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Abstract

Geant4 is a tool kit developed by a collaboration of physicists and computer pro-
fessionals in the High Energy Physics �eld for modeling of the passage of particles
through matter [1]. The motivation for the development of the Beam Tools is to
extend the Geant4 applications to accelerator physics. Although there are computer
programs for beam physics simulations [2{4], Geant4 is ideal to model a beam going
through material or a system with a beam line integrated to a complex detector.
There are many examples in the current international High Energy Physics pro-
grams, such as studies related to a future Neutrino Factory, a Linear Collider, and
a very Large Hadron Collider.
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1 Introduction

Geant4 is a tool kit developed by a collaboration of physicists and computer
professionals in the High Energy Physics (HEP) �eld for modeling of the pas-
sage of particles through matter [1]. The motivation for the development of
the Beam Tools is to extend the Geant4 applications to accelerator physics.
The Beam Tools are a set of C++ classes designed to facilitate the simula-
tion of accelerator elements: r.f. cavities, magnets, absorbers. These elements
are constructed from Geant4 geometry objects or solid volumes: boxes, tubes
(cylinders), trapezoids, or spheres.

A variety of visualization packages are available within the Geant4 framework
to produce an image of the simulated apparatus. The pictures shown in this
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article were created with Open Inventor [5], which allows direct manipulation
of the objects on the screen, plus perspective rendering via the use of light.

There are computer programs for beam physics simulations, but Geant4 is
ideal to model a beam through a material or to integrate a beam line with a
complex detector. There are applications where such modeling is essential. For
instance, a critical part of the R&D associated with the Neutrino Source/Muon
Collider accelerator is the ionization cooling channel, which is a section of
the system aimed to reduce the size of the muon beam in phase space. The
MuCool/MICE (muon cooling) experiments need accurate simulations of the
beam transport through the cooling channel in addition to a detailed simula-
tion of the detectors designed to measure the size of the beam. The accuracy
of the models for physics processes associated with muon ionization and mul-
tiple scattering is critical in this type of applications. Another example is the
simulation of the interaction region in future accelerators. The high luminosity
and background environments expected in the Next Linear Collider (NLC) [6]
and the Very Large Hadron Collider (VLHC) [7] pose great demand on the
detectors, which may be optimized by means of an integrated simulation of
the accelerator and detectors around the interaction region.

2 Geant4 Basics Relevant to the Beam Tools

Geant4 is an object oriented package developed in C++ by a collaboration of
physicists and computer professionals for modeling of the passage of particles
through matter. Geant4 applications include, but are no longer limited to,
High Energy Physics. In addition to simulations of the new generation of
HEP experiments, like the ATLAS and CMS detectors under construction
at the CERN (European Organization for Nuclear Research) Large Hadron
Collider (LHC), Geant4 is also used in other �elds of research. One example is
the study of radiation levels inside the international space station. In medical
physics, Geant4 is used to help optimize the location and dose of radiation in
the treatment of tumors.

As a tool kit, Geant4 provides a set of libraries, a main function, and a family
of initialization and action classes to be implemented by the user. The names
of the Geant4 library classes start with the pre�x G4. The core of main starts
with the construction of a runManager. This object of type G4RunManager*

controls the 
ow of the program and manages the event loop within a run.
The user initialization and action classes are singlets and their associated
objects are constructed in main. The example described in this section is called
MuCool and uses only some of the many available user classes. A section of
the implementation of main in our example is shown below:
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// set initialization classes

MuCoolConstruct *detector = new MuCoolConstruct();

runManager->SetUserInitialization(detector);

MuCoolPhysicsList *physList = new MuCoolPhysicsList();

runManager->SetUserInitialization(physList);

// set mandatory user action class

runManager->SetUserAction(new MuCoolPrimaryGeneratorAction);

MuCoolSteppingAction* stepAct = new MuCoolSteppingAction;

runManager->SetUserAction(stepAct);

runManager->SetUserAction(new MuCoolTrackingAction);

runManager->SetUserAction(new MuCoolEventAction);

These user class objects contain the information related to the geometry of
the apparatus, the electromagnetic �elds, the beam, and actions taken by the
user at di�erent times during the simulation.

2.1 Detector and Field Construction

The detector and electromagnetic �eld geometry, properties, and location are
implemented in the constructor and methods of the MuCoolConstruct user
class, which inherits from G4VUserDetectorConstruction. In the Construct()
method, the user does the initialization of the electromagnetic �eld and the
equation of motion. First, there is a variety of Runge-Kutta steppers to select
from, to perform the integration to di�erent levels of accuracy. Next comes
the detector description, which involves the construction of solid, logical, and
physical volume objects. These objects contain information about the detector
geometry, properties, and position, respectively. Many solid types, or shapes,
are available. For example, cubic (box) or cylindric shapes (tube), are con-
structed as:

G4Box(const G4String& pName, G4double pX, G4double pY,

G4double pZ);

G4Tubs(const G4String& pName, G4double pRMin, G4double pRMax,

G4double pDz, G4double pSPhi, G4double pDPhi);

where a name and half side lengths are provided for the box. Inner and outer
radii, half length, and azimuthal coverage are the arguments of a cylinder
(tube). A logical volume is constructed from a pointer to a solid, and a given
material:

G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial,
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const G4String& name)

The physical volume, or placed version of the detector is constructed as:

G4PVPlacement(G4RotationMatrix *pRot, const G4ThreeVector &tlate,

const G4String& pName, G4LogicalVolume *pLogical,

G4VPhysicalVolume *pMother, G4bool pMany,

G4int pCopyNo);

where the rotation and translation are performed with respect to the center
of its \mother" volume (container). Pointers to the associated logical volume,
and the copy number complete the list of arguments.

2.2 Physics Processes

Geant4 allows the user to select among a variety of physics processes which
may occur during the interaction of the incident particles with the material
of the simulated apparatus. There are electromagnetic, hadronic, and other
interactions available like: \electromagnetic", \hadronic", \transportation",
\decay", \optical", \photolepton hadron", \parameterisation". The informa-
tion on physics processes is contained in the MuCoolPhysicsList *physList

object. The di�erent types of particles and processes are created in the con-
structor and methods of the MuCoolPhysicsList user class, which inherits
from G4VUserPhysicsList.

2.3 Incident Particles

The user constructs incident particles, interaction vertices, or a beam by typing
code in the constructor and methods of the MuCoolPrimaryGeneratorAction
user class, which inherits from G4VUserPrimaryGeneratorAction.

2.4 Stepping Actions

The MuCoolSteppingAction user action class inherits from G4UserSteppingAction.
It allows to perform actions at the end of each step during the integration of
the equation of motion. Actions may include killing a particle under certain
conditions, retrieving information for diagnostics, and others.
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2.5 Tracking Actions

The MuCoolTrackingAction user action class inherits from G4UserTrackingAction.
For example, particles may be killed here based on their dynamic or kinematic
properties.

2.6 Event Actions

The MuCoolEventAction user action class inherits from G4UserEventAction.
It includes actions performed at the beginning or the end of an event, that
is immediately before or after a particle is processed through the simulated
apparatus.

3 Description of the Beam Tools Classes

A particle accelerator consists of magnets and radio frequency cavities which
are responsible for manipulating the particle beam. The magnets generate the
forces necessary to focus and drive the beam through the accelerator complex.
The radio frequency (r.f.) cavities provide the electric �eld for acceleration
of the charged particles. In order to track the beam particles, we need an
accurate description of the electromagnetic �elds associated with the accel-
erator components. This Section is devoted to explain how to model these
components using the Beam Tools. Although most of the classes available in
the current version of the Beam Tools are associated with components of a
Neutrino Source/Muon Collider machine, the object oriented design allows
for easy extensibility to any accelerator system within and outside the �eld
of high energy physics. Brief descriptions of each class and constructor are
included below.

� The BTSheet class inherits from G4MagneticField. The class objects are
�eld maps produced by an in�nitesimally thin solenoidal current sheet.
The class data members are all the parameters necessary to generate an-
alytically a magnetic �eld in r-z space (there is ' symmetry). No ge-
ometric volumes or materials are associated with the BTSheet objects.
GetFieldValue is a concrete method of BTSheet inherited from G4Field,
through G4MagneticField. It returns the �eld value at a given point in
space and time.

� The BTSolenoid class inherits from G4MagneticField. The class objects
are �eld maps in the form of a grid in r-z space, which are generated by
a set of BTSheet. The sheets and the BTSpline1D objects, containing the
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spline �ts of Bz and Br versus z for each r in the �eld grid, are data mem-
bers of BTSolenoid. No geometric volumes or materials are associated with
BTSolenoid. The �eld at a point in space and time is accessed through a
GetFieldValue method, which performs a linear interpolation in r of the
spline �t objects.

� The BTSolenoidLogicVol class de�nes the material and physical size of the
coil system which is represented by the set of current sheets. A BTSolenoid

must �rst be constructed from a list of current BTSheets. The BTSolenoid
object is a data member of BTSolenoidLogicVol. The BTSolenoidLogicVol
class constructor creates G4Tubs solid volumes and associated logical vol-
umes for the coil system, the shielding, and the empty cylindric regions
inside them. Only the logical volumes are constructed here. No physical
placement of a magnet object is done.

� The BTSolenoidPhysVol class is the placed version of the
BTSolenoidLogicVol. It contains the associated BTSolenoid object as a
data member, as well as the pointers to the physical volumes of its logical
constituents.

The process of simulating a solenoid starts with the construction of a set of
current sheets BTSheet, which will generate the �eld. The constructor of this
class:

BTSheet(G4ThreeVector location, G4int id, G4int type,

G4double thick, G4double rad, G4double len, G4double cur)

takes as input the sheet location, radius, length, and current. The other in-
put parameters are not used for the moment. The BTSheet objects must be
assigned to a vector of current sheets, vector<BTSheet>, which is latter pro-
vided to the BTSolenoid constructor:

BTSolenoid(G4double minrxy, G4double maxrxy, G4int numptrxy,

G4double minz, G4double maxz, G4int numptz,

vector<BTSheet> const &vsheets);

where minrxy, maxrxy, minz, maxz are the boundaries of the r-z grid, and
numptrxy, numptz the number of r and z nodes respectively. The �eld is
stored as a grid in data member arrays and spline �ts. The more nodes in z,
the better the accuracy of the spline �t; the more nodes in r, the better the
accuracy of the interpolation. To ensure good accuracy, the �eld map should
extend well beyond the physical limits of the magnet, since the �eld at a given
point in space is the sum of contributions from all magnets in the accelerator
lattice.

The next step is to construct the logical volume of a solenoid, that is a concrete
coil system associated with the �eld. The BTSolenoidLogicVol constructor:
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BTSolenoidLogicVol(BTSolenoid *theSol, G4Material *matCoils,

G4Material *shield, G4Material *vacuum,

G4String name, G4double LengthExtra,

G4double radExtra, G4double shieldThickness,

G4bool topIsCylinder, G4bool volumeSheet,

G4double solmaxstep);

takes the BTSolenoid, the material and dimensions of the coil system and
shielding structure, and two G4bool arguments to either build the system as
a ring or a solid cylinder (topIsCylinder), and make the sheets visible or not
(volumeSheet). The solmaxstep argument is the maximum step size imposed
by the user for integration of the equation of motion in the solenoid logical
volume. Figure 1 shows a solenoidal copper coil system modeled with four
in�nitesimally thin sheets equally spaced in radius.

Fig. 1. Left: a solenoidal copper coil system modeled with four in�nitesimally thin
sheets equally spaced in radius. Right: array of four solenoids separated by gaps.

The last step in the construction process is to position the solenoid. The
BTSolenoidPhysVol constructor takes the position of the object center with
respect to its mother volume, a rotation around that center, and pointers to
the associated logical volume, the mother's physical volume, and the global
magnetic �eld object, BTGlobalMagField *theField:

BTSolenoidPhysVol(G4RotationMatrix *pRot,

const G4ThreeVector &position,

BTSolenoidLogicVol *theSolLV,

G4VPhysicalVolume *pMother,

G4bool pMany, G4int pCopyNo,

G4double reScaleFieldFactor,

BTGlobalMagField *theField);
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A copy number, and a factor to scale the �eld value should also be provided.
Figure 1 also shows a con�guration of four solenoids separated by gaps.

3.1 Magnetic Field Maps

The Beam Tools also allow to simulate generic �eld maps using the
BTMagFieldMap and BTMagFieldMapPlacement classes.

� The BTMagFieldMap class inherits from G4MagneticField. The construc-
tor reads the map information from an ASCII �le containing the value of
the �eld at a set of nodes of a grid. No geometric objects are associated
with the �eld. The �eld at a point in space and time is accessed through a
GetFieldValue method, as in the case of the solenoid.

� The BTMagFieldMapPlacement class is a placed BTMagFieldMap object.
Only the �eld is placed because there is no coil or support system asso-
ciated with it.

The BTMagFieldMap object may be of two di�erent typeofmap: \HardEdge"
or \Interpolated". In the �rst case, the �eld is constant in between (r,z) nodes,
taking the Br and Bz value at the lower edge of the interval. In the second
case, the �eld is evaluated in between nodes using a linear interpolation. The
\HardEdge" option is useful, for example, to create square �elds. The \In-
terpolated" option is aimed to reproduce accurately an arbitrary �eld. The
BTMagFieldMap constructor requires arguments de�ning the map boundaries
and grid resolution.

BTMagFieldMap(const char MBname[20], const std::string typeofmap,

G4double zoff, G4double zlgth, G4double rlgth,

G4int numMBnodesZ, G4int numMBnodesR);

The magnetic �eld map is placed by calling BTMagFieldMapPlacement con-
structor:

BTMagFieldMapPlacement(const G4RotationMatrix *rot,

const G4ThreeVector &position,

BTMagFieldMap *themap,

G4double rescaleFieldFactor,

BTGlobalMagField *theField);

which takes the global position of the �eld geometric center, a rotation, a
pointer to the BTMagFieldMap which is being placed, the �eld scaling factor,
and the global magnetic �eld object.
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3.2 r.f. Systems: Pill Box Cavities and Field Maps

Radio frequency (r.f.) cavities are the elements providing the electric �eld
for particle acceleration. This section explains how to simulate realistic r.f.
systems using an r.f. device called Pill Box cavity. A description of a Pill Box
cavity and other accelerator beam line elements can be found in the literature,
for example Ref. [8]. But brie
y, it may be described as an empty cylindric
cavity with conductor walls. Ideally, it should be closed at the ends. Real
cavities, however, deviate from the cylindric shape and have holes at the end
to allow the passage of the beam. This \iris" may be closed with thin windows
of a light material to improve the quality of the �eld without a signi�cant
degradation of the beam. The time dependent electric �eld inside the cavity
is a sinusoidal wave of frequency � generated by a voltage amplitud Vp.

The Beam Tools package provides the classes: BTAccelDevice, BTPillBox,
BTrfCavityLogicVol, BTrfWindowLogicVol, and BTLinacPhysVol.

� BTAccelDevice.hh class is abstract. All accelerator device classes are de-
rived from this class, which inherits from G4ElectroMagneticField.

� The BTPillBox class inherits from BTAccelDevice and represents single
Pill Box �eld objects. An object of this class is a �eld with no associated
solid. The time dependent electric �eld is computed using a simple Bessel
function. An important feature is the reference particle mode, used to tune
the phase of the r.f. wave to be synchronized with the passage of the beam
(synchronous phase). In reference mode, the �eld is static (does not depend
on time), and only an approximation to the ideal Pill Box �eld, as will be
explained in Sec. 3.4. At a point in space and time, the �eld is accessed
through a GetFieldValue method, and given by:
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� The BTrfMap class also inherits from BTAccelDevice. The class objects
are electromagnetic �eld maps which represent an r.f. cavity. In this way,
complex r.f. �elds can be measured or generated and later included in the
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simulation. The �eld map, in the form of a grid, is read in the BTrfMap

constructor from an ASCII �le. The BTrfMap object is a �eld, with no asso-
ciated solid. A GetFieldValue method returns the �eld value at a point in
space and time by means of a linear interpolation of the �eld grid.

� The BTrfCavityLogicVol class constructor creates solids and logical vol-
umes associated with the r.f. �eld classes. In the case of a map, a vacuum
cylinder ring represents its limits. In addition to geometric and material
parameters of the cavity, the class contains �eld and accelerator device in-
formation.

� The BTrfWindowLogicVol class is used with BTCavityLogicVol to create
the geometry and logical volume of r.f. cavity windows, including the sup-
port structure, which may be placed to close the cavity iris at the end caps.

� The BTLinacPhysVol class is a placed linac object. A linac, or linear ac-
celerator, is a set of contiguous r.f. cavities, including the �eld, the support
and conductor material, and windows. The BTLinacPhysVol constructor is
overloaded. One version places a linac of Pill Box cavities and the other
places �eld maps.

The inputs to the BTPillBox constructor are the cavity frequency, length,
maximum gradient, and synchronous phase:

BTPillBox(G4double freqIn, G4double zLIn, G4double dzSkinIn,

G4double eMaxGradIn, G4double phaseAccIn );

while the BTrfMap constructor needs, in addition, the boundaries of the map
and the grid resolution.

BTrfMap(const char rfname[20], G4double freqIn, G4double zoff,

G4double zPhaseIn, G4double zLIn, G4double rMax,

G4double rEff, G4double phaseAccIn, G4int numRFnodesZ,

G4int numRFnodesR );

For a Pill Box cavity, the BTrfCavityLogicVol constructor needs a pointer
to the associated BTPillBox object, the cavity walls material, the material
�lling the cavity, the logical volume name, the extra length necessary to ac-
commodate the support structure, the wall thickness, and the maximum step
size in the volume:

BTrfCavityLogicVol(BTPillBox *rfPillBox, G4Material *matCavity,

G4Material *vacuum, G4String name,

G4double dLengthExtra, G4double wallThick,

G4double rfmaxstep);

For a �eld map, BTrfCavityLogicVol builds a cylindric tube bounded by
a cylindric ring (wall) with the same geometric disposition as the Pill Box
conductor ring, except that it is made of vacuum. Although this structure may
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have nothing to do with the geometry of the real cavity which produced the
�eld, it allows the user to visualize the boundaries of the r.f. �eld. In addition,
it provides a dummy software structure to attach windows, if necessary. The
BTrfCavityLogicVol constructor is, therefore:

BTrfCavityLogicVol(BTrfMap *rfmap, G4Material *matCavity,

G4Material *vacuum, G4String name,

G4double dLengthExtra, G4double wallThick,

G4double rfmaxstep);

As a rule, the logical volume name must contain the \RF" string. This is a
requirement for the automatic phase tuning to function in reference particle
mode. The window solids and logical volumes are created by the
BTrfWindowLogicVol constructor:

BTrfWindowLogicVol(double radius, double radiusOut,

double thickness, double rimThickness,

G4Material *matWindow, G4Material *vacuum,

G4String name);

The arguments are the window radius, the outer radius of the rim (window
support structure), the window thickness, the rim thickness, the window ma-
terial, the material �lling the top volume which contains the window structure
(vacuum), and the name of that volume. A step window with a center circle
thinner than the outer ring, may be built by adding an outer ring to the 
at
window:

void AddOuterFoil(double rIn, double thickness, G4Material *mat);

The �rst argument is the ring window inner radius, the second its thickness,
and the last its material.

The physical placement of the r.f. system is done by the BTLinacPhysVol

constructor:

BTLinacPhysVol(G4int numCell, G4double *zLocCells,

BTrfCavityLogicVol *rfCell,

BTrfWindowLogicVol *rfWindow,

G4VPhysicalVolume *pMother,

BTGlobalEMField *theField);

where zLocCells is the array which contains the z positions of the numCell

cavities with respect to the geometric center of the linac. The linac constructor
also takes a pointer to its mother volume, as well as a pointer to the global
electromagnetic �eld.
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Figure 2 shows a single r.f. Pill Box cavity (in red), with an outer window ring
(dark green) and an inner full window (light green). When a linac of more
than two cavities is placed, contiguous cavities share a window. Figure 2 also
shows a cooling channel where solenoids are embedded in large low frequency
cavities. Since the beam circulates inside the solenoid, the cavity is represented
by a �eld map (in red) restricted to a cylindric volume with radius slightly
smaller than the inner radii of the magnets.

Fig. 2. Left: a Pill Box cavity (in red), with an outer window ring (dark green) and
an inner full window (light green). Right: low frequency cooling channel. The red
cylinders are the dummy software structure representing the limits of the electric
�eld maps.

3.3 The Global Field Classes

A global �eld is the sum of all �elds in the accelerator, available to the Geant4
tracking code as a particle propagates through the system. Two global �eld
classes are used by the Beam Tools: one for the case that the �eld is purely
magnetic, and another one in the case there is also an electric component.

� The BTGlobalMagField class inherits from G4MagneticField. A single
BTGlobalMagField object is constructed from the sum of individual mag-
netic �elds generated by all magnetic objects, like solenoids and magnetic
�eld maps. The global magnetic �eld is accessed by a GetFieldValue method,
where the sum of the �elds is implemented. To perform these operations,
the magnet objects and their positions in global coordinates need to be
data members of the global �eld class. The BTGlobalMagField constructor
only does a trivial initialization of some of the data members. The global
magnetic �eld is actually �lled or \included" by the IncludeSolenoid and
IncludeMaps methods, which are invoked in the BTSolenoidPhysVol and
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BTMagFieldMapPlacement constructors, respectively. In brief, the magnet
objects, their location, and �eld scale factor are constructed or de�ned in
the Construct() method of the detector construction user class. This in-
formation is then passed to IncludeSolenoid and IncludeMaps through
BTSolenoidPhysVol and BTMagFieldMapPlacement. IncludeSolenoid and
IncludeMaps assign this information to the data members of
BTGlobalMagField for its use by GetFieldValue. Since this is the
GetFieldValue associated with the �eld fed to the equation of motion, it
will be called internally by Geant4.

� The BTGlobalEMField class inherits from G4ElectroMagneticField. A sin-
gle BTGlobalEMField global e.m. object is constructed from the existing
BTGlobalMagField, by adding the �elds from the acceleration elements,
such as r.f. cavities. The mechanism for feeding the global e.m. �eld infor-
mation into Geant4 is the same as in the case of the BTGlobalMagField.
The r.f. �eld is added to the global �eld by the IncludeAnRFCell method
of BTGlobalEMField, which is called in BTLinacPhysVol. The global e.m.
�eld has an additional feature related with the r.f. system phase tuning.
The SetPhaseDelayAtZ method is invoked from the UserSteppingAction
method only in reference particle mode. It uses the step object at the
phase center of each cavity to calculate and set a phase delay for the cav-
ity to operate at the required synchronous phase in a normal run. The
BTLinacCellPhaseInfo class is convenient as it de�nes the right object
to be manipulated by the global �eld. This information is passed to the
BTLinacPhysVol constructor, then to the BTLinacCellPhaseInfo object,
and �nally to the global e.m. by IncludeAnRFCell.

3.4 Tuning the r.f. Cavity Phases

One of the critical elements of an accelerator simulation is the \r.f. tuning".
In order to deliver the desired electric �eld during the passage of the beam
through the cavities, a synchronous phase must be selected. This is how the
r.f. wave is synchronized with the beam, more speci�cally, with the region
of beam phase space that the user needs to manipulate. For this, there is the
concept of a reference particle, de�ned as the particle with velocity equal to the
phase velocity of the r.f. wave. If the kinematic and dynamic variables of the
reference particle are set to values which are coincident with the mean values
of the corresponding variables for the beam, the r.f. system should a�ect the
mean beam properties in a similar way it a�ects the reference particle. Note
that the r.f. wave does not necessarily have to be tuned to follow the mean
velocity of the beam. Di�erent applications may need a reference particle to
represent the leading edge, the trailing edge, or any other sub-range of the
total beam phase space.
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The Beam Tools allow the use of a \reference particle" to tune the r.f. system
before processing the beam. The time instants the particle goes through the
phase center of each cavity are calculated and used to adjust each cavity phase
to provide the proper kick, at the selected synchronous phase. As an example,
Fig. 3 shows the reference particle trace through a cooling channel. The energy
of the particle increases as it goes through a six cavity linac, and decreases
through a liquid hydrogen absorber. The net energy gain after twenty unit
cells is �50 GeV. This corresponds to a cavity synchronous phase of 25.5Æ

for Vp=16 MeV/m at the time the reference particle goes through its phase
center.
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Fig. 3. Reference particle trace through a muon cooling channel. The r.f. system
is tuned to provide an average net acceleration of 50 MeV to a beam with mean
kinematic parameter values coincident with those of the reference particle.

Note that the r.f. model used to accelerate the reference particle is not the
same the beam experiences in normal mode. While the latter could be a Pill
Box or an arbitrary �eld map, the former is a Gaussian distributed �eld around
the phase center of the cavity. The � of the distribution is 20% of the length
of the real simulated cavity or map, and the area under the curve is the total
energy provided by that cavity to the particle.

3.5 Absorbers

The Beam Tools provide a set of classes to simulate blocks of material in the
path of the beam. They are all derived from the abstract class of absorber
objects BTAbsObj. The constructors create the solid, logical, and physical vol-
umes in a single step. The absorbers are not a common element in accelerators
because they typically degrade the beam. There are cases, however, where they
can be useful [9]. For example:
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� It may be necessary for some experiments to utilize beams of di�erent sizes
and qualities. Absorbers may be then used to degrade the beam emittance
accordingly. Emittance is de�ned as the determinant of a six dimensional
matrix built from x, px, y, py, c� t, and E. It is a measure of the beam size
in phase space.

� Transverse ionization cooling in muon beams may be achieved by reducing
the beam total momentum by energy loss through an absorber material.
After re-acceleration along the beam direction, the net result will be a re-
duction in the transverse emittance.

� Emittance exchange, a trade of transverse for longitudinal cooling, may be
achieved with wedge or lense absorbers placed in a beam with transverse-
longitudinal correlations. For example, if the pz of a particle in a beam is
a function of the distance r to the system center, a wedge or a lense can
selectively reduce the speed of faster particles with respect to slower ones.

BTCylindricVessel is a system with a central cylindric rim, and two end
cap rims with thin windows of radius equal to the inner radius of the vessel.
The material is the same for the vessel walls and windows. The vessel is �lled
with an absorber material. The BTCylindricVessel constructor takes the
absorber location in local coordinates of its mother volume, a pointer to the
mother volume and the absorber material, the maximum step length in the
absorber, the name of the object, the outer radius, the length, the absorber
window material, the window radius, and its thickness.

BTCylindricVessel(G4ThreeVector location,

G4VPhysicalVolume* pMother,

G4Material *material,

G4double maxstep, G4String cylvesselname,

G4double cylvesselrad, G4double cylvessellen,

G4Material *cylvesselwmat,

G4double cylvesselwrad,

G4double cylvesselwthick);

The end cap inner radius adjusts itself automatically depending on the window
radius. Realistic vessel windows are typically parabolic in shape to withstand
pressure. The Beam Tools currently include only 
at windows.

The grey cylinder in Fig. 4 is a schematic representation of a liquid hydrogen
vessel with aluminum walls and windows. The Beam Tools also provide two
constructors to simulate absorber lenses:
BTParabolicLense and BTCylindricLense. The �rst is a parabolic object
with uniform density, and the second a cylinder object with density decreasing
parabolically as a function of radius. From the point of view of the physics ef-
fect on the beam, both objects are almost equivalent. The BTParabolicLense
constructor takes the object location with respect to the local coordinates of
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its mother volume, a pointer to the mother volume, a pointer to the lense
material, the maximum step length, a name, the length (maximum) at r=0,
the radius, and the number of cylindric slices which make up the lense:

BTParabolicLense(G4ThreeVector location,

G4VPhysicalVolume* pMother,

G4Material *material, G4double stepmax,

G4String paraname, G4double parablength,

G4double parabradmax, G4int parabnumslice)

The lense is built as a set of short cylinders. The radius is maximum for the
central cylinder and reduces symmetrically following a parabolic equation for
the others in both sides.

The BTCylindricLense constructor takes essentially the same arguments as
the parabolic lense, except that the number of slices is replaced by the number
of rings. The object is built from concentric cylinder rings of the same length,
di�erent radius, and di�erent densities to mimic a real lense.

BTCylindricLense(G4ThreeVector location, G4VPhysicalVolume* pMother,

G4Material *material, G4double stepmax,

G4String cyliname, G4double cylilength,

G4double cyliradmax, G4int cylinumrings)

Figure 4 shows a set of six parabolic lenses in the center of a complex magnetic
system. The lenses are placed to mitigate the e�ect of the decrease in hpzi
at large radii in a magnetic �eld 
ip region, using an emittance exchange
mechanism.

Wedge absorbers are also useful in some cases. They can be easily constructed
using the Geant4 trapezoid shape G4Trap.

3.6 Sensitive Detectors

The sensitive detectors are empty software volumes which only provide bound-
aries, that is a volume transition, to force the stepper to make a pause and
allow the user to execute some actions through UserSteppingAction. Sensi-
tive detectors may also be used to force a change in the maximum step size to
help the stepper not to miss an abrupt and short change in the electromagnetic
�eld.

The Beam Tools provide a class of BTSensDetGrid objects, which are con-
structed from sensitive detectors previously de�ned in the detector construc-
tion user methods. Typically, these objects are accessed in UserSteppingAction
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Fig. 4. Left: cooling unit cell composed of a solenoid (blue), surrounding the r.f.
system (red) and the cylindric absorber vessel (grey). Right: six parabolic lenses
inside a complex magnetic �eld.

to study the beam at di�erent locations along the accelerator. A BTSensDetGrid

object has information about the volume a particle traverses immediately be-
fore reaching its boundaries (G4VPhysicalVolume *pFVol), as well as a unique
identi�cation number G4int iud. The constructor also takes a pointer to the
sensitive detector mother volume, a pointer to the sensitive detector physical
volume, and a name.

BTSensDetGrid(const G4VPhysicalVolume *pTMother,

const G4VPhysicalVolume *pFVol,

const G4VPhysicalVolume *pDet, G4int iud,

char* title);

3.7 Data Cards for Input Parameters

The Beam Tools use a native input parameter handler instead of the Geant4
messenger classes. This allows the user to pass parameter information to the
simulation at run time. No compilation or linking is needed upon a modi�ca-
tion of the parameter values in the input parameter �le.

4 Applications to Neutrino Factory Feasibility Studies

The neutrino beam in a Neutrino Factory would be the product of the decay
of a low emittance muon beam. Muons would be the result of pion decay,
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and pions would be the product of the interaction of an intense proton beam
with a carbon or mercury target. Thus the challenge in the design and con-
struction of a Neutrino Source is the muon cooling section, aimed at reducing
the transverse phase space by a factor of ten, to a transverse emittance of
approximately "x �1 cm.

The ionization cooling technique, uses a combination of linacs and light ab-
sorbers to reduce the transverse momentum and size of the beam, while keep-
ing the longitudinal momentum under control. There are two competing terms
contributing to the change of transverse emittance "x along the channel:

d"x
dz

= �
"x

Ltrans

+ f

 
�?

�3Em�LR

!
: (5)

The �rst is a cooling term, associated with the process of energy loss, and the
second is a heating term related to multiple scattering. In Eq. 5, � = v=c,
Ltrans = �2E dz

dE
, �? = 2pc

eB
, and LR is the absorber radiation length. �? = 2pc

eB
,

or \beta function", is a measure of the amplitude of the periodic transverse
motion of the beam in the array of magnets.

Some of the ionization cooling systems recently studied with the Beam Tools
are described brie
y in the following sections. These examples are chosen to
illustrate speci�c features of the available tools.

4.1 The Double Flip Cooling Channel (See Ref. [10])

The double 
ip cooling channel is a system consisting of three homogeneous
solenoids with two �eld-
ip sections. The �rst 
ip occurs at a relatively small
magnetic �eld, B=3 T, to keep the longitudinal motion under control. The �eld
is then increased adiabatically from -3 to -7 T, and a second �eld 
ip performed
at B=7 T. Figure 6 shows a side view of a lattice unit cell, consisting of a six
201 MHz Pill Box cavities linac and one liquid hydrogen absorber, inside a
solenoid. Details on the design and performance of this channel are available
in Ref. [10,11]. Figure 5 illustrates the cooling e�ect, that is the reduction of
the x (y) and py (px) distributions associated with the beam as it traverses
the channel.

4.2 The Helical Channel (See Ref. [12])

The helical channel cools both in the transverse and longitudinal directions.
The lattice is based on a long solenoid with the addition of a rotating trans-
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Fig. 5. The reduction of the x (y) and py (px) distributions associated with the
beam is apparent as it traverses the double 
ip cooling channel.
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verse dipole �eld, lithium hydride wedge absorbers, and 201 MHz r.f. cavi-
ties. Figure 4.4 shows a side view of the helical channel, including the wedge
absorbers, ideal (thin) r.f. cavities, and the trajectory of the reference par-
ticle. The design details and performance of this channel are described in
Ref. [12,13].

4.3 The Low Frequency Channel (See Ref. [14])

This is a design based on 44/88 MHz r.f. technology. A unit cell is composed
of four solenoids embedded in four r.f. cavities, followed by a liquid hydrogen
absorber. Figure 2 shows a unit cell of the low frequency channel, including the
solenoids, the absorber, and the relevant section of the r.f. �eld map (inside the
magnets). More information about this channel may be found in Ref. [14,15].

4.4 Other Systems

Among other simulations performed with the Beam Tools for Geant4 we
may cite: the Alternate Solenoid Channel (sFoFo) [16], and a High Frequency
Buncher/Phase Rotator scheme for the neutrino factory [17{19].

Fig. 6. Left: side view of the double 
ip channel unit cell, including the solenoid,
the six Pill Box cavities, and the absorber. Right: image of the simulated helical
channel, including the wedge absorbers (yellow and green), ideal (thin) r.f. cavities
(blue), and the trajectory of the reference particle (red).
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5 Summary

The Beam Physics Tools for Geant4 are used in numerous accelerator studies,
reported in conference proceedings and proposals. Geant4 is especially suited
to systems where accelerators, shielding, and detectors must be studied jointly
with a simulation. The Beam Tool libraries, a software reference manual, and
a user's guide, are available from the Fermilab Geant4 web page [20].

We thank Mark Fischler, for contributing the data cards and and spline �t
classes, Je� Kallenbach for helping with visualization issues, and Walter Brown
for providing C++ consultancy. We are also grateful to the Geant4 Collabo-
ration for useful discussions. In particular, we thank J. Apostolakis, M. Asai,
G. Cosmo, V. Grichine, M. Maire, and L. Urban.
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