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II. REVIEW OF BASIC CONCEPTS

A. The Hamilton{Jacobi approach to in
ationary

dynamics

The dynamics of the standard Friedmann{Robertson{
Walker (FRW) universe driven by the potential energy of
a single scalar �eld is usually expressed by the Friedmann
equation for 
at spatial sections,

H2 =
8�

3M2
p

�
1

2
_�2 + V (�)

�
; (1)

and by the conservation of energy equation

��+ 3H _�+ V 0(�) = 0; (2)

where � is the scalar �eld driving in
ation, V (�) is its
potential, Mp = G�1=2 is the Planck mass and H = _a=a
is the Hubble expansion parameter.
An alternative approach to the in
ationary dynamics

is given by the Hamilton{Jacobi formulation [17]. In this
approach the Hubble expansion parameter H(�) is con-
sidered the fundamental quantity to be speci�ed. The
corresponding potential may be expressed by a reformu-
lation of the Friedmann equation as�

dH(�)

d�

�2
� 12�

M2
p

H2(�) = �32�2

M4
p

V (�): (3)

The dynamics of the in
aton �eld is then obtained by
solving the di�erential equation

_� = �M2
p

4�

dH(�)

d�
: (4)

Finally, once the dynamics of the in
aton �eld is ob-
tained, the time evolution of the scale factor can be com-
puted by integrating the Hubble expansion parameter
H[�(t)]. Without loss of generality we will always take
_� > 0.
In the Hamilton{Jacobi formulation of in
ationary dy-

namics, the slow-roll parameters �, � and �2 are de�ned
as [18]

�(�) � 3 _�2

2

"
V (�) +

_�2

2

#�1
=

M2
p

4�

�
H 0(�)

H(�)

�2
; (5)

�(�) � �
��

H _�
=

M2
p

4�

H00(�)

H(�)
; (6)

�2(�) � M4
p

16�2
H0(�)H000(�)

H2(�)
: (7)

The last two parameters are the �rst members of an in�-
nite hierarchy of slow-roll parameters, whose l-th member
is de�ned by

�lH (�) �
 
M2

p

4�

!l
(H 0)l�1

Hl

d(l+1)H(�)

d�(l+1)
: (8)

The potential and its derivatives can be expressed as ex-
act functions of the slow-roll parameters de�ned above:

V (�) =
M2

p

8�
H2(3� �); (9)

dV (�)

d�
= � Mp

2
p
�
H2p�(3� �); (10)

d2V (�)

d�2
= H2

�
3�+ 3� � (�2 + �2)

�
: (11)

B. A Hierarchy of Approximation Orders

As reported by Stewart and Lyth [19], the expressions
for the power spectra and for the spectral indices depend
on the approximation order assumed. This can be for-
malized by saying that each set of expressions for the
power spectra and the spectral indices refers to a speci�c
order l0 in the parameter expansion and to a speci�c set

of slow-roll parameters f�; �lH; l = 1; 2; ::l0g consistent
with such an order. For instance, the lowest-order ap-
proximation [20] corresponds to l0 = 1 and it refers to
the set of parameters f�; � � �1Hg. This also implies that
the equations for the power spectra and the spectral in-
dices will only involve terms up to an overall �rst degree
in these parameters. The next-order approximation, on
the other hand, corresponds to l0 = 2 and it is associated
with the enlarged set of parameters f�; �; �2 � �2Hg. In
this case, terms up to an overall second degree are re-
tained in the expressions for the power spectra and the
spectral indices. It is important to point out that in
general the �lH parameter is considered to give a contri-
bution of degree l to the factor wherein it appears. As a
consequence, whenever an approximate expression is in-
serted into an exact relation, order consistency requires
that such a relation is expanded in a power series of slow-
roll parameters and that terms are retained only up to an
overall degree consistent with the level of approximation
assumed.
Recalling Lidsey et al. [20], we can therefore think of

an in�nite hierarchy of expressions for the perturbation
spectra and for the spectral indices. It is unfortunate
that, due to the complexity of the problem, only the �rst
two approximation orders, known as lowest-order and
next-order, are currently available in the general case.
Following Stewart and Lyth [19], the fundamental

quantities arising from the approximate solution of the
quantum 
uctuation di�erential equations are the scalar

and tensor perturbation power spectra, denoted by P1=2
R

and P1=2
g respectively. The rescaled scalar and tensor

power spectra AS(k) and AT (k) are de�ned in terms of
the above quantities by

AS(k) � 2

5
P1=2
R

(k); (12)

AT (k) � 1

10
P1=2
g (k): (13)
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The scalar and tensor perturbation spectral indices, de-
noted by n(k) and nT (k) are then de�ned in terms of the
corresponding rescaled power spectra by

n(k) � 1 � d lnA2
S(k)

d lnk
; (14)

nT (k) � d lnA2
T (k)

d lnk
: (15)

Depending on the approximation order assumed, dif-

ferent expressions for P1=2
R

and P1=2
g arise, which then

produce more and more accurate expressions for the
quantities de�ned by Eqs. (12-15). To next to lowest-

order (l0 = 2), the scalar and tensor rescaled power spec-
tra are given by

AS(k) ' 4

5
[1� f(2C + 1)�+ C�g] H

Mp

H

MpjH0j

����
k=aH

(16)

AT (k) ' 2

5

1p
�
[1� f(C + 1)�g] H

Mp

����
k=aH

; (17)

where C ' �0:73 is a constant which enters in the deriva-
tion of P1=2

R
and P1=2

g due to the expansion of a factor
involving the function �(�; �) (cf. [19]). As in Lidsey et

al. [20], throughout this work we will use the symbol \'"
to stress the fact that the relation holds true to the order

of approximation currently assumed. The corresponding
expressions for the scalar (n) and tensor (nT ) spectral
indices to next to lowest-order are

n(k)� 1 ' �4� + 2� � f8(C + 1)�2

+(6 + 10C)�� � 2C�2g; (18)

nT (k) ' �2� � f2�2(3 + 2C) + 4(1 +C)��g:(19)

To recover the lowest-order corresponding results it is
suÆcient to set the terms within the f� � �g brackets to
zero.

C. The Parametrization Method

In general only the knowledge of the in�nite set of
slow-roll parameters of Eq. (8) allows the determination
of H(�), and hence of the potential V (�). The case of
constant n(k) is remarkable because, to any order of ap-
proximation l0, requiring the scalar spectral index to be
k-independent endows the problem with an additional
set of (l0 � 1) relations, stemming from the fact that
d(i)n(k)=d(ln k)(i) = 0 to any order i, which allows the
expression of all the slow-roll parameters as functions of
a single one, which is chosen to be �. It is then possible to
exploit this fact to determine the potential as functions
of � and the �eld �.
The method outlined above is implemented through

three phases. First, the conditions n(k) = const: and
d(i)n(k)=d(ln k)i = 0, i = 1; 2; :::; (l0 � 1) may be used
to express all the slow-roll parameters as functions of �.
Second, an expression for the potential as a function of

� consistent with the order of approximation assumed is
derived. Third, a di�erential equation connecting � and �
is integrated to relate the �eld to the slow-roll parameter.

III. LOWEST-ORDER ANALYSIS

A. Harrison{Zel'dovich: n(k) = 1

Imposing n = 1 to lowest order in Eq. (18) implies
�4�+ 2� = 0, which relates � to �:

�(�) = 2�: (20)

To obtain V (�), note that Eq. (17) can be inverted in
order to express H as a function of AT (k):

H2 ' 25M2
p�

4
A2
T : (21)

From Eq. (14), it is then straightforward to note that the
n(k) = 1 constraint also implies

A2
S(k) = A2

S(k0): (22)

Furthermore, to lowest-order approximation the rescaled
power spectra ratio can be related to � by [20]

� ' A2
T

A2
S

: (23)

We can then use Eq. (23) together with Eqs. (21, 22) to
express H2 as a linear function of �:

H2(�) ' 25�M2
p

4
A2
S(k0)�: (24)

As we will see in Sec. V, the next-order expression analo-
gous to Eq. (24) will acquire a term proportional to �2.2

Substituting Eq. (24) into the exact form for the poten-
tial, Eq. (9), and expanding in the slow-roll parameter
we obtain

V (�) =
25M4

pA
2
S(k0)

32
�(3� �)

' 25M4
pA

2
S(k0)

32
3�: (25)

Again, this expression is not general since it relies on
Eqs. (17, 23), which take di�erent form depending on
the level of approximation assumed. Furthermore, order
consistency requires that terms of degree �2 and higher
are neglected.

2 This equation is also expressing the fact that the quantity that
needs to be expressed as power series of the slow-roll parameters
is H2 and not H.
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It is now important to �nd a relation between � and �.
From Eq.(5), we have both

d�

d�
=

2M2
p

4�

"
H0H00

H2
�
�
H0

H

�3#
: (26)

and

H0(�)

H(�)
= �

�
4�

M2
p

�1=2p
�; (27)

where the minus sign is justi�ed by the assumption that
_� > 0 implies H0(�) < 0. Similarly from the de�nition
of �, Eq. (6), we also have

H00(�)

H(�)
=

4�

M2
p

�: (28)

Inserting Eqs. (27) and (28) into Eq. (26), we obtain the
the exact expression

d�

d�
=

4
p
�

Mp

p
�(�� �): (29)

Imposing the constraint n(k) = 1 in the form � = 2�
�nally yields

d�

d�
' �4

p
�

Mp
�3=2: (30)

This equation can be integrated; letting � = 4
p
�=Mp

for convenience,Z
d� = � 1

�

Z
��3=2d�;) �(�) = �(�0)+

Mp

2
p
�

1p
�
: (31)

Choosing �(�0) = 0 we then �nd

�(�) ' Mp

2
p
��

: (32)

Having expressed the potential and the �eld as func-
tions of the slow-roll parameter �, it is then possible to
solve for the potential as a function of the �eld. Inserting
Eq. (32) into Eq. (25) we obtain

V (�) ' 25M4
pA

2
S(k0)

32

3M2
p

4��2
: (33)

Let's now recall the work of Barrow and Liddle on
intermediate in
ation [21], in which the general dynamics
of the scale factor is assumed to be

a(t) = exp
�
Atf

�
; (34)

with 0 < f < 1, A > 0 = constant. They prove that
this is an exact solution for the intermediate in
ation
potential

V (�) =
8A2

(� + 4)2

�
(2A�)1=2

�

�� �
6� �2

�2

�
; (35)

where � = 4(f�1 � 1), and is also a solution in the slow-

roll approximation for the potential

V (�) =
48A2

(� + 4)2

�
(2A�)1=2

�

��
: (36)

To see how the present results relate to the ones of
Barrow and Liddle [21], we �rst quote the expressions
for the slow-roll parameters obtained in the intermediate
in
ation case:

� =
�2

2�2
; (37)

� =

�
1 +

�

2

�
�

�2
: (38)

Exploiting Eqs. (37, 38), the equation for the exact in-
termediate in
ation potential can be recast in the form

V (�) =
16A2

(� + 4)2

�
(2A�)1=2

�

��
[3� �(�)]: (39)

Now, in the spirit of this work one can think of this ex-
pression as a function of the slow-roll parameter � instead
of the �eld �. In this perspective, neglecting the � in the
(3� �) factor is the same as saying that we are assuming
lowest-order slow-roll approximation and that by order
consistency one should retain only the terms linear in �
arising from the expansion of �(�)��. In other words,
the � appearing in the (3� �) factor will generate terms
of order �2 and higher, all of which can be consistently
neglected in a lowest-order calculation.
Finally, note that imposing the n(k) = 1 condition in

the form consistent with the lowest-order approximation
(that is, � = 2�) and using Eqs. (37,38) yields � = 2 and
f = 2=3. This is consistent with our calculation, since
inserting this value of � into Eq. (36) produces an ex-
pression for the in
aton potential analogous to Eq. (33):

V (�) � 3

�2
: (40)

It is also possible to solve for the dynamics of the in-

aton �eld as a function of cosmic time. Eq. (4) gives

�2 _� =
5M4

pAS(k0)

16�
: (41)

De�ning for convenience �30t
�1
0 = 15M4

pAS (k0)=16�,
the integration of Eq. (41) yields

�(t) = �0 (t=t0)
1=3: (42)

A graphical representation of the behavior is shown in
Fig. 1. The slow-roll parameter is now

�(t) =
M2

p

4��20
(t=t0)

�2=3
: (43)
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FIG. 1: Evolution of the in
aton �eld �(t) and of its �rst

two time derivatives _� and ��.

Similarly, the Hubble parameter and the scale factor are

H(t) = H(t0) (t=t0)
�1=3

;

a(t)

a(t0)
= exp

(
15M2

pAS(k0)

8�0t
�1
0

"�
t

t0

�2=3

� 1

#)
: (44)

Note that the main contribution to the potential is given
by the lowest-order term, whereas - as it will be shown
in Sec. V - the next-order term contributes a correction
which is actually of order ��4, important in the early
stages of slow roll but negligible thereafter. Note also
the order-of-magnitude relations

V (�) � H2(�) � �(�) � A2
S (k0)

�2
; (45)

so that a graph for the in
aton potential represents the
potential, the square of the Hubble parameter and the
slow-roll parameter.

B. Approximately Harrison{Zel'dovich:
n(k) = 1� 2n20, 2jn

2

0j � 1

Having found a solution for the in
aton potential V (�)
that generates a Harrison{Zel'dovich density perturba-
tion power spectrum, we now generalize the previous re-
sults for a k-independent spectral index di�erent from
unity. The motivation for this is mainly related to the
experimental evidence that the measured spectral index
di�ers fromunity by at most a few percent. The following
condition is therefore imposed:

n(k) = 1� 2n20: (46)

In what follows, the case n20 > 0 (and therefore spectral
indices that are slightly smaller than unity) is considered
in greater detail. The results for n20 < 0 can be obtained
by analytic continuation, with some care being taken over
the number of solutions available in that case.

From Eq. (18), to lowest order we have

�(�) = 2�� n20: (47)

We want to express the in
aton potential as a function
of the slow-roll parameter �. Eq. (21) can still be used
to express H2 as a function of the rescaled tensor power
spectrum A2

T , but in this case Eq. (22) is no longer valid.
Eq. (14) now becomes

d lnA2
S(k)

d lnk
= �2n20; (48)

hence

A2
S(k) = A2

S(k0)

�
k

k0

��2n2
0

: (49)

From Eq. (23), to lowest-order we have

A2
T (k) ' �A2

S(k) = A2
S (k0)�

�
k

k0

��2n2
0

: (50)

To express the potential as a function of the slow-roll
parameter we must express Eq. (50) as a function of �
only. From

d�

d ln k
=

d�

d�

d�

d lnk
; (51)

and using Eq. (29), together with the exact relation [20]

d�

d lnk
=

Mp

2
p
�

p
�

(1� �)
; (52)

yields

d�

d lnk
=

2�(�� �)

1� �
' 2�(n20 � �)

1� �
: (53)

This can be integrated to giveZ
d lnk =

Z
d�

�� 1

2�(�� n20)

=
1

2n20
ln(�) +

1

2

�
1� 1

n20

�
ln j�� n20j:(54)

Since 2n20 is at most a few percent, it is possible to ap-
proximate

� 1

n20
+ 1 � � 1

n20
; (55)

which then leads to the approximate result

�A2
S(k) = �A2

S(k0)

�
k

k0

��2n2
0

� A2
S(k0)j�� n20j: (56)

Hence we obtain

H2(�) ' 25�M2
pA

2
S(k0)

4
j�� n20j: (57)



6

Using the above result in Eq. (9), the potential to lowest-
order in the slow-roll parameter is obtained:

V (�) =
25M4

pA
2
S(k0)

32
j�� n20j(3� �)

' �25M4
pA

2
S(k0)

32
[�(3 + n20)� 3n20]: (58)

where the upper sign refers to the � > n20 case and the
lower sign to the � < n20 case.
To compute �(�) it is suÆcient to insert Eq. (47) into

Eq. (29), which yields

d�

d�
=

4
p
�

Mp

p
�(n20 � �): (59)

This equation is separable and gives

�(�) =
Mp

2n0
p
�
coth�1

�r
�

n20

�
for � > n20;

�(�) =
Mp

2n0
p
�
tanh�1

�r
�

n20

�
for � < n20: (60)

The integration has been carried out exactly in this case,
because when � approaches n20 the geometric series ex-
pansion of the factor (n20 � 1)�1 becomes inaccurate.
The above results can then be inverted to obtain an

explicit expression of the in
aton potential with respect
to the �eld (again, the �rst expression is for � > n20, and
the second for � < n20)

V (�) =
25M4

pA
2
S(k0)

32

�
�
n20 coth

2

�
2n0

p
�

Mp
�

�
(3 + n20)� 3n20

�
;

V (�) =
25M4

pA
2
S(k0)

32

�
�
3n20 � n20 tanh

2

�
2n0

p
�

Mp
�

�
(n20 + 3)

�
: (61)

Examples of such potentials for � > n20 are illustrated in
Fig. 2.
For n20 < 0 the corresponding lowest-order results can

be derived just retracing the steps taken in the previous
subsections. To lowest-order the potential as a function
of � is now given by

V (�) ' 25�M4
pA

2
S(k0)

32

�
�(3 + n20)� 3n20

�
; (62)

where only one potential form is now available due to the
absence of the absolute value j�� n20j. A bit more care is
needed to handle the calculation of the �eld as a function
of the slow-roll parameter. Eq. (59) can be integrated in
this case to yield

�(�) =
Mp

2
p
�jn20j

tan�1
�r

�

jn20j
�
; (63)

FIG. 2: Four potentials computed to lowest order, yielding
density perturbation spectral indices of 0.9, 0.95, 0.975, 0.99.

and for the potential to lowest order

V (�) ' 25�M4
pA

2
S(k0)

32

�
"
jn20j tan2

 
2�
p
�jn20j

Mp

!
(3 + n20)� 3n20

#
: (64)

At this point it seems rather puzzling that there are
two di�erent solutions for the potential arising in the
n20 > 0 case and only one in the n20 < 0 case. To see the
reason of this we need to consider the di�erent behavior
that Eq. (59) exhibits depending on the initial value of
the slow-roll parameter, �0.

IV. THE FLOW OF �

A. The n20 > 0 case

Let's consider again the evolution of �(�) in Eq. (59).
Keeping in mind that we assume that the in
aton �eld is
always increasing with respect to cosmic time, it is then
interesting to consider the 
ow of the slow-roll parameter
�. It is straightforward to note from Fig. 3, which shows
d�=d� as function of �, that d�=d� is positive for � < n20
and is negative for � > n20. One can see that if �0, the
initial value of �, is smaller than n20, then the slow-roll
parameter � will increase toward n20, while if the initial
value �0 is greater than n20, then � will decrease toward
n20. In the n20 > 0 case, then, independent of its initial
value �0, � will tend toward the point � = n20. Finally, if
�0 = n20, the value of � will remain constant as the �eld
evolves with respect to time.
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FIG. 3: The values of d�=d� and d�=d� for an assumed value
of n20 = 0:03. Notice that the sign of the derivatives implies
that for �! n20 the value of the �eld tends toward in�nity.

Let's �rst take a closer look at the � = n20 point. It is
not so diÆcult to note that it corresponds to power-law
in
ation. From the de�nition of �, Eq. (5), the above
condition leads to

M2
p

4�

�
H 0(�)

H(�)

�2

= n20: (65)

Remembering that _� > 0 implies dH=d� < 0, the solu-
tion H(�) is:

H(�) = A exp

�
�2
p
�n0�

Mp

�
; (66)

where A is the integration constant. The corresponding
potential can be computed using Eq. (9) to be

V (�) � exp

�
�4
p
�n0�

Mp

�
(3� n20); (67)

which in fact corresponds to the power-law potential,
whose solution is known to be a(t) � tp with p = n�20 .
It is also interesting to compute the value of all the

other slow-roll parameters �lH in this case. The l-th
derivative of the Hubble parameter is straightforward to
compute, yielding

dlH(�)

d�l
= A

�
�2
p
�n0
Mp

�l

exp

�
�2
p
�n0�

Mp

�
: (68)

Inserting Eq. (68) into the de�nition of the slow-roll pa-
rameters, Eq. (8), their value is therefore given in this
case by

�lH =

 
M2

p

4�

!l �
�2
p
�n0
Mp

�2l

= n2l0 : (69)

Starting only from the general de�nition of �, we
have therefore derived a very interesting characteristic
of power-law in
ation: requiring the slow-roll parameter
� to be equal to a constant n20 automatically implies that
all the other slow-roll parameters will be equal to the
same constant. It is then possible to take the condition
� = n20 as the general de�nition of power-law in
ation.
The �xed point, corresponding to the condition � = n20,

is therefore associated with power-law in
ation gener-
ating a k-independent density spectral index equal to
n(k) = 1 � 2n20. Furthermore, this result allows one
to reconcile the apparent contradictory requirements for
the generation of a Harrison{Zel'dovich power spectrum
stemming from the lowest-order slow-roll approximation
condition, � = 2�, and by power-law in
ation de�nition
� = � = � = � � � = n20. One can see once again that
a Harrison{Zel'dovich power spectrum can be generated
by power-law in
ation in the limit p ! 1, which corre-
sponds to pure de Sitter expansion [20].
Turning our attention to the case �0 6= n20 it is easier

to consider the derivative of � with respect to �,

d�

d�
=

�
d�

d�

��1
=

Mp

4
p
�

1p
�(n20 � �)

; (70)

which is also shown in Fig. 3. First of all, recall that
throughout this work it is assumed that the �eld � is in-
creasing as it rolls down the potential. Furthermore, it
has been argued before that for �0 > n20 the value of �
tends to decrease, while for � < n20 the value of � tends to
increase. It is then possible to note that in all regions of
Fig. 3 the �eld tends to increase, which is consistent with
the condition that has been imposed. The very interest-
ing feature is that the point � = n20 represents an asymp-
tote of d�=d�: integrating it on either side with � ! n20
then yields a logarithmically-diverging �eld. This nec-
essarily implies that the value of the �eld, parametrized
by �, will tend to in�nity while � tends toward n20. Re-
membering that Eq. (59) is integrated to yield �(�), it
is then possible to note that the three distinct regions
� < n20, � = n20 and � > n20 will give rise to three di�erent
dynamical behaviors for �, which, once inserted in the ex-
pression for V (�), are able to produce the same density
perturbation spectral index. The apparent puzzle that
arose at the end of Sec. III has therefore been solved:
there are in fact two potentials, and both their domains
are � 2 [0;1[. It is now possible to understand that
each one of them is able to generate the desired power
spectrum, depending on the initial condition chosen for
the slow-roll parameter.

B. The n20 � 0 case

The cases for n20 = 0 and n20 < 0 are similar. From
Eq. (59) it is in fact possible to note that independent
of �0, the value of � will tend towards zero as in
ation
proceeds. In the n20 < 0 case the solution derived Sec.
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III is the only one available, while in the special case
n20 = 0 (Harrison{Zel'dovich) it is possible to claim that
two di�erent in
ationary potentials will be able to gener-
ate such a power spectrum: the 
at one giving rise to the
classical de Sitter expansion, and the one derived in Sec.
III A, whose �rst term is proportional to ��2. Given the
importance of the Harrison{Zel'dovich case, it is inter-
esting to investigate the next-order contributions to its
in
ationary potential.

V. THE NEXT-ORDER ANALYSIS OF THE

HARRISON{ZEL'DOVICH CASE

In this case the approximation order is l0 = 2 and the
set of slow-roll parameters consistent with it is given by
f�; �; �2g. Also, order consistency will require to expand
exact expressions in power series and to retain only terms
up to second degree in the slow-roll parameters. In what
follows two results will be presented for A2

T , H
2 and V ,

the �rst one being the \exact" result and the second one
being the power series expansion of the former truncated
at terms of second degree.
We start by imposing the condition n(k)�1 = 0 in Eq.

(18),

4�� 2� + 8(C + 1)�2 � (6 + 10C)�� + 2C�2 = 0: (71)

The k-independence of n also requires

dn(k)

d ln k
= �2�2 � 8�2 + 10�� = 0: (72)

This formula can then be exploited to express �2 as a
function of the other two parameters, � and �. Eq. (71)
then becomes

4�� 2� + 8�2 � 6�� = 0; (73)

hence

�(�) =
2�+ 4�2

3�+ 1
' 2�� 2�2: (74)

Inserting Eq. (74) into Eq. (72) yields

�2(�) =
6�2 + 8�3

3�+ 1
' 6�2: (75)

The requirements n(k) = 1 and dn(k)=d lnk = 0 have
therefore allowed the expression of all slow-roll parame-
ters as functions of �.
It is now necessary to �nd an appropriate expression

for H2(�) that can then be inserted into Eq. (9) to yield
the potential as a function of the slow-roll parameter.
Retracing the steps taken in Sec. III A, it is important
to note that to next-order the appropriate equation for
the rescaled gravitational perturbation power spectrum
is Eq. (17) with the f� � �g included. Inverting it produces

H2 ' 25�M2
p

4 [1� �(C + 1)]2
A2
T : (76)

But to next-order approximation we also have [20]

� ' A2
T

A2
S

[1� 2C(�� �)] : (77)

This relation can then be used together with Eq. (22) to
express A2

T (k) as a function of �,

A2
T (k) = A2

S (k0)
�

1� 2C(�� �)
: (78)

It is then important to compute the (�� �) factor

�� � = � �+ �2

3�+ 1
; (79)

hence

A2
T = A2

S(k0)
�(3�+ 1)

2C�2 + (3 + 2C)�+ 1
; (80)

and

H2(�) =
25�M2

p

4 [1� �(C + 1)]2
A2
S (k0)�(3�+ 1)

[2C�2 + (3 + 2C)�+ 1]
: (81)

This �nally leads to

V (�) =
25

32

M4
pA

2
S(k0)

[1� �(C + 1)]2
�(3�+ 1)(3� �)

[2C�2 + (3 + 2C)�+ 1]
: (82)

The appropriate expressions valid to next-order for
Eqs. (80-82) are obtained by power series expansions
where terms of degree �3 and higher are neglected:

A2
T ' A2

S(k0)(�� 2C�2); (83)

H2(�) ' 25�M2
pA

2
S(k0)

4
(�+ 2�2); (84)

V (�) ' 25M4
pA

2
S(k0)

32
(3�+ 5�2): (85)

Having succeeded in writing the potential as a function
of �, it is necessary to �nd an expression for � as a function
of the in
aton �eld �. To do so, let's proceed as in Sec.
III using Eq. (79)

d�

d�
= �4

p
�

Mp

p
�
�(�+ 1)

3�+ 1
: (86)

It is then possible to integrate exactly the above di�er-
ential equation,

�(�) =
Mp

2
p
�

�
1p
�
� 2 tan�1(

p
�)

�

' Mp

2
p
�

�
1p
�
� 2

p
�

�
: (87)

In this case it is neither straightforward nor very en-
lightening to obtain an explicit expression for the poten-
tial as a function of the �eld. However, inverting Eq. (87)
is not really necessary, since both the in
aton �eld and
its potential have been successfully parametrized by the
slow-roll parameter �: Eqs. (85) and (87) are suÆcient to
fully specify the potential as a function of the �eld.
The potentials that are able to generate a Harrison-

Zel'dovich density power spectrum calculated at lowest-
order and next-order are thus illustrated in Fig. 4.
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FIG. 4: Potentials giving the Harrison{Zel'dovich density
spectral index, computed to lowest-order approximation and
to next order approximation.

VI. DISCUSSION

The analysis that has been carried out shows that in
a-
ton potentials yielding the Harrison{Zel'dovich 
at spec-
trum can be determined to lowest-order and next-order

approximation in the slow-roll parameters. Similarly, po-
tentials producing a k-independent spectral index slightly
di�erent from unity have been derived to lowest-order.

We expect that the same procedure can be carried out
to any order of expansion in the slow-roll parameters.
This is because the implications of the spectral index
k-independence are not as trivial as they may seem at
�rst glance. Every time a higher approximation order is
assumed, new slow-roll parameters will appear in the ex-
pression for the spectral index3: going from lowest-order
to next-order, for example, �2 was introduced. However,
the requirement of the spectral index to be k-independent
implies not only a particular value for n(k) but also that
all its derivatives are equal to zero:

din(k)

d(lnk)i
= 0: (88)

Furthermore, it is possible to note that the expression

for the (l0 � 1)th derivative of the spectral index con-
tains slow-roll parameters up to the lth0 one. So once the
approximation order l0 is chosen, the problem is charac-
terized by l0+1 parameters and l0 equations of constraint
relating them. This allows the expression of all the slow-
roll parameters as functions of a single one, which is cho-
sen to be �. The choice of � is not so arbitrary, because

3 The above fact is hardly surprising, though, because these new
parameters just correspond to higher derivatives of V (�) orH(�)
(whatever is the degree of freedom chosen to express the slow-
roll parameters) and a higher-order treatment necessarily needs
to take into account more derivative terms of the potential.

then the exact expression for d�=d�, Eq. (29), can be used
to compute � as a function of �.4

On the other side of the treatment, the expression for
the potential as a function of the slow-roll parameter
V = V (�) appropriate for a de�nite order of the approx-
imation depends on two crucial points. The �rst one is
the expression of the rescaled tensor perturbation power
spectrum A2

T , which at every order acquires new con-
tributions from slow-roll parameters [see Eq. (17)]. The
second one is the equation expressing � as a function of
the ratio between the rescaled power spectra, which also
gets new contributions from slow-roll parameters at ev-
ery order [compare Eqs. (23) and (77)]. Furthermore, in
the n20 6= 0 case an expression for the �A2

S(k) factor ap-
propriate to the level of approximation assumed needs to
be derived along the lines outlined in Sec. III B.

To summarize, the in
aton potential yielding a den-
sity perturbation spectral index n(k) = 1 � 2n20 can be
derived with the aid of the parametrization approach by
the following procedure. First, derive the expression for
n(k) to whatever order is desired (say l0). Second, im-
pose the constraints n(k) = 1� 2n20 and djn=d lnkj = 0
with j = 1; : : : l0� 1, yielding a system of l0 equations in
l0 + 1 unknowns. Third, solve the above system express-
ing all the slow-roll parameters as power series expansion
with respect to �. Fourth, derive the expressions for the
rescaled gravitational power spectrum and for � as a func-
tion of the ratio of the rescaled power spectra appropriate
to the same order. This, together with the approximate
formula for the �A2

S(k) factor, will allow the expression
of the Hubble parameter H = H(�), which can then be
plugged into the exact form of the potential, yielding the
potential as a function of the only slow-roll parameter
available �. Once this is done, take the expression for
� = �(�) from the solution of the above system of equa-
tions and plug it into the exact di�erential equation for
d�=d�. Integration of this equation gives � = �(�). Fi-
nally recognize that both the in
aton �eld and the poten-
tial are now parametrized with respect to � and therefore
it is straightforward to compute the in
aton potential as
a function of the value assumed by the �eld V = V (�).
An outline of the application of the above procedure to
the next-order analysis of the approximately Harrison{
Zel'dovich case is given in Appendix A.
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APPENDIX A: NEXT-ORDER ANALYSIS OF
THE APPROXIMATELY

HARRISON{ZEL'DOVICH CASE

In principle it is possible to retrace the steps taken
in Sec. V to compute the potential that originates a k-
independent spectral index slightly di�erent from unity
to next-order approximation. Given the increased alge-
braic intricacy and the fact that the results are not so
enlightening from the physics point of view, only an out-
line of the process required will be given.
First it is necessary to express the slow-roll parameters

� and �2 as functions of � and n20. The n(k) = 1 � 2n20
condition at next-order takes the form

4�� 2�+ 8(C + 1)�2� (6 + 10C)��+ 2C�2 = 2n20: (A1)

Imposing the auxiliary condition dn(k)=d lnk = 0 allows
again the expression of the slow-roll parameters as func-
tions of �:

�(�;n20) =
2�+ 4�2 � n20

3�+ 1
(A2)

' �n20 + (2 + 3n20)�� (2 + 9n20)�
2 + O(�3):

�2(�;n20) =
6�2 + 8�3 � 5n20�

3�+ 1
(A3)

' �5n20�+ (6 + 15n20)�
2 +O(�3):

Next it is necessary to invert Eq. (17) to obtain an
expression for H2 = H2(�;n20). Remembering also that
to next-order approximation [20]

� ' A2
T

A2
S

[1� 2C(�� �)] ; (A4)

it is possible to derive the following expression:

H2(�;n20) '
25�M2

p �A
2
S(k)

4 [1� �(C + 1)]
2
[1� 2C(�� �)]

: (A5)

Also, given Eq. (A2) for �(�;n20), it is then possible to
derive the next-order expression for the (�� �) factor

�� � =
n20 � �� �2

3�+ 1
: (A6)

It is important to note, however, that also Eq. (53)
used in Sec. III B to derive the approximate expression
for the �A2

S(k) term depends on the factor (� � �). It is
therefore necessary to insert Eq. (A6) into Eq. (53) and
to integrate it again in order to derive an approximate
expression for �A2

S(k) appropriate to next-order, which
can subsequently be used in Eq. (A5).5 The expression
for H2 = H2(�;n20) so obtained can then be plugged into
Eq. (9) to obtain an expression for the potential V =
V (�;n20); both expressions �nally needs to be expanded
in power series with respect to �, and terms up to �2

retained.

Lastly, it is necessary to insert the next-order expres-
sion for (�� �), Eq. (A6), into Eq. (29) which then pro-
duces

d�

d�
= �4

p
�

Mp

p
�
�(�+ 1)� n20

3�+ 1
: (A7)

Integration of Eq. (A7) then yields an expression for
� = �(�;n20). Having carried out this step, it is �nally
possible to note that both the potential V = V (�;n20)
and the �eld � = �(�;n20) are parametrized with respect
to � and n20 and therefore the value of the potential as a
function of the �eld can be obtained.

5 It is possible to speculate that to next-order a good approxima-
tion is given by �A2

S
(k) � j�2 + �� n2

0
j.
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