
Configuring Systems from Components:
The EMS Approach

J.M.Nogiec, E.Desavouret, S.Kotelnikov, K.Trombly-Freytag, and D.Walbridge

Fermi National Accelerator Laboratory *, Batavia, Illinois 60510

Abstract. EMS is an exercise in component technology. It offers rapid development of specialized data acquisition,
visualization and analysis systems via assembly from vertical and horizontal components. The EMS architecture allows
for agile development of systems and promotes reuse of software. The framework supports a visual builder that shows
connections between components and lists component properties. The system offers both off-line setup of properties and
run-time modifications. Multi-bus architecture allows for independent routing of data, controls, debugs, and exceptions.
The architecture, configuration process, and control of applications through scripting are presented.

INTRODUCTION

Traditional software development processes highly
depend on a priori knowledge of all the requirements.
The requirements, which are typically defined in the
initial phase of the project, are used to develop
software. This process frequently leads to monolithic
solutions, where the cost of change to the system
grows exponentially with time. In the R&D situations,
where the ability to respond to ever changing
requirements is a sine qua non condition for success,
such a process is unacceptable.

The shortcomings of the traditional processes are
addressed by the component-based agile development
of applications. This approach is centered on the
premise that anticipating and understanding every
system requirement ahead of time is very difficult, if
not impossible. The process is adaptive and is able to
quickly reflect changes in user’s requirements in
produced software.

In the opinion of the authors, two fundamental
conditions must be fulfilled in order to successfully
employ agile development: a) an architecture that
promotes easy changes and extensions to the system
must be adopted, and b) a rapid development
environment that allows for quick development
iterations must exist. The rest of this article shows how
both of these fundamental necessities are addressed by
the EMS, a component-based system developed by the
Systems Development and Support group at Fermilab.

*Operated by the Universities Research Association under
contract with the U.S. Department of Energy

EMS OVERVIEW

The EMS is an extensible, Java-based framework,
which allows for adding new components and
specialization for various application domains. It
replaces a traditional code-test-release application
development cycle with assembly of systems from a
set of components. It offers a rapid development
environment in which universal components are
supplemented with modules reused from other
applications and newly developed components to form
new applications.

The core system consists of an architectural
framework supporting communication and system
assembly, and a set of core components, which are
components common to many sub-domains. Examples
of such components include graphing components,
numerical and textual display components, traffic and
memory monitors, file and database I/O components,
system debugging components, etc. These basic
components are supplemented with domain specific
components.

Within the system, components communicate
through messages (events) exchanged over a software
bus. The bus conveys five independently routed
categories of events: data, controls, debug, property,
and exceptions. The communication patterns are
enforced by the router component and can be defined
externally from the communicating components. Both
content-based and address-based communication is

FERMILAB-PUB-03-472-TD

provided with the source routing and routing tables
methods. Depending on their role in communication,
components can be data producers, consumers, both,
or neither.

 Components, their properties, routing specification,
and initial controls are specified in XML, which form
the configuration of an application. They are
implemented as Java Beans, which are connected to
the bus via adapter objects. In order to send and
receive messages over the bus, each component has to
implement appropriate communication interfaces.
Separate interfaces allow for exchanging of control,
data, debug, and exception events (Figure 1).

FIGURE 1. Inter-component communication in EMS.

APPLICATION DEVELOPMENT

EMS applications are built from components. The
process of configuring the EMS application consists of
three phases:

• Selecting a set of components to use
• Bringing components to their desired state.
• Linking components together

This process can be iterative and it can produce a

series of executable applications, each of them
functionally closer to the required result. Integration of
debugging and exception handling solutions in the
framework aids in rapid development by speeding up
testing and debugging.

Choosing Components

EMS-based applications are assembled from
existing EMS components using XML configurations.
Users must determine what components are best suited
for the needs of their application. Two tools have been
developed with focus on the component

documentation: 1) the EMS Help Viewer tool that
displays the component documentation, and 2) EMS
Help Composer, used to assist in producing the user-
focused documentation.

FIGURE 2. Component information.

The EMS Help Viewer (Figure 2) allows selection
of the individual component in a variety of ways:
alphabetically, by category, by configuration example
(XML), or by image. The standard documentation of
the selected component includes: name, category,
purpose and introduction, image, properties, control
signals, data accepted and produced, and an example
XML configuration.

Setting Initial Component State

 EMS applications consist of communicating
components that are typically data driven. This means
that a component automatically starts processing data
when the data is received. EMS components can
change their states in response to control events or
external stimuli. Component data processing happens
only if the component is in an appropriate state, such
as RUNNING.

All EMS components have properties that are used
to control the behavior, and allow customization of the
component. Properties are modified by the framework
in response to property events sent to the component.
When debugging a configuration, it is possible to tailor
the application by modifying property values
dynamically at run-time. This is done using the
property editor. Although this may be dangerous
during an actual production run, it is useful when
developing a new configuration. Dynamically
changing a property’s value shows how it affects the

behavior of a system without creating new
configuration files and re-starting the application for
each change. Using this feature can help to quickly
refine a system.

Linking Components Together

As has already been stated, components exchange
events via a multi-bus, which supports independent
“wiring” of components for the different types of
events, i.e. property, data, exception, control, and
debug events. The system supports unicast, multicast,
and broadcast communication patterns. Apart from
static wiring specified in the XML configuration,
components can specify destination addresses
dynamically at run-time.

FIGURE 3. Wiring of components.

Figure 3 shows the wiring of an application as
displayed by the EMS configuration viewer. Different
colors are used to distinguish different event types. By
clicking on the component, one can examine its
properties.

Scripting

Scripting is the answer to the demand for quickly
developing and automating new test or data processing
procedures. With the provided scripting facility, users
are be able to customize the system to suit their needs,
ease their routine tasks, and automate tests. Repetitive
tasks and complex procedures can be simplified by
providing scripts to handle them. The scripting
language augments the Java language and supports the
accelerated development of new test procedures. As a

result, domain experts are frequently able to add
functionality to the EMS programs without the need to
program new components in Java.

The Script Interpreter component is responsible for
interpreting Python scripts. This component serves as
an intermediary between the script and other
components. It sends control, property, and exception
events on behalf of the script and receives replies. The
invoked interpreter runs in a separate thread to allow
for concurrent execution of the EMS framework and
the script. The user can conveniently run scripts using
the Script Control panel, which is a GUI component to
monitor and control execution of scripts (Figure 4).

FIGURE 4. Script control component.

CONCLUSIONS

EMS is a black-box framework, which is a
realization of an architecture that is extensible and
flexible, and therefore fits perfectly the requirements
of agile development. It allows for easy changes in
functionality, by replacing or adding components, and
limits code refactoring to isolated (encapsulated)
components. Consequently, one can incrementally
build a system through a series of executable releases.
At the same time EMS provides for a high level of
reusability, by allowing for reuse of the framework
and both domain-specific and general-purpose
components. The behavior of the application can be
modified at run-time via property changes, and
extended through scripting.

