Pixel Multichip Module Design for a High Energy Physics Experiment

G. Cardoso, J. Andresen, J.A. Appel, D. C. Christian, B.K. Hall, S.W. Kwan, M.A. Turqueti, S. Zimmermann

Abstract—At Fermilab, a pixel detector multichip module is being developed for the BTeV experiment. The module is composed of three layers. The lowest layer is formed by the readout integrated circuits (ICs). The back of the ICs is in thermal contact with the supporting structure, while the top is flip-chip bump-bonded to the pixel sensor. A low mass flex-circuit interconnect is glued on the top of this assembly, and the readout IC pads are wire-bounded to the circuit. This paper presents recent results on the development of a multichip module prototype and summarizes its performance characteristics.

I. INTRODUCTION

At Fermilab, the BTeV experiment has been proposed for the C-Zero interaction region of the Tevatron [1]. One of the tracker detectors for this experiment will be a pixel detector composed of 60 pixel planes of approximately 100x100 mm² each, assembled perpendicular to the colliding beam and installed at 6 millimeters from the beam.

The planes in the pixel detector are formed by sets of different lengths of pixel-hybrid modules, each composed of a single active-area sensor tile and of linear array of readout ICs. The modules on opposite faces of the same pixel station are assembled perpendicularly in relation to each other, as shown in Fig. 1.

![Pixel detector stations](image)

Fig. 1. Pixel detector stations

The BTeV pixel detector module is based on a design relying on a hybrid approach [2]. With this approach, the readout chip and the sensor array are developed separately and the detector is constructed by flip-chip mating the two together. This approach offers flexibility in the development process, the choice of fabrication technologies, and the choice of sensor material.

The multichip modules must conform to special requirements dictated by BTeV: The pixel detector will be inside a strong magnetic field (1.6 Tesla in the central field), the flex circuit and the adhesives cannot be ferromagnetic, the pixel detector will also be placed inside a high vacuum environment, so the multichip module components cannot outgas, the particle fluence (around 3 Mrad per year at the edges of the detector closest to the colliding beams) and temperature (-5°C) also impose severe constraints on the pixel multichip module packaging design.

The pixel detector will be employed for on-line track and vertex finding for the lowest level trigger system. Therefore, the pixel readout ICs will output all detected hits. This requirement imposes severe constraints on the design of the readout IC, the hybridized module, and the data transmission rate to the data acquisition system.

Several factors impact the amount of data that each IC needs to transfer: readout array size, distance from the beam, number of bits of pulse-height analog to digital converter (ADC) data format, etc. Presently, the dimension of the pixel chip array is 128 rows by 22 columns and 3 bits of ADC information.

II. PIXEL MODULE READOUT

The pixel module readout must allow the pixel detector to be used in the lowest level experiment trigger. Our present assumptions are based on simulations that describe the data pattern inside the pixel detector [3]. The parameters used for the simulations are: luminosity of \(2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}\) (corresponds to an average of 2 interactions per bunch crossing), pixel size of 400×50 µm², threshold of 2000 e⁻ and a magnetic field of 1.6 Tesla. The pixel pitch in the 128 rows is 50µm, while the pixel pitch in the 22 columns is 400µm.

We’ve used simulations of the readout architecture with a clock rate of 35MHz. This frequency can support a readout efficiency of approximately 98% even when considering three times the nominal hit rate for the readout ICs closest to the...
A. Proposed Readout Architecture

The readout architecture is a direct consequence of the BTeV detector layout. The BTeV detector covers the forward direction, 10-300 mrad, with respect to both colliding beams. Hence, the volume outside this angular range is outside the active area and can be used to house heavy readout and control cables without interfering with the experiment. The architecture takes advantage of this consideration.

The data combiner board (DCB) is located approximately 10 meters from the detector and remotely controls the pixel modules. All the controls, clocks and data are transmitted between the pixel module and the DCB by differential signals employing a low-voltage differential signaling (LVDS) approach. Common clocks and control signals are sent to each module and then bussed to each readout IC. All data signals are point-to-point connected to the DCB. For more details refer to [4]. The bias voltages for the pixel readout IC and the sensors are provided by separate cables.

This readout technique requires the design of just one radiation hard chip: the pixel readout IC. The point-to-point data links minimize the risk of an entire module failure due to a single chip failure and eliminate the need for a chip ID to be embedded in the data stream. Simulations have shown that this readout scheme results in readout efficiencies that are sufficient for the BTeV experiment.

Flexible interconnect circuitry is placed on the top of this assembly and the FPIX1 pad interface is wire-bonded to it. The circuit then extends to one end of the module where low profile connectors interface the module to the data acquisition system. The large number of signals in this design imposes space constraints and requires aggressive design rules, such as 35µm trace width and center-to-center pitch of 35µm.

This packaging requires a flex circuit with four layers of copper traces (as sketched in Fig. 5). The data, control and clock signals use the two top layers, power uses the third layer, while ground and the sensor high voltage bias use the bottom layer. The flex circuit has two power traces, one analog and one digital. These traces are wide enough to guarantee that the voltage drop from chip to chip is within the FPIX1 ±5% tolerance. The decoupling capacitors in the flex circuit are close to the pixel chips. The trace lengths and vias that connect the capacitors to the chips are minimized to reduce the interconnection inductance. The flex circuit made by CERN HDI group is shown in Fig. 6.
To minimize coupling between digital and analog elements, signals are grouped together into two different regions. The digital and analog traces are laid out on top of the digital and analog power supply traces, respectively, as shown in Fig. 5. Furthermore, a ground trace runs between the analog set and the digital set of traces.

A. High Voltage Bias

The pixel sensor is biased through the flex circuit using up to 1000VDC. The coupling between the digital traces and the bias trace has to be minimized to improve the sensor noise performance. To achieve this, the high voltage trace runs in the fourth metal layer (ground plane, see Fig. 5) and below the analog power supply trace. The high voltage conductor is electrically affixed to the sensor bias window with gold epoxy. An insulator layer in the bottom of the flex circuit isolates the ground in the fourth metal layer of the flex circuit from the high voltage of the pixel sensor.

B. Assembly

The interface adhesive between the flex circuit and the pixel sensor serves to buffer the mechanical stress due to the coefficient of thermal expansion mismatches between the flex circuit and the silicon pixel sensor. Two alternatives are being pursued. One is 3M’s thermally conductive tape [6]. The other is the silicone-based adhesive used in [7].

The present pixel module prototypes were assembled using 3M’s tape with a thickness of 50µm. Before mounting the flex circuit onto the sensor, a set of dummies with bump-bond structures were used to evaluate the assembly process. This assembly process led to no noticeable change in the resistance of the bumps. Fig. 7 shows a picture of the dummy flex structure.

The pixel modules have been characterized for noise and threshold dispersion. These characteristics were measured by injecting charge in the analog front end of the readout chip with a pulse generator and reading out the hit data through a PCI based test stand developed at Fermilab. The results for different thresholds are summarized in Table I.
Table I. Performance of the pixel prototype modules (in e⁻)

<table>
<thead>
<tr>
<th>Without Sensor</th>
<th>With Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>Noise</td>
</tr>
<tr>
<td>µ_Th</td>
<td>σ_Th</td>
</tr>
<tr>
<td>7365</td>
<td>356</td>
</tr>
<tr>
<td>6394</td>
<td>332</td>
</tr>
<tr>
<td>5455</td>
<td>388</td>
</tr>
<tr>
<td>4448</td>
<td>378</td>
</tr>
<tr>
<td>3513</td>
<td>384</td>
</tr>
<tr>
<td>2556</td>
<td>375</td>
</tr>
</tbody>
</table>

The comparison of these results with previous results (single readout IC without the flex circuit on top) shows no noticeable degradation in the electrical performance of the pixel module. Fig. 10 shows the hit map of the pixel module with sensor using a radioactive source (Sr 90), confirming that the bump bonds are good.

The same set of tests was followed to characterize the 5-chip pixel module. Fig. 11 shows a picture of the pixel multichip module without the flex circuit, while Fig. 12 shows the complete module with flex circuit glued on top of the sensor. Table II summarizes the charge injection calibration results for all five chips for a given threshold. The hit map (using a Sr90 source) of the 5-chip module is shown in Fig. 13. The five readout ICs used in the construction of this module were not fully tested prior to the hybridization to the sensor. Fig. 14 shows the threshold distribution map of the module using the analog charge injection. This figure shows that chip 3 has a bad column, traced to a digital problem with the readout IC.
V. RESULTS OF THE HYBRIDIZATION TO PIXEL SENSORS

The hybridization approach pursued offers increased flexibility. However, it requires the availability of highly reliable, reasonably low cost fine-pitch flip-chip mating technology. We have tested three bump bonding technologies: indium, fluxed solder, and fluxless solder. Real sensors and readout chips were indium bumped at both the single chip and at the wafer level by MCNC (Research Triangle Park, NC) and Advance Interconnect Technology Ltd. (Hong Kong) with satisfactory yield and performance.

The bump bonding technologies with indium and solder are both viable for pixel detectors. The indium bumps appear somewhat more susceptible to temperature variations. We visually observed the degeneration of these bumps at cold temperatures. The solder bumps on the other hand, were not affected by temperature changes or by radiation. For more details refer to [8].

VI. CONCLUSIONS

We have described the baseline pixel multichip module designed to handle the data rate required for the BTeV experiment at Fermilab. The assembly process of a single chip and a 5-chip pixel module prototype was successful. The tests detected no crosstalk problems between the digital and analog sections of the readout chip and the flex circuit. The characterization of the prototypes showed that there is no degradation in the electrical performance of the pixel module when compared with previous prototypes. Furthermore, the 5-chip module showed no significant increase in noise and threshold dispersion when compared with the single chip prototypes.

VII. REFERENCES