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on gL and gR can be obtained, under a speci�c set of assumptions, by combining the LEP result with results from
neutrino{electron scattering. Furthermore, by looking at e+e� ! 
��� at center-of-mass energies above the Z-boson
mass, one is sensitive to both (g2L + g2R) and gL separately, thanks to the interference between the s-channel Z-boson
exchange and the t-channel W -boson exchange. This means that by analyzing LEP data at center-of-mass energies
above the Z-boson mass one can also learn about the individual values of gL and gR. A linear collider experiment
taking data above the Z-boson mass (at, for example,

p
s = 170 GeV) can perform a more precise (and less model

dependent) measurement of gL and gR, as will be studied in detail.
This manuscript is organized as follows. In Sec. II, we discuss in some detail the LEP measurements of the invisible

Z-width, emphasizing the assumptions that are made in order to obtain the precise value of N� quoted above. Having
done that, we discuss how precisely one should be able to directly measure the invisible Z-width at a linear collider
operating at center-of-mass energies \around" the Z-boson mass. In Sec. III, we discuss how one should be able to
measure the neutrino gL and gR couplings separately by taking e+e� data at center-of-mass energies higher than
the Z-boson mass. We look at current constraints that can be obtained from combining LEP data with data on
neutrino{electron scattering, and then examine the existing LEP data collected above the Z-boson mass (LEP II).
We proceed to discuss how well a similar procedure can be executed at a linear collider. In Sec. IV, we analyze new
physics contributions that would lead to discrepancies between the SM and the \measurements" which are proposed
above. A summary of the results and some parting thoughts are presented in Sec. V.

II. THE INVISIBLE Z-BOSON WIDTH AROUND THE Z-POLE

The SM predicts that around 20% of the time a Z-boson will decay into a ��� pair. The neutrino pair cannot be
observed directly in collider experiments, meaning that Z-bosons decaying in this fashion are \invisible."
In electron{positron colliders there are two ways of establishing whether these invisibleZ-boson decays are occurring,

and to measure the invisible Z-width. One is to directly measure the total Z-width, �tot, by studying the line-shape
of the Z-boson (this is done by colliding e+e� at center-of-mass energies around the Z-boson mass), and measuring
its partial decay widths in visible �nal states, �vis, namely charged leptons and hadrons. One can then compute the
invisible Z-width, �inv : �inv = �tot � �vis. This procedure is discussed in detail below, in Subsection IIA. The other
is to look for events where an initial state lepton radiates o� a hard photon before annihilating into an s-channel
Z-boson. When that happens, if the Z-boson decays invisibly, the experimentally observed �nal state is a single
photon plus a signi�cant amount of \missing energy" (in summary, e+e� ! 
Z ! 
���). This procedure will be
discussed in detail in Subsection IIB.

A. On the LEP (Indirect) Measurement of the Invisible Z-boson Width

At LEP, the invisible Z-width is indirectly extracted from the following observables:

� �tot = 2:4952 � 0:0023 GeV, the total width of the Z-boson� and mZ = 91:1876� 0:0021 GeV, the Z-boson
pole mass;

� �0h = 41:541� 0:037 nb, the hadronic pole cross section, de�ned as

�0h �
12�

m2
Z

�ee�had
�2tot

; (II.1)

where �ee and �had are the partial Z-boson decay widths into an e+e� pair and into hadrons respectively;

� R` = 20:804� 0:050; 20:785 � 0:033; 20:764� 0:045 for ` = e; �; � , respectively, de�ned as �had=�``. If one
assumes universal Z-boson couplings to charged leptons, R` = 20:767� 0:025.

Assuming lepton universality and taking into account the fact that several of the measurements listed above are
strongly correlated, one can easily compute the invisible Z-width and obtain the LEP result, which is quoted by the
Particle Data Group (PDG) [2]:

�LEPinv = 499:0� 1:5 MeV: (II.2)

� These are the combined values obtained by the LEP Electroweak Working Group [3, 4].
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This result is to be compared to the SM prediction,

�SMinv = 501:3� 0:6 MeV; (II.3)

meaning that ��inv � �SMinv � �LEPinv = �2:2� 1:6 MeV, a 1:4� e�ect. This result can also be expressed as an upper
bound on additional contributions to the invisible Z-width. Numerically, one obtains �newinv < 2:0 MeV at the 95%
con�dence level, assuming that the new physics contributions adds incoherently with the neutrino pair production
(i.e., �newinv is strictly positive).
In order to obtain the well known 2� discrepant measurement of the number of neutrinos, one should consider the

ratio of partial widths

�inv
�``

� N�

�
���
�``

�
SM

: (II.4)

Eq. (II.4) de�nes what is meant by the \number of neutrinos." N� only agrees with the de facto number of neutrinos
if both the Z`�̀ and the Z���-couplings have their SM predicted values. The SM prediction for (���=�``)SM =
1:9912�0:0012 is more precisely known than the individual partial widths, and when compared to the extracted value
of �inv=�`` = 5:942� 0:016 yields

NLEP
� = 2:9841� 0:0083; (II.5)

the result we alluded to in the Introduction.
The results Eq. (II.2) and Eq. (II.5) imply di�erent consequences for di�erent SM extensions. For example, modi�ed

Z���-couplings combined with identically modi�ed Z`+`�-couplings would ideally lead to a nonzero ��inv but to a
zero N� � 3. Furthermore, given the indirect way that �inv is extracted, one should be careful when it comes to
de�ning what ��inv is really sensitive to. The observation of a discrepant �inv and/or N� , does not necessarily imply
that there is new physics in the neutrino sector or even in the leptonic sector. For example, it is possible that other
e�ects may modify the extracted value of �tot, hence inducing a discrepancy between the measured invisible Z-width
and its SM prediction. This will be further explored in Sec. IV.
We have also extracted the value of the invisible Z-width without assuming lepton universality and, using the

results presented in [3, 4], obtained

�LEPinv (nonuniversal) = 497:4� 2:5 MeV; (II.6)

less precise than the result obtained assuming universality, as expected. In spite of that, ��inv(nonuniversal)=
�3:9 � 2:6 MeV, still a 1:5� deviation, is as signi�cant as the e�ect obtained assuming universality. This result
translates into an upper bound on �newinv < 3:2 MeV at the 95% con�dence level, assuming that the new physics e�ect
does not interfere with the neutrino{antineutrino �nal state.
An attempt to extract the number of neutrinos via Eq. (II.4) without charged-lepton universality would be rather

peculiar, since one needs to explicitly assume that ��e�e = ����� = ����� in order to relate N� to a \neutrino number."
Nonetheless, one can easily extract the value of �inv=�ee and �inv=���, and compute, respectively, N ee

� and N��
� ,

these being de�ned via Eq. (II.4) with �`` replaced, respectively, by �ee and ���. We obtain

N ee
� = 2:978� 0:012; (II.7)

N��
� = 2:973� 0:019: (II.8)

These are, respectively, 1.8� and 1.4� away from the SM prediction of N� = 3.

B. (Direct) Measurement of the Invisible Z-boson Width at a Linear Collider

In the SM, for center-of-mass energies around the Z-boson mass, the dominant contribution to e+e� ! 
+ missing
energy comes from an intermediate Z
 pair, followed by Z ! ���. Other contributions come from t-channel W -boson
exchange, plus one photon vertex attached either to the initial state electrons or to the intermediate state charged
gauge boson. The leading order Feynman diagrams are depicted in Fig. 1.
The LEP collaborations have measured the cross section for the photon plus missing energy �nal state. The most

precise result comes from the L3 experiment, after analyzing of 100 pb�1 of data: �inv = 498 � 12 � 12 MeV [10]
(the �rst error is due to statistics, while the second one to systematics). Other LEP collaborations have older results
[11, 12, 13, 14] (from smaller data samples) with errors, both statistical and systematic, which are two to six times
larger. The PDG average is �inv = 503�16 MeV [2], dominated by the L3 result [10]. For later comparison, it proves
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FIG. 1: Leading order Feynman diagrams contributing to e+e� ! 
���.

useful to estimate the ultimate sensitivity for LEP (including all four experiments analyzing all the data collected
around the Z-boson mass). We do this by naively rescaling the L3 result from 100 pb�1 to roughly 500 pb�1.

Assuming that both the statistical error and the systematic error will decrease by a factor
p
500=100, we obtain

Æ�inv = �5� 5 MeV.
The relatively large (compared to the indirect result) error of the direct measurement of �inv re
ects the small

statistical sample of e+e� ! 
��� events available at LEP. Therefore, a signi�cant improvement can be expected from
a high-luminosity linear collider running around the Z-boson mass. At such a \Giga-Z" machine, it is envisaged that
within 100 days of running, a sample of 109 Z-boson decays can be collected [15].
Assuming 50 fb�1 of e+e� data collected around the Z-boson mass, we examine how this would improve the

measurement of the invisible Z-width. We are mostly interested in the result that could be obtained by looking for

+ missing energy, but will �rst brie
y present the improvement that can be expected for determining the invisible Z-
width indirectly, as discussed in the previous subsection. We assume [16, 17] that the total Z-width can be measured
a factor of roughly two times more precisely, Æ�tot = �1 MeV, while R` (assuming universality) and �0h will be
measured with uncertainties Æ(R`) = �0:018 and Æ(�0h) = �0:03 nb (most conservative scenario), or Æ(R`) = �0:004
and Æ(�0h) = �0:015 nb (most optimistic scenario). We refer readers to [16, 17] for more details. Further assuming
that the correlation matrix between the observables is identical to the one obtained for the combined LEP results,y we
estimate that the invisible Z-width can be measured with an uncertainty Æ(�inv) = �1:1 MeV (most conservative) or
Æ(�inv) = �0:5 MeV (most optimistic). For the most optimistic case, the experimental error would be slightly better
than the current theoretical error for computing the invisible Z-width within the SM, Eq. (II.3). Compared with the
current LEP precision, Eq. (II.2), we therefore expect between a factor 1.3 and a factor 3 reduction of the error on
�inv from the Giga-Z experiment.
For illustrative purposes, if one assumes that the results for �inv and �`` at the Giga-Z agree with the central values

obtained at LEP, one would measure (�inv=�``)Giga�Z = 5:942 � 0:012 (most conservative) or (�inv=�``)Giga�Z =
5:942� 0:006 (most optimistic). Translating into a \number of neutrinos" we would have

NGiga�Z
� = 2:984� 0:006 (most conservative); (II.9)

NGiga�Z
� = 2:984� 0:003 (most optimistic); (II.10)

either 2.5� or 5� away from the SM prediction. In the most optimistic case, the experimental error would start to
approach the theoretical error which goes into computing the neutrino to charged-lepton partial decay width ratio.z

Therefore, given the assumptions outlined above, the weak 2� e�ect observed at LEP could grow to something between
a 3� evidence and a 5� discovery that something is \wrong" (assuming that this discrepancy is genuine and not just
a statistical 
uctuation).
A much more signi�cant improvement can be anticipated for the direct measurement of the invisible Z-width. In

order to compute the precision to which it can be directly measured at the Giga-Z experiment, we calculate the cross
section for e+e� ! 
 + invisible for di�erent center-of-mass energies. We require the photon energy to be above
Emin

 = 1 GeV, and that it is emitted at an angle with respect to the beam axis larger than �min
 = 20Æ. For any set

y It is likely that this correlation matrix will be di�erent for the Giga-Z data. As the correlations depend on the details of the analyses,
it is not possible for us to predict them at this time. Nonetheless, our estimates of the uncertainties which can be obtained at a linear
collider should be trustworthy.

z This theoretical error, however, is currently dominated by the uncertainty on the top-quark mass and the uncertainty on the Higgs
mass. It is likely that by the time a Giga-Z experiment takes data, these two quantities will be much better known.
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of cuts on the photon energy and emission angle, the SM cross section for ���
 is given by [18]

����
 =

Z 1

xmin

dx

Z cos �min




� cos �min



dy
�G2

Fm
4
W

48�2
sx(1� x)

�+��

�
�2+F (�+) + �2�F (��)

�
; (II.11)

where

F (�) =

N�(g
2
v + g2a) + 3(gv + ga)

�
1� s(1�x)

m2

Z

�
1
�

�
3 + 2

�
� 2

�
1 + 1

�

�2
log(1 + �)

�
�
1� s(1�x)

m2

Z

�2
+

�2
tot

m2

Z

+

+
6

�

�
(1 + �)

�
1� 2

�
log(1 + �)

�
+ 1

�
; (II.12)

�� =
s� ��
m2
W

; (II.13)

�� =
s

2
x(1� y): (II.14)

p
s = 2Ebeam, Ebeam is the beam energy, x = E
=Ebeam, xmin = Emin


 =Ebeam, y = cos �
 is the angle of the photon

with respect to the beam direction, gv = �1=2 + 2 sin2 �W and ga = �1=2 are the SM vector and axial-vector Ze�e-
couplings. We have assumed that the charged-current We��-coupling and the neutral current Z���-couplings are all
equal to their SM values. We will revisit some of these hypotheses in the next section. The following approximation is
made when deriving Eq. (II.11): the contribution from the third diagram in Fig. 1, suppressed by an extra W -boson
propagator, is neglected, along with the �nite width of the W -boson (a good approximation for \space-like" W -boson
exchange).
The main SM physics backgrounds come from the processes e+e� ! e+e�
(n
), e+e� ! �+��
(n
), e+e� !

�+��
(n
), e+e� ! 


(n
) and e+e� ! l+l����
 (see, for example, [12]). They are characterized by a transverse
tagging photon with E
 > 1 GeV and additional high-energy charged particles and/or photons which are lost in
the \blind" regions of the detector located around the beam pipe. The expected contributions from the process
e+e� ! ������
(
) are negligible and will not be considered henceforth. We have computed these background cross-
sections using Monte Carlo integration methods. The number of background events can be reduced by vetoing on
additional energy deposits in the calorimeters, in particular at low-angles. As a concrete example, we consider the
TESLA detector concept [19], which envisions a luminosity calorimeter (LCAL) at very small angles (4:6 < � < 27:5
mrad). Together with the low-angle tagger (LAT) at 27:5 < � < 83 mrad, the LCAL provides an excellent angular
coverage for the background veto. In fact, we estimate that the cross sections for all background sources mentioned
above are reduced to a negligible level of � 0:1 fb.
A more detailed background analysis would require the inclusion of detector e�ects. For example, additional

contributions arise from the processes e+e� ! ���X and e+e� ! e+e�X with X = �0; �; �0; f2(1270) where the
neutral hadron is misidenti�ed as a photon. However, while the contribution from the ���X cross-section is expected
to very small because of phase-space constraints, the two-photon production of resonances in e+e� ! e+e�X can
be reduced to a negligible level using the low-angle veto as discussed above. Since the total background level is
very small, additional detector e�ects should therefore play a minor role. In Table I, we quote the results obtained
for the signal cross section, for di�erent center-of-mass energies, including leading-log initial-state radiation and
beamstrahlung using the program Circe [20]. Also given are the expected number of events which are to be recorded
after accumulating 50 fb�1 of data in a Giga-Z experiment, assuming 65% selection eÆciencyx in the given kinematic
region. We also compute the �gure of merit 1=

p
S for the di�erent center-of-mass energies. Given that the background

cross section is well below 1 pb, we expect the number of background events to be negligible. The �gure of merit is
the relative statistical uncertainty for measuring the invisible Z-width. For a 50 fb�1 Giga-Z experiment, one can
expect statistical errors around the 0.1% level, about a factor 25 improvement over the statistical error quoted by L3.
Systematic uncertainties may dominate the very small statistical errors estimated above. In order to correctly

estimate the systematic uncertainties, one should perform a complete detector simulation, which is clearly beyond
the intentions of this paper. Instead, we analyze the systematic errors that were computed by the LEP experiments
for the same measurement, and extrapolate them for a TESLA-like Giga-Z experiment. We concentrate mostly on
the L3 1998 systematic error computations, obtained from the analysis of 100 pb�1 of data [10]. These are presented

x This is the selection eÆciency obtained in the OPAL analysis [12]. It is slightly better than the one obtained by the L3 experiment [10]
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TABLE I: Cross section for e+e� ! ���
 (signal) at a linear collider for three center-of-mass energies around the Z-boson mass.
Also tabulated is the expected number of signal events, S, assuming that 50 fb�1 of data are collected with an eÆciency of
65%. See text for details. Finally, in the last column we compute 1=

p
S, the statistical error which one expects to obtain when

extracting the signal.
p
s �(���
) S(���
) 1=

p
S

mZ = 91:1875 GeV 53.5 pb 1:74� 106 0.076%

mZ � 1 GeV 28.6 pb 0:93� 106 0.10%

mZ + 1 GeV 109 pb 3:5� 106 0.053%

TABLE II: Systematic uncertainties for measuring the invisible Z-width, in percent and (inside the square brackets) expressed
as Æ�inv . The source of the systematic uncertainty is listed in the �rst column (see text for details) while the second through
fourth columns contain the estimates obtained by ALEPH [11] in 1993 (19 pb�1 of data), OPAL [12] 1995 (40.5 pb�1 of data)
and L3 [10] 1998 (100 pb�1 of data). Our projection for TESLA running in the Giga-Z mode (50 fb�1) is presented in the last
column. N/C indicates that this source of systematic error was not considered or not quoted in the speci�c published result.

Source of Systematic Error ALEPH 93 OPAL 95 L3 98 TESLA (estimate)

event generator for ���
 1% [5 MeV] 1.2% [6 MeV] 0.7% [3.5 MeV] 0.1% [0.5 MeV]

event generator for e+e�
 1% [5 MeV] in bkgd. subtr. 0.7% [3.5 MeV] 0.1% [0.5 MeV]

energy calibration 1.5% [7.5 MeV] 1.7% [9 MeV] 0.8% [4 MeV] 0.03% [0.15 MeV]

luminosity 0.6% [3 MeV] 0.6% [3 MeV] 0.37% [1.8 MeV] 0.06% [0.3 MeV]

�t procedure N/C 0.9% [5 MeV] 0.5% [2.5 MeV] 0.1% [0.5 MeV]

selection eÆciency and 3.9% [18 MeV] 1.7% [9 MeV] 0.8% [4 MeV] <0.08% [0.4 MeV]

veto eÆciency 1.8% [9 MeV] 0.5% [2.5 MeV]

trigger eÆciency 0.2% [1 MeV] 0.1% [0.5 MeV] 1% [4.8 MeV] 0.01% or 0.04% [(0.05 or 0.21) MeV]

background subtraction N/C 1.6% [8 MeV] 1.7% [8.4 MeV] negligible

cosmic ray background N/C in bkgd. subtr. 0.25% [1.7 MeV] negligible

random vetoing (occupancy) 0.5% [2.5 MeV] 0.5% [2.5 MeV] N/C negligible

total error (added in quadrature) 6.8% [34 MeV] 3.3% [17 MeV] 2.5% [12.3 MeV] 0.20% [1 MeV]

in Table II. For illustrative purposes, we also quote the systematic errors computed in earlier analyses by ALEPH
(which analyzed 19 pb�1 of data [11]) and OPAL (based on 40.5 pb�1 of data [12]). We make use of these results to
verify that our estimates are reasonable.
Most of the systematic uncertainties go down simply because the number of events goes up. The same trend is

observed when one compares the L3 result with the older results from the other LEP experiments. This can be
appreciated, for example, by looking at columns 2 and 3 in Table II.

� By \event generators" we refer to the numerical accuracy of the computation of the signal and the background
given a set of kinematical constraints. We expect that these theoretical calculations will improve by a factor of
roughly 10 by the time a Giga-Z experiment is ready to take data.

� The \energy calibration" of the experiment is crucial for measuring the photon energy and hence the lower
bound Emin


 de�ned above. The improvement suggested in the table can be achieved by calibrating the photon

energy via a comparison of other processes that yield a photon, such as e+e� ! `+`�
, e+e� ! X�0 ! X

,
etc. The calibration error will decrease with an increase in the statistical sample (i.e., proportional to 1=

p
N).

Since we expect 500 times more events at the Giga-Z experiment compared to LEP, the error should improve
by a factor

p
500 ' 22.

� The luminosity is obtained through the measurement of Bhabha scattering. Given that the cross section for
Bhabha scattering around the Z-boson mass is �Bhabha ' 50 nb, one expects a tiny statistical error on the
luminosity measurement of Æstatlum ' �0:0025%. The systematic error constrained by luminosity monitoring has

been studied for the TESLA proposal by [17], and is given by Æsystlum = �0:03%�0:05%, where the �rst number is
related to experimental systematic e�ects, while the second one to theoretical e�ects, including beamstrahlung,
etc. Combining the three errors in quadrature, one obtains Ælum ' �0:06%.

� By \�t procedure" we mean the error which comes from the uncertainties of other input physics parameters
needed in order to extract the invisible Z-width and estimate the background level. These include mZ , �tot,
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and �ee. Using the latest combined results from LEP, we expect a factor of 5 improvement with respect to the
L3 analysis, while the Giga-Z data itself should provide an extra factor of 2 improvement on �ee.

� The \selection and veto eÆciencies" are estimated via a comparison of data and Monte Carlo. The uncertainty
is partially controlled by the size of the data sample, so again we can expect a factor

p
500 ' 22 improvement

of both of these systematic uncertainties. The other contribution to the uncertainty comes from the quality of
the Monte Carlo simulations, which we assume will improve by roughly a factor of 10.

� The \trigger eÆciency" can be studied via control samples with independent triggers (e.g. hadronic events,
`+`�
, etc), indicating that the systematic error is also related to the overall data sample. We note that the
L3 estimate presented in the fourth column of Table II is much larger than the ALEPH or OPAL numbers
presented in the second and third column. We therefore quote two estimates for the trigger eÆciency, one based
on the L3 estimate and one on the ALEPH estimate.

� After applying selection and kinematic cuts, some background contribution remains, and it needs to be sub-
tracted. The precise value of the remaining background crucially depends on the performance of the detector
in rejecting charged particles at small angles. The understanding of the detector systematics in this region is
a�icted with some systematic uncertainty. We conservatively attribute an error of 20% to the computation of
the background contamination. Note, however, that since background levels can be reduced to negligible levels
in the presence of a luminosity calorimeter, the impact of this uncertainty is negligible.

� The much higher luminosity of a Giga-Z machine should render cosmic rays irrelevant. The impact of detector
and beam-related noise can be estimated with special \zero-bias" triggers, with negligible uncertainty.

In summary, we estimate the combined systematic error to be around (Æ�inv)sys ' �1 MeV. Due to the disparity
among di�erent LEP measurements, we can, in principle, quote a \best" and \worst" case scenario. In the best
case, the trigger eÆciency is �0:01% uncertain, while in the worst case, the trigger eÆciency is measured with a
�0:05% error. In practice, however, the \best" and \worst" cases yield the same total systematic error. Note that all
uncertainties have been added in quadrature.
Our estimate of the total systematic error is already a factor of two larger than the statistical error estimated earlier,

(Æ�inv)stat ' �0:5 MeV, so the question of whether the accumulation of many more events would lead to a signi�cant
improvement of the measurement requires a more detailed analysis. The overall error, Æ�inv ' �1:3 MeV, is slightly
smaller than the one obtained at LEP via the indirect method, Eq. (II.2), and is comparable to the estimated indirect
result that might be obtained by the Giga-Z experiment itself (Æ(�inv) = �(0:5 to 1:1) MeV). More importantly, the
direct measurement at the Giga-Z experiment is expected to be a factor 15 times more precise than the current direct
measurement obtained by the four LEP collaborations and a factor of roughly 6 times more precise than the ultimate
precision that can be reach by analyzing the entire LEP data set. Finally, a combined result (if one could be properly
de�ned) would have an error bar that is similar to the current theoretical uncertainty in calculating the partial width
for Z ! ��� in the SM.

III. Z���-COUPLINGS AWAY FROM THE Z-POLE

At any center-of-mass energy, the di�erential cross section for e+e� ! 
���, in the SM, assuming generic Z���-
couplings and neglecting neutrino-mass e�ects is given by

d�
���
dx

=

 X
�=e;�;�

�
(g��L )2 + (g��R )2

�
ZZ(s; x)

!
+ (g�eL )WZ(s; x) +WW (s; x): (III.1)

The leading order Feynman diagrams are shown in Fig. 1. Here x and s are de�ned as in Eq. (II.11), while ZZ; WW ,
and ZW are functions of s; x (plus several standard model parameters, including m2

Z ; �tot, and the Ze�e-couplings).
The �rst term corresponds to the square of the s-channel Z-boson exchange amplitude and the third term to the
square of the t-channel W -boson exchange amplitude, while the second term arises from the interference between
these two contributions. We have made explicit the dependency on the Z����� left-handed and right-handed couplings
(� = e; �; � ). In the SM model, g�eL = g

��
L = g��L = 1=2, while g�eR = g

��
R = g��R = 0. We assume throughout that the

charged-current We��e-coupling agrees with its SM prediction. Experimentally, the charged-current neutrino-electron
coupling is well constrained to be purely left-handed (at the few percent level), and its value is accurately determined.
Needless to say, the W`��-couplings are much better constrained (directly) than the Z���-couplings. The most stringent
constraints on the nature and value of the W`��-couplings are provided by studying weak decays of neutrons, nuclei,
muons, and charged pions. We refer readers to, for example, [2, 21] for details.
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FIG. 2: The di�erential cross-section for e+e� ! 
��� as a function of the invariant mass of the ���-system, M��� , for
p
s =

170 GeV, assuming SM values for the number of neutrino species and the neutrino neutral-current couplings. We also show
the di�erent contributions to the di�erential cross section (ZZ;WZ, and WW { see text for details). The sharp increase of the
di�erential cross section as M��� approaches

p
s is due to an infrared singularity at vanishing photon energy.

At an e+e�-collider it is impossible to distinguish �� ��� from ����� �nal states, which allows one to rewrite the
coeÆcient of ZZ in Eq. (III.1) as X

�=e;�;�

�
(g��L )2 + (g��R )2

� � N�

�
(g�eL )2 + (g�eR )2

�
; (III.2)

where N� is the e�ective neutrino number. This de�nition of N� only agrees with the one in Eq. (II.4) if the charged-
lepton couplings to the Z-boson are �xed to their SM values. As a matter of fact, the right-handed Z���-coupling gR
can be more generally interpreted as coupling of the Z-boson to other exotic, invisible �nal states. We will return to
this point in Sec. IV.
In order to analyze the kinematics of e+e� ! 
���, it proves useful to utilize the \missing mass," de�ned to be

the mass of the system recoiling against the photon: M��� �
p
s(1 � x). If there are no additional photons, this

coincides with the ��� invariant mass. For missing mass close to the Z-boson mass, the cross section for e+e� ! 
���
is dominated by the ZZ-term, and one can only, in practice, measure N�(g

2
L+g2R).

� On the other hand, for a range of
values of the missing mass above the Z-boson mass (or the photon energy, E
 = xEbeam, below the Z-boson mass),
the ZZ, WZ and WW contributions are comparable and one is, in principle, sensitive to both gL and N�(g

2
L + g2R).

For very high values of M���, however, the WW -term dominates, and one loses sensitivity to both N�(g
2
L + g2R) and

gL. Fig. 2 depicts d�
���=dM��� as a function of M���, for
p
s = 170 GeV, N� = 3 and the SM values for the neutral-

current neutrino couplings. Fig. 2 also displays the di�erent contributions to the di�erential cross section. As one can
easily note, for M��� around the Z-boson mass the di�erential cross section is completely dominated by the ZZ-term,
while at the largest values of M��� the WW -piece dominates. The interference WZ-term, which changes sign at the
Z-boson mass, becomes comparable to the other two contributions at M��� � 100 GeV. For a �xed value of N� , one
can therefore measure gL directly by measuring the cross section for e+e� ! 
��� above M��� � 100 GeV. Before
pursuing this further, however, we will �rst review what is currently known about the values of gL and gR.

� Henceforth, we replace g�e
L;R

with gL;R.
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FIG. 3: (left)-Current constraint (one and two sigma con�dence level contours) on gL and gR from the LEP (indirect) mea-
surement of the invisible Z-width and the CHARM II experiment, on the gL� gR-plane. The SM expectation is indicated by a
star. We have assumed N� = 3 for the LEP result, and gL = g

��

L for the CHARM II result in order to have both experiments
constrain the same physical parameters. We also include the current constraint on gL than can be obtained from published
LEP II data, also at the one and two sigma con�dence level. See text for details. (right)-The one and two sigma allowed regions
which are selected by combining the LEP and CHARM II results. The individual LEP and CHARM II constraints (at one and
two sigma con�dence levels) are also depicted. Note that one is unable to distinguish gL > 0 from gL < 0.

A. Current Knowledge of the g�L and g�R Couplings to the Z-boson

The currently most precise value of N�(g2L + g2R) can be extracted from the indirect measurement of the invisible
Z-width, Eq. (II.2). For N� = 3, the region of the gL � gR-plane allowed by Eq. (II.2) is characterized by a
ring. Fig. 3(left) shows the current LEP constraint at one and two sigma con�dence levels (the two contours are
indistinguishable in the �gure).
More information is provided by ��e-elastic scattering experiments. The CHARM II experiment at CERN collected

a large sample of ��e ! ��e and ���e ! ���e events [22]. By using information on the Ze�e vector and axial vector
couplings [23] measured very accurately at LEP and SLC (see, for example, [1, 3, 4] and references therein), CHARM II
is capable of measuring jg��L j rather well:

jg��L j = 0:502� 0:017 (CHARM II); (III.3)

where we quote the updated number presented by the PDG [2]. Furthermore, CHARM II can also measure
jg�eL j(CHARM II) = 0:528 � 0:085 via a small \contamination" of �e(��e)e ! ��e(��e)e events which are present in
its data set. This result agrees with the one obtained in a �e � e-elastic scattering experiment at the Los Alamos
Meson Physics Facility (LAMPF): jg�eL j(LAMPF) = 0:46� 0:14 [24]. In order to claim that these neutrino{electron
scattering experiments are indeed sensitive only to the left-handed Z���-couplings, we are assuming that the charged-
current interactions responsible for producing the neutrino beam are purely left-handed and neutrino-mass e�ects can
be neglected. The region of the gL� gR-plane allowed by Eq. (III.3) is depicted as vertical bars (at one and two sigma
con�dence level) in Fig. 3(left). The SM value for (gL; gR)SM is represented by a star.
In order to combine the LEP invisible Z-width constraint with the CHARM II bound, it is useful to display the

result on the (g2L + g2R) � gR=gL-plane. In this case, the region depicted in Fig. 3(right) is selected at one and two
sigma con�dence level. Here, the region allowed by the invisible Z-width measurement at LEP is characterized by
vertical bars, while the CHARM II bound is characterized by a \parabolic" region. It is important to emphasize that
in order for this joint analysis to make sense, we are assuming that the Z���-couplings are universal (the same for all
three neutrino 
avors), that there are three neutrino species (coupling to the Z-boson), and that there are no extra
contributions to invisible Z-boson decays or electron{neutrino scattering. The result obtained is rather good: jgLj
has been measured with relatively good precision (0:45 <� jgLj <� 0:5). On the other hand, jgRj is only mildly bounded
from above (jgRj <� 0:2), and we have no information concerning the sign of gL.
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The NuTeV experiment also provides a measurement of the muon-neutrino coupling to the Z-boson. Assuming the
value of sin2 �W obtained at other experiments, SM values for the Zq�q-couplings, and �xing the W����-coupling to
its SM value, one can interpret the NuTeV result as a measurement of jg��L j. From [7],

jg��L j = 0:4971� 0:0011 (NuTeV): (III.4)

This result is 15 times more precise than the CHARM II result (Eq. (III.3)), and 1.4 times more precise than the
LEP result (Eq. (II.2)). Furthermore, while its central value is roughly 3� away from the SM prediction, Eq. (III.4)
is perfectly (within one sigma) consistent with Eq. (II.2), which also di�ers from the SM prediction by 1.5�, and
(Eq. (III.3)), which is a lot less precise. Nonetheless, we choose not include it in our studies gL and gR, for a few
reasons. Many assumptions have to be made before one can interpret the NuTeV result as a measurement of the
Z���-coupling, including the assumption that the Z-boson coupling to quarks is as prescribed by the SM. In the case
of the CHARM II result, in contrast, we only had to input the values of gv and ga which were directly measured
at LEP. More importantly, there is a signi�cant amount of discussion in the literature concerning whether nuclear
and/or hadronic e�ects might further modify the NuTeV result (see, for example, [9]) and it is still premature to
compare Eq. (III.4) with the other measurements of the Z���-couplings discussed earlier.
We return now to Eq. (III.1) and investigate the impact of the LEP II data. These were collected at di�erent

center-of-mass energies above the Z-boson mass, but not all of have been used to measure the cross sections for
e+e� ! 
���. A useful summary is given in Ref. [25]. In order to extract gL, we compute the total cross section at
each

p
s imposing the various �ducial and kinematic cuts of each measurement. The coeÆcient for the ZZ-term in

Eq. (III.1) is constrained to the value obtained from �LEPinv , Eq. (II.2). We construct an overall �2 function, taking
all systematic uncertainties to be wholly correlated. Since the measurement errors are dominated by the statistical
uncertainties, the correlations are not very important numerically. Minimization of �2 gives

gL = 0:16� 0:23 (LEP II); (III.5)

and �2 = 9:6 for 23 degrees of freedom. The allowed range of gL is indicated in Fig. 3(left) at the one and two sigma
con�dence levelsy These data do eliminate the region gL � �1

2
, otherwise allowed by the CHARM II and LEP I data,

at a little more than the two sigma con�dence level.
The LEP II data could provide a much stronger constraint. First of all, only ALEPH has published measurements

from its entire data sample. If the other collaborations completed the analysis of all data with
p
s > 160 GeV using

the �ducial and kinematic cuts of the published measurements, we estimate that the one-parameter error on gL would
decrease to Æ(gL) = 0:15. More importantly, the published LEP II analyses are not optimized for measuring gL. As is
apparent from Fig. 2, events with a missing mass close to the Z-pole mass will dominate the total cross section and
dilute the impact of the interference term, WZ. We estimate that the imposition of a lower limit on the missing mass
should improve the sensitivity to gL by about a factor of three. The optimal value for this cut is around 95{100 GeV.
If all LEP II data were analyzed with this cut imposed, the total error on gL should decrease to Æ(gL) = 0:05 { better
than a factor four improvement. Of course, the central value in Eq. (III.5) is also likely to change. Only an analysis
of the actual data taken by the LEP collaborations will reveal it.

B. Measuring g�L and g�R in a Linear Collider

We now discuss how a linear collider can improve on the existing results discussed above. In order to do this we
compute the e+e� ! 
��� cross section at a linear collider at

p
s = mZ and

p
s = 170 GeV. The latter collider

center-of-mass energy can also be used, for example, for precisely measuring the W -boson mass [26].z Assuming that
the central value for �inv obtained at the Giga-Z machine agrees with the SM prediction, we can translate an expected
�0:25% uncertainty, as estimated in Sec. II, into an allowed region of the gL � gR-plane. This region is characterized
by a ring approximately centered around the origin, and is depicted in Fig. 4(left). The shape and width of the curve
are almost identical to the one depicted in Fig. 3(left) for the LEP indirect measurement of the invisible Z-width.
Upon closer inspection, one should be able to see that the center of the ring is slightly shifted to the right. This small
e�ect is due to the nonzero contribution of the W -boson exchange diagram. Furthermore, the precision obtained
from the direct measurement of the invisible Z-width at Giga-Z is only slightly better than the current indirect LEP

y In order to facilitate comparison with the other measurements, the error on gL has been rescaled to correspond to two free parameters.
z For our purposes, the choice of the \high" center-of-mass energy is not crucial. Any value in the range [150�200] GeV will yield similar
results.
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FIG. 4: (left)-Projected constraint (one and two sigma con�dence level contours) on gL and gR from e+e� ! 
��� at a linear
collider assuming 50 fb�1 of data are collected at the Z-boson mass (�(mZ)) and at

p
s = 170 GeV (�(170 GeV)), on the

gL � gR-plane. For the result obtained at
p
s = 170 GeV, we impose a constraint on the invariant mass of the ���-system

(M��� > 100 GeV) in order to remove the radiative return to the Z-boson mass. (right)-The one and two sigma allowed regions
which are selected by combining the results obtained at the two di�erent center of mass energies in the (g2R+g2L)�gR=gL-plane.
The individual constraints obtained at the two distinct center-of-mass energies are also depicted. In both �gures, the SM
expectation is indicated by a star and we have assumed N� = 3.

result, and slightly worse than the future indirect result that might be obtained by Giga-Z (see Sec. II). However, it is
interesting to discuss with what precision the neutrino neutral-current couplings can be measured at a linear collider
when one compares the same observable (namely, the cross section for e+e� ! 
+ invisible) measured at di�erent
center-of-mass energies. By doing this, we reduce the number of assumptions that go into extracting gL and gR, and
potentially minimize experimental \biases" that may a�ect di�erent observables in di�erent ways.
We compute the e+e� ! 
��� cross section using Eq. (II.11) [18]. As before, we require E
 > 1 GeV, and �
 > 20Æ.

In order to enhance the sensitivity to the WZ interference term (see Eq. (III.1)) we also require M��� > 100 GeV .
Assuming SM values for the Z���-couplings and N� = 3, we obtain

�
���(
p
s = 170 GeV;M��� > 100 GeV) = 2:97 pb: (III.6)

Assuming 50 fb�1 of linear collider data and an eÆciency of 80% [27, 28], we expect around 120 000 e+e� ! 
���
events with M��� > 100 GeV.
The dominant sources of SM physics background have been listed in Sec. IIB (see also [27]) and can be dramatically

reduced by vetoing on additional high-energy particles, as discussed earlier. Including the LCAL of the TESLA
detector design [19] which helps veto hard particles at very low angles, the total cross section for these backgrounds
can be reduced to less than 1 fb.
Other important background sources can arise from detector-related e�ects. As discussed in [27], the dominant

background contributions are related to the processes e+e� ! ���`+`� and e+e� ! e+e�`+`�, which can mimic
events where a photon converts into a lepton pair in the material of the detector. We adopt the values quoted in [27]
of (0:010�0:001) pb and (0:007�0:002) pb, respectively, for the cross sections for the above background processes. In
order to accommodate any changes in detector design compared to the OPAL detector [27], we conservatively allow
a factor of two uncertainty on these cross sections, resulting in a total background cross section of about 0.03 pb.
Assuming an integrated luminosity of 50 fb�1, the estimated number of background events is Nbkg = 1500. Note

that this number, which is very conservative, also includes events with M��� < 100 GeV, which have been removed
when we estimate the number of signal events. Given the values for the cross sections computed above, we estimate
(conservatively) that the statistical uncertainty which can be achieved after accumulating 50 fb�1 of e+e� ! 
+ in-
visible at

p
s = 170 GeV is

p
S +B=S = 0:3%.

Given the very small statistical errors estimated above, we must try to evaluate the size of possible systematic
uncertainties. Following the strategy outlined in Sec. IIB, we analyze the systematic errors that were computed by
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TABLE III: Systematic uncertainties for measuring the cross-section for e+e� ! 
��� at center-of-mass energies above �
160 GeV, in percentage. The source of the systematic uncertainty is listed in the �rst column (see text for details) while the
second and third columns contain the estimates obtained by OPAL [27] (177 pb�1 of data) and ALEPH [28] (628 pb�1 of
data). Our projection for TESLA running at

p
s = 170 GeV (and collecting 50 fb�1 of data) is presented in the last column.

N/C indicates that this source of systematic error was not considered or not explicitly quoted.

Source of Systematic Error OPAL (177 pb�1) ALEPH (628 pb�1) TESLA [estimate] (50 fb�1)

event generator { theoretical 0.5% 1.5% 0.2%

event generator { statistical 0.2% 0.5% <0.1%

energy calibration 0.4% N/C 0.025%

luminosity 0.2% 0.5% 0.06%

uncertainty from W=Z-boson mass N/C N/C 0.25%

selection eÆciency 1.5% 0.6% 0.07%

angular acceptance 0.2% N/C 0.01%

modeling early 
 conversion 0.7% 0.3% 0.2%

in material near beam-pipe

tracking 0.5% N/C 0.1%

total error (added in quadrature) 2.1% 1.8% 0.4%

the di�erent LEP collaborations for the same observable, and extrapolate them for a TESLA-like linear collider. This
time, we concentrate on the analyses of 177 pb�1 of data collected by OPAL [27] and 628 pb�1 of data collected
by ALEPH [28]. Their estimates for di�erent systematic uncertainties are presented in Table III, together with our
extrapolation for a linear collider experiment accumulating 50 fb�1 of data. There are similar analyses by L3 [29] and
DELPHI [30], but their discussions of the systematic errors are not as detailed as the previous two.
We now brie
y discuss the origin of the di�erent systematic uncertainties, and how our estimates were obtained.

Some of the systematic errors are related to the size of the data sample. Whenever this is the case, we expect a factorp
50000=177' 17 (

p
50000=628' 9) improvement with respect to the OPAL (ALEPH) estimate.

� As before, we expect the theoretical uncertainty (\event generator { theoretical") to improve by a factor of 10.
The statistical errors associated with these computations are only limited by the computer power which is
available to perform such numerical calculations, and we expect them to be negligible by the time this experiment
takes data.

� As estimated before, the uncertainty related to energy calibration should be controlled by statistics. The same
applies for the selection eÆciency and the angular acceptance.

� We assume the luminosity uncertainty to be the same as the one estimated in subsection IIB (see [17]). It should
be emphasized, however, that the studies performed in [17] concentrated on center-of-mass energies around the
Z-boson mass. We are assuming that similar numbers will apply for higher center-of-mass energies.

� There are intrinsic uncertainties in computing the signal and background from the �nite accuracy of the input
electroweak parameters (of special importance are the values of the W and Z-boson masses). We assume
Æ(mZ) = �2 MeV (from LEP) and Æ(mW ) = �15 MeV (from the linear collider itself and the LHC [31]).x

This source of systematic uncertainty was not considered in the LEP analyses [27, 28, 29, 30]. By taking
the combined LEP result for the W -boson mass at the time of the analysis, (Æ(mW ) = �0:056 GeV [32] and
Æ(mW ) = �0:042 GeV [4] we obtain a systematic error of 0.9% for the OPAL analysis and 0.7% for the ALEPH
analysis, respectively.

� Photons can convert to charged particles in the material which surrounds the beam-pipe. This conversion rate
is estimated by modeling the material close to the beam-pipe, and depends on the details of the detector layout.
A substantial reduction of this error was obtained between the OPAL [27] and ALEPH [28] analyses, and we
assume that at least an extra 50% improvement can be obtained.

x Some studies suggest that Æ(mW ) = �6 MeV could be obtained by scanning around the W+W�-production threshold region [26].
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FIG. 5: Comparison of the shape of the missing mass dis-
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shows the contribution from a single species of sneutrinos,
with M~� = 60 GeV and no contribution from t-channel
chargino exchange.

� Uncertainties from \tracking" come from knowledge of the performance of the tracking devices near the edges of
the �ducial regions. This performance will depend largely on the tracking design and the collider environment
near the beam. There will be abundant sources of tagged tracks with which to study tracking, and to de�ne a
\good" �ducial region. We assume a factor �ve improvement over the OPAL uncertainty.

Combining the statistical and systematic errors in quadrature, the total error for the measurement of the e+e� !

��� cross section at

p
s = 170 GeV is approximately 0.5%. The corresponding allowed region is shown in Fig. 4(left)

in the gL � gR-plane, assuming N� = 3 and that the measured central value coincides with the SM prediction for
(gL; gR), indicated by a star. As expected, the region is characterized by a ring in the gL � gR-plane. However, since
we have removed the kinematical region dominated by the radiative return to the Z-boson mass, the center of the
ring is signi�cantly displaced (to the left) from the origin, while the radius of the ring is signi�cantly larger than the
one corresponding to the result obtained around the Z-boson mass (ring centered roughly around the origin). In the
case of the SM, the two rings touch at a single point.
The combination of the results obtained at

p
s = mZ and

p
s = 170 GeV is shown in the (g2L + g2R)� gR=gL-plane

in Fig. 4(right). This result is markedly more precise than the LEP+CHARM II result obtained earlier (Fig. 3). We
would like to stress that the result depicted in Fig. 3 is qualitatively di�erent from the one depicted in Fig. 4. In
the former, we are combining very di�erent data (obtained, for example, at very di�erent center-of-mass energies),
collected at completely di�erent experiments. Consequently, assumptions are required in order to state that the
measurements are sensitive to the same physical parameters. In the latter, we are comparing the same physical
observable measured with the same detector, di�ering only by the center-of-mass energy.
Thus far we have considered only the integrated cross section measured with a few kinematic cuts. The relative

contributions to d�
���=dM��� depicted in Fig. 2 depend on both gL and gR. The ZZ term will change if either gL or gR
varies, while the interference term, WZ, varies only with gL. The WW term is independent of both gL and gR under
the assumption that the charged weak interactions are the same as in the SM. Consequently, the shape of the missing
mass distribution varies in a non-trivial way as gL and/or gR deviate from their SM values. We have estimated the
statistical errors for 10 GeV bins in the missing mass, and present the result relative to the SM expectation in Fig. 5.
As illustration, we show the expected deviations for two sets of non-SM values for the Z���-couplings, both of which
are allowed by current data. In the �rst case, we take the SM value for ���� but allow gR to be one third of gL. The
solid line shows the result: no deviation at the Z-boson pole and a more or less constant reduction in the cross section
for M��� > 105 GeV. In the second case, we retain gR = 0 as in the SM, but reduce ���� by less than 2%. As indicated
by the dashed line, a large deviation is observed at the Z-boson mass, but it nearly disappears for high missing mass,
where the WW term dominates. In this sense, a comparison of the bin M��� � 90 GeV to the bin M��� � 165 GeV is
tantamount to the NuTeV measurement of the Z���-coupling suppression factor �0. Experimentally this comparison
would be exceptionally clean.
We conclude by commenting on the e�ect of relaxing the assumption that N� = 3. If one considers N� to be a

free parameter during the \data" analysis, no constraint on g2R, as de�ned in Eq. (III.2), can be obtained, while a
\measurement" of gL, to be performed in a way similar to our measurement of gL from the LEP II data, can still be
performed. This is easy to understand. Because there is no W -boson exchange diagram for the ��;� ���;� �nal states,
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one could have rede�ned

N�

�
(g�eL )2 + (g�eR )2

� � (g�eL )2 + (gothers)
2; (III.7)

where gothers � (N� � 1)(g�eL )2 + N�(g
�e
R )2. It is easy to see that, via e+e� ! 
+ invisible one is only sensitive to

g�eL and (gothers)
2, independent on whether gothers is the Z-boson coupling to the SM ��;� , right-handed neutrinos, or

other exotic invisible �nal states.

IV. NEW PHYSICS CONTRIBUTIONS TO THE INVISIBLE Z-WIDTH

In the previous two sections, we have discussed a series of distinct experimentally measurable quantities which are
all closely related to Z���-couplings and the number of active SM neutrinos. In particular, if the SM describes all the
processes discussed here, the direct and indirect measurements of the invisible Z-width should yield the same result
(which may be translated into N� = 3), while measurements of g2L + g2R and gL discussed in Sec. III should intersect
at a single point: gL = +1=2, gR = 0. A statistically signi�cant deviation of any of these measurements from SM
predictions would signal that the SM is incomplete, and that new physics is required in order to explain the values of
these observables. In particular, it is possible that the direct and indirect measurements of the invisible Z-width yield
di�ering results, with the result that the two curves depicted in Fig. 4 would intersect in either two or zero points.
Here, we will brie
y discuss new physics mechanisms and/or models that will lead to physically observable e�ects

in the measurements we discussed above. We �rst discuss several mechanisms for modifying the invisible Z-width,
concentrating on new physics that would modify the directly and indirectly measured invisible Z-width in distinct
ways. Then, we argue whether one can construct a model with right-handed neutrino{Z-boson couplings, and further
discuss other \applications" of the gL� gR measurement discussed in Sec. III for constraining physics beyond the SM.

A. Direct � Indirect

Several extensions of the SM will lead to an enhancement or suppression of the invisible Z-boson width with respect
to SM expectations. Some of them modify the Z-boson decays in such a way that both the indirect and the direct
measurement of the invisible Z-width are modi�ed in the same way (i.e., �inv(direct) = �inv(indirect) 6= �SMinv ). For
example, new decay modes of the Z-boson into invisible �nal states will enhance �inv with respect to the SM prediction.
One example is the Z-boson decay into a pair of lightest neutralinos in R-parity conserving supersymmetry scenarios,
Z ! ~�01 ~�

0
1, when the neutralinos are predominantly bino-like{. While such contributions generically enhance the

invisible Z-width, di�erent new physics e�ects may lead to a reduction of the magnitude of the Z���-couplings and
hence suppress �inv . This can be accomplished by assuming, for example, that the SM neutrinos mix slightly with
sterile states. With the advent of the NuTeV anomaly [6], which can be explained by reducing the Z���-couplings,
this option has recently received a signi�cant amount of attention (see, for example, [8, 9]).
Other e�ects can modify the indirectly measured value of the invisible Z-width but not the one obtained directly.

One mechanism that will lead to such an e�ect is the following: assume that there is an exotic decay of the Z-
boson into �nal states with some charged and/or neutral particles. Such a decay will not contribute to the direct
measurement of the invisible Z-width, as events with detector activity other than a single photon are vetoed. On
the other hand, if these events fail the selection criteria for leptonic or hadronic Z-boson decays, they will not
contribute to �vis. Since this new decay mode will increase �tot with respect to the SM prediction, �inv(indirect) =
�SMtot + �newtot � �SMvis > �inv(direct). This might be the case, for example, if the Z-boson decays to a pair of neutral
particles which themselves decay some centimeters from the interaction point. Another possibility is to introduce an
e�ect that leads to �measuredtot 6= �tot = �vis + �inv . This will happen, for example, if another resonance is present \on
top" of the Z-pole [33, 34]. Such a resonance will modify the line-shape of e+e� ! f �f (which would no longer be
a Breit-Wigner function) and lead to the extraction of an e�ective total Z-boson width that di�ers from the \real"
total Z-boson width. On the other hand, if this new resonance does not decay into invisible �nal states, no new
contributions to the directly measured value of �inv will be present. One possibility of physics hidden by the Z-boson
resonance is the s-channel exchange of sneutrinos ~� in R-parity violating supersymmetry [35]. A sneutrino with mass
close to the Z-boson mass, m~� � mZ , that primarily decays into b�b pairs, is not excluded by existing data from LEP

{ Z-boson decays into neutralinos with a dominant wino or higgsino component are already ruled out by present data.
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and SLD and can lead to deviations in the hadronic Z-boson line-shape parameters compared to the standard Z
line-shape parametrization [34].
Finally, some new physics contributions can a�ect the directly measured value of the invisible Z-width but not the

one obtained indirectly. The simplest way of accomplishing this is to include new contributions to e+e� ! invisible
that are not related to the Z-boson. For example, any e�ective four-fermion interaction similar to �e
�e��
�� contributes
to e+e� ! 
��� but does not contribute to �tot extracted by the line-shape of the Z-boson resonance and hence to
�inv(indirect). Such a four-fermion operator can be mediated, for example, by the exchange of extra neutral gauge
bosons, dubbed Z0-bosons. When the Z0-boson is relatively light, but weakly coupled so that it forms a narrow
resonance, the strongest experimental bounds arise from the radiative return to the Z0-pole [36]. It is, therefore,
possible that e�ects of a Z0-boson are �rst discovered in the channel 
���. Note that, due to possible interference
e�ects between the Z-boson exchange and the new e�ective interaction, the directly measured value of �inv may be
suppressed or enhanced with respect to the SM prediction. Another option is to consider the existence of anomalous

���-couplings, which contribute to the electric and magnetic dipole moments and the charge radii of the neutrinos
[25, 37, 38]. Within the SM, e�ective 
��� interactions are generated at the one-loop level, but have very small values
[38, 39]. However, loop e�ects from new physics can induce sizable 
��� production rates [25, 40]. Such couplings
contribute to e+e� ! 
���, but do not modify measurements extracted from the Z-boson resonance. Furthermore,
other extensions to the SM introduce new invisible particles, Y , that can be produced in e+e� ! Y Y 
. These include
the Kaluza-Klein gravitons of models with large extra dimensions [41] and super-light gravitinos in supersymmetry
scenarios with gauge mediated supersymmetry breaking [42].
Note that in order to enhance the experimental sensitivity to most of the mechanisms outlined in the previous

paragraph, one would pro�t from running at center-of-mass energies above the Z-boson mass, in order to avoid the
\overwhelming presence" of the Z-boson resonance (see discussion in Sec. III). On the other hand, some new physics
e�ects lead to rare single-photon decays of the Z-boson, such as Z ! 
�� [43]. In this case, the measurement of the
cross-section for e+e� ! 
��� at the Z-pole yields valuable information.
Finally, we emphasize that more information can be obtained by analyzing the missing mass distribution

d�
���=dM��� , as described in Sec. IIIB, and it may be possible to di�erentiate classes of new physics contributions.
As illustrated in Fig. 5, excursions of (gL; gR) from the SM values would show up as distinguishable changes in the
shape of the missing mass distribution. Another possibility is the existence of a new physics channel, for example, the
production of sneutrino pairs (e+e� ! ~�~��
), as illustrated in Fig. 5, for the case M~� = 60 GeV. For this example, it
is assumed that the sneutrinos are of the second or third generation, so that there is no contribution from t-channel
chargino exchange, and that the sneutrinos are stable or decay invisibly. Clearly, the shape of the missing mass
distribution allows the distinction of this contribution from any new physics e�ects that modify the properties of the
Z-boson. In a similar way, the contribution of an extra Z0-boson could be identi�ed by a resonance in the missing
mass distribution, while the emission of Kaluza-Klein gravitons in large extra dimensions would yield a continuous
background without threshold e�ects.

B. Right-Handed Neutrino{Z-Boson Couplings?

In the SM, neutrinos couple only left-handedly to the W and Z-bosons. This fact is a direct consequence of the
SU (2)L � U (1)Y -gauge symmetry structure of the SM, which �ts almost all experimental data beautifully. On the
other hand, we should not downplay the importance of directly verifying, experimentally, whether neutrino neutral
currents are purely left-handed. Current data allow a right-handed Z��� coupling which is around 40% as large as
the left-handed one, while the LC measurement we propose could tighten the bound to about 30%. This should be
contrasted with, say, our understanding of Z`�̀-couplings and W`��-couplings, which are known (in the worst case)
at the few percent level. In Fig. 6 we show an example to illustrate the sensitivity of a linear collider to a non-zero
right-handed Z��� coupling. (The same example is also depicted in Fig. 5.) Here, the right-handed coupling is chosen
to be one third of the left-handed coupling, which is allowed by current data, while the value for the Z-width agrees
with the SM prediction. In the setup discussed in Sec. IIIB, it is possible to discriminate this scenario from the SM
at more than the two sigma con�dence level. There remains, however, a twofold ambiguity, which is related to the
fact that while the sign of gL can be measured, the sign of gR remains undetermined.
It is interesting to probe whether there are new physics models that lead to right-handed Z���-couplings. One

example is to consider the existence of a heavy Z0-boson that mixes slightly with the SM Z-boson. In general, Z{Z0

mixing will lead to a shift in the SM Z-boson mass and the SM Z-boson couplings to fermions. It is possible to choose
Z0-boson couplings to fermions such that: (i) the left-handed Z���-coupling gL is slightly reduced with respect to its
SM value gSML , and (ii) a non-zero right-handed Z���-coupling gR is introduced. If this is done in such a way that
g2L + g2R ' (gSML )2, all current experimental constraints can be safely evaded (see Sec. IIIA).
We have constructed an explicit example, adding to the SM a U (1)Z0 gauge symmetry under which leptons and
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right-handed neutrinos transform. In order to satisfy current experimental constraints and successfully introduce a
right-handed Z���-coupling we introduce two extra Higgs bosons. One, transforming nontrivially only under U (1)Z0 , is
responsible for giving the Z0-boson a mass. The other, which transforms under both SU (2)L and U (1)Z0 , is responsible
for inducing mixing between the SM Z-boson and the Z0-boson.
In the following, Z and Z 0 denote the mass eigenstates, where the former corresponds to the physical Z-boson that

has been observed at LEP and other colliders, while the eigenstates of the electroweak gauge group and the extra
gauge group are given by Z1 and Z2, respectively. Using this language, we can say that the interference between Z1
and Z2 can lead to a reduction of the Z�L��L-coupling, while a Z�R��R-coupling is introduced by the Z2 admixture
in the Z-boson. Several constraints have to be taken into account, however. First of all, because the Z0 couples
to charged leptons, it is currently constrained to be very heavy, mZ0

>� 900 GeV [2]. Second, in order to induce a
relatively large right-handed Z���-coupling, we are required to have either sizable Z{Z0-mixing and/or a very large
U (1)Z0 coupling. Large Z{Z0-mixing will imply in a signi�cant shift of the Z-boson mass from SM expectations,
especially because the Z0 is constrained to be very heavy. Third, one should keep in mind that not only are the
Z���-couplings modi�ed, but also the Z`�̀-couplings. Taking all of these constraints into account, we are able to �nd
an \existence-proof" example. We choose a U (1)Z0 coupling g0 = 3:5, and set the charges of the left-handed leptons
and the right-handed charged leptons to +1=2. We also set the charges of the right-handed neutrinos to +5.�� We
further set mZ0 = 1 TeV and the Z{Z 0-mixing angle to sin2 �ZZ0 = 1:6 � 10�5. Under these conditions, the Z�L��L
coupling gL is reduced by 3.7%, while a right-handed coupling is generated: jgR=gLj = 0:19. We further veri�ed that
the above mentioned shifts to the Z`�̀-couplings and the Z-boson mass are allowed by the data, and �nd a �t to �tot,
sin2 �`W;e� , sin

2 �hadW;e� , R`, and �0h that is as satisfactory as the SM �t.
We stress that this model is not intended to provide a realistic description of nature, but only to prove the

possibility of \large" right-handed Z��� couplings that are not excluded by existing data. While the speci�c value,
jgR=gLj = 0:19, we obtained above would still not be detectable at a linear collider, we emphasize that there are
other, more complicated, Z0 models that induce larger Z�R��R-couplings. For example, the Z�L��L-coupling could be
further reduced through the addition of higher dimensional operators to the model, thus allowing an increase of the
value of the Z�R��R-coupling to jgR=gLj > 0:3, which can be distinguished from gR = 0 at more than the two sigma
con�dence level at a linear collider, as depicted in Fig. 6.
More generally, as brie
y alluded to in Sec. III, the gR need not be a right-handed coupling of the neutrino to the

Z-boson, but can be interpreted as any coupling of the Z-boson to exotic invisible �nal states. Within the SM, the
magnitude of these couplings is best constrained by measuring the invisible Z-width at the Z-boson mass, as discussed
above. However, by performing the analyses discussed in Sec. III, one is capable of separating the Z-boson coupling
to active neutrinos (gL) from the Z-coupling to exotic invisible matter. These analyses allow one to identify models
where the gL coupling is smaller than usual, but is somehow \compensated" by the exotic contribution. If this is the

�� Here we did not consider anomaly cancellation. We assume that this can be accomplished for example by adding heavy fermions to the
theory.
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case, the invisible Z-width measurements at the Z-boson mass do not register a discrepancy with respect to the SM,
while the measured value of (gL; gR) deviates from (1=2; 0) (this is exactly what happens in the U (1)Z0 model spelled
out above).

V. SUMMARY AND CONCLUSIONS

We have discussed how measurements at e+e� colliders provide information on Z���-couplings in distinct ways,
allowing the exploration of new physics contributions to the left-handed and right-handed neutrino couplings to the
Z-boson. The indirect measurement of �inv is obtained by subtracting the visible partial width from the total width
of the Z-boson resonance. It provides a tight constraint on g2L + g2R. The direct measurement of �inv comes from
measuring the cross section for e+e� ! 
���. When this done at center-of-mass energies around the Z-boson pole
mass, it is again possible to constrain the combination g2L + g2R. At higher center-of-mass energies, however, good
sensitivity to gL is obtained from the interference of the Z-boson and W -boson exchange amplitudes.
We examined published data from LEP in order to constrain gL and gR. The strongest constraint by far comes

from the indirect value of �inv. We have also analyzed data taken at energies above the Z-pole (LEP II) in order to
extract gL. Although the result obtained is not particularly precise, in part because only a fraction of the collected
data have been analyzed by the LEP collaborations, it establishes the sign of gL (positive) at the 2� con�dence level.
If all existing LEP data were analyzed with the requirement that the missing mass be greater than 100 GeV, we
estimate that this analysis would establish gL with an uncertainty Æ(gL) = 0:05.
Important constraints on jgLj also come from measurements of elastic neutrino{electron scattering by CHARM II

and LAMPF. Their results agree well with the ones provided by LEP, and with SM predictions. Combining LEP
and CHARM II data, the value of the left-handed Z���-coupling is constrained to be 0:45 <� gL <� 0:5, while the
right-handed neutrino couplings to the Z-boson are mildly bounded to be jgRj <� 0:2 at the 2� level. The NuTeV
data can also be used to determine Z���-couplings, in which case a very tight constraint on jgLj would be obtained.
This interpretation, however, rests on several assumptions which are not universally accepted. In our opinion, the
elastic neutrino{electron scattering results are cleaner, and we speculate that a new experiment using existing or
future neutrino beams should improve substantially the precision with which jgLj is measured.
A future e+e� linear collider could run at center-of-mass energies near the Z-boson pole mass in the so-called

\Giga-Z" option. The integrated luminosities are expected to be much larger than those recorded at LEP, on the
order of 50 fb�1. We have estimated how new data taken around the Z-boson pole mass and at

p
s = 170 GeV would

improve the constraints already obtained from LEP data. We �nd that the quality of the indirect measurement of �inv
would be only modestly improved, while the direct measurement would be performed with greatly improved precision.
We estimate that at a linear collider the precision with which the Z-boson width could be directly measured would
be comparable to the precision of the indirect measurement. Since both measurements are potentially sensitive to
di�erent new physics, a high precision in both is very desirable.
In particular, measurements of e+e� ! 
+ invisible at

p
s = mZ and

p
s = 170 GeV would be sensitive to values of

gR on the order of gL=3. The data samples should be large enough to warrant a measurement of the cross section as a
function of missing mass. Deviations of this di�erential cross section from the SM prediction would indicate whether
gL, gR, or both di�er from the SM value. The fact that one experiment running at di�erent energies can simultaneously
constrain both gL and gR makes the Giga-Z option particularly attractive in this context. The comparison of these
two energy regions will provide information analogous to the NuTeV determination of the Z���-couplings.
Finally, we have sketched a variety of new physics scenarios that will impact the measurements of the indirect

and direct invisible Z-width di�erently, many of which have been already considered in the literature in various
contexts. In summary, by performing both the direct and indirect measurements of the invisible Z-width with similar
precision, one should be able to distinguish between several di�erent new physics mechanisms, depending on whether
the measurements agree or disagree with SM predictions, or whether the two distinct measurements of the invisible
Z-width agree or disagree with each other. We have also discussed the importance of measuring \gR" as far as
constraining new physics. The main reason for this is the fact that while we generally referred to right-handed
Z���-couplings, other couplings of the Z-boson to exotic, invisible �nal states are probed in exactly the same way.
We conclude by restating the interesting fact that the current data, in particular the NuTeV anomaly and the LEP

measurement of �inv , hint at a non-standard Z���-couplings. Only future experiments can elucidate this issue.
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