optimal one for our case. An overhead for type 
creating occurs only once at the beginning of the run. 
Later on, all the arrays pertained to the new type are 
sent by a single send call. 
    The last two methods can be mixed in a send/receive 
session as long as type signatures of sent and received 
messages are same. This is used for receiving the data 
by the master. If the same derived type were used by 
the master to receive the information then all the arrays 
in the master's memory would be overwritten. A buffer 
is required to store the data received from the slave 
processes. The FORTRAN’77 standards do not 
provide utilities for dynamic memory allocation. Even 
though many vendors provide those for their 
implementations, the free distributed and commonly 
used gnu FORTRAN’77 compiler, g77, does not do 
that. The maximal possible number of zones in a 
studied system has to be hardwired, and all the arrays 
that keep the data associated with the zones must have 
fixed sizes. Therefore, one can safely fix the size of the 
exchange buffer to the maximal possible integrated 
size of all those arrays, that is ~40 MB. 
    At the second stage, the slave processes send 
accumulated HBOOK histograms. The code reuses the 
same buffer mentioned above to do this. The 
histograms are sent one by one in the current version of 
the code. It might be possible to further optimize the 
performance by packing as many histograms as 
possible into the exchange buffer and reducing the 
number of send calls. A histogram can be created at 

any time, even between exchange sessions. The master 
checks dynamically whether a received histogram with 
a given ID already exists. It will be created if it is not 
found among the master histograms. 
 
SCHEDULING 

    Scheduling is an important issue which is directly 
related to performance, scaling and fault tolerance. 
    Communications are quite expensive for the current 
generation of commodity clusters. Therefore, a 
common sense approach is important to design an 
effective code: the less communications the better. In 
the most extreme case, the result exchange 
(rendezvous) would happen only once at the end of 
computation. Moreover, performance can be good only 
if communication time, Tm (the subscript 'm' stands for 
'messages'), is much smaller than computation time, Tc. 
On the other hand, the rendezvous must be frequent 
enough in order to provide some fault tolerance. It is 
important to be able to restart computation from the 
last checkpoint if a system failure occurs. Even though 
this functionality has not been implemented in MARS 
yet, the scheduler compromises between these two 
time requirements in order to satisfy them. 
    The scheduler in the MARS15 code decides when to 
suspend the computation and start a rendezvous. The 
decision is based on the knowledge of an estimated 
time needed for a rendezvous and to process one event, 
T1. The master process may wait for a response from a 
slave for a long time during rendezvous in a case of 
long histories. The waiting time may significantly 
prolong the rendezvous. For the code to be effective, a 
time between rendezvous has to be significantly longer 
than max{Tm, T1}. 
    As described above, a slave process is terminated at 
a rendezvous if the number of locally processed 
histories combined with the number of events already 
collected by the master is in an excess of the total 
number of requested events. This would most likely to 
happen when the jobs are close to their end. Time to a 
next rendezvous has to be shortened to avoid that and 
use the resources more effectively. In the opposite 
case, the master will have to process the rest of 
histories by itself. This may lead to a sizeable 
computation time increase if a number of terminated 
jobs is large and the balance of events is still 
significant. Two previous time conditions must be 
corrected for this effect. The time till a next 
rendezvous is calculated according to the formulae 

},1,8.0},,max{100min{ 1 hrendm Τ×ΤΤ×=Τ
where Tend is an estimated time to the end of all 
calculations. The requirement of 1 hour is based on a 
human factor. The exchange time must not exceed a 
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sizeable fraction of a working day. This is to let people 
deal with potential problems in their codes. 
    Fig. 1 illustrates a communication time scheme. The 
first rendezvous is occurring in a fixed time period of 
10 sec. The fixed time period is needed to calculate 
trial values for T1, Tm and Tend. These values are 
calculated at the end of each rendezvous later on. 
 

 
 
Figure 1. Communication time scheme. 
 
 
PERFORMANCE TEST 

    A performance test has been conducted on the 
Fermilab Accelerator Division Linux cluster. The 
cluster consists of 32 dual CPU nodes. Each CPU is a 
1.4 GHz AMD Athlon 1600+ processor with 256 
kbytes of cache. The nodes are equipped with 1 Gbytes 
of memory and connected via a 100 Mbits/sec 
network. LAM MPI is installed on the cluster. Job 
management is handled by the Portable Batch System 
(PBS)(7). 
    The test was conducted on a MARS model of the 
secondary beam line of the Fermilab fixed target 
experiment E907 (another name is MIPP - Main 
Injector Particle Production Experiment)(9). The model 
includes last 130 m of the beam line and beam 
enclosure with concrete shielding and soil around it. 
An elevation and horizontal views of the system are 
shown in Figs.2 and 3. The model contains ~2,000 
geometry zones. An event in the model starts with 
transport of a 120 GeV/c proton. Then the proton 
interacts with a primary copper target, and secondary 
particles are transported further and their interactions 
in material of the beam line elements and shielding are 
simulated. 
    The performance test has measured the speedup, SN, 
and efficiency of the code, EN, as functions of the used 
number of processors, N. The speedup is defined as a 
ratio of the time spent by one processor to perform a 
given job, t1, over the time tN required for N processors 
to execute the same job, SN=t1/tN. The efficiency of the 

code is defined as EN=t1/(N × tN). For this test, t1 and tN 
were averaged times to process one event. The results 
of the performance test are presented in Figs. 4 and 5. 
A number of requested events was 10,000 per 
processor per each point on the plot. The jobs took ~90 
min to complete. Only one processor per node was 
used during the test. The test has demonstrated an 
almost linear speedup. The test could not be conducted 
on a large number of processors due to the limited 
resources. 
 

 
 
Figure 2. Elevation view of the MIPP secondary beam line. 
 

 
 

Figure 3. Horizontal cross-section of the MIPP beam line 
enclosure. 
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Figure 4. MARS15 code speedup, SN. 
 
CONCLUSIONS 

    Code parallelization has been implemented in 
MARS15 using MPI. The code is expected to be 
scalable because the processes are weakly coupled. 
There is no issue of the load balancing due to the same 
reason. The scheduler is an important part of the code. 
It comprises time conditions to provide efficiency and 
fault tolerance. A performance test conducted on the 
Fermilab Accelerator Division Linux cluster has shown 
a good speedup. There is potential for further 
improvement of the code. 
 
 
 
 
 
 
 
 

 
Figure 5. MARS15 code efficiency, EN. 
 
    Only computation and histograming are supported in 
the current version of the parallel MARS15 code. All 
other options such as graphics, event dumping and so 
on shall be used with a sequential run on one 
processor. All the nodes in a cluster must have some 
output capabilities because the code writes multiple 
files. Therefore, the code most likely will not run on 
disc-less clusters. However, only the master node 
needs to have the output capabilities to print out the 
results. The current version of the code also assumes 
an unlimited input, i.e. each node must be able to read 
in the configuration files. 
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