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ABSTRACT

We present halo model predictions for the expected angular clustering and associated errors from the completed
Sloan Digital Sky Survey (SDSS) photometric galaxy sample. These results are used to constrain halo model
parameters under the assumption of a fiR&DM cosmology using standard Fisher matrix techniques. Given
the ability of the five-color SDSS photometry to separate galaxies into sub-populations by intrinsic color, we also
use extensions of the standard halo model formalism to calculate the expected clustering of red and blue galaxy
sub-populations as a further test of the galaxy evolution included in the semi-analytic methods for populating
dark matter halos with galaxies. The extremely small sample variance and Poisson errors from the completed
SDSS survey should result in very impressive constraits{ 10%) on the halo model parameters for a simple
magnitude-limited sample and should provide an extremely useful check on the behavior of current and future N-
body simulations and semi-analytic techniques. We also show that similar constraints are possible using a narrow
selection function, as would be possible using photometric redshifts, without making linear assumptions regarding
the evolution of the underlying power spectra. In both cases, we explore the effects of uncertainty in the selection
function on the resulting constraints and the degeneracies between various combinations of parameters.

Subject headingdarge scale structure; cosmology; galaxies:halos; galaxies:evolution

1. INTRODUCTION demonstrated not only the remarkable quality of data possible
with a fully digital large area survey but also the enormous
statistical power which will be available from such a combi-
nation of large area and depth of redshift. At the same time,
he constraints on cosmological paramet&lg (Qn, g, etc.)

ave been improved by recent measurements of the CMB (cf.
Pryke et al. (2001)) and large scale structure measurements (cf.
Tegmark et al. (2001)) to the extent that we can reasonably
consider the details of galaxy clustering and evolution in the
context of a fixed cosmology.

The simultaneous development of these powerful tools for
exploring galaxy clustering and evolution leads one to consider
the possibilities for testing the predictions from the halo model
eled by relatively simple semi-analytic methods (Kauffmann et against the futu're prospects of the data. T_oward this end, we

present calculations of the expected constraints on the halo model

al., 1999; Somerville & Primack, 1999; Benson et al., 2000). In .
addition to determining where galaxies form within a dark mat- parameters from measurements of the angular clustering of galax-

ter halo, these methods can also give estimates of the morphol!€S for the completed SDSS survey. Since we wish to test not
ogy, color, and star formation rates for galaxies, under certain on[y the ability of the halo'model to predlctgeneral galaxy clus-
assijmptio,ns ' tering but also the modeling of galaxy evolution, we extend the

The development of these prescriptions for the distribution general calculatiqn toinclude cluste_ring ofthe expecteq red and
of dark matter and galaxies has allowed for the calculation both blu_e sub-populations. The explolranon of s_ub-populanon CI“S.'
the real-space two-point functions (Sheth & Jain, 1997; Jing tering has been done to a certain extent in the SDSS redshift
et al., 1998; Bacock & Smitr2000) and power spectra (Sel-  Survey (Zehavi et al., 2001). However, many of the halo model
jak 2’000. écoccimarro et al., 2000: Ma & Fry, 2000), gen- parameters we will be investigating ?ffect the respective power
erating predictions for galaxy clustering statistics in both the spectra on small scalek %~ 1nMpc™), a region where spec-

linear and nonlinear regimes which are both physically well- troscopic surveys are plagued by redshift-space distortions and

motivated and quite simple. These treatments can be furtherobservational complications (e.g. the collisions between spec-

generalized to accommodate different galaxy population  oSCOpic fibers in the SDSS survey). Although these effects
clustering (Scranton, 2002; S02, hereafter), allowing for more can be mitigated to a certain extent by projecting the clustering
detailed calculations. ' ’ ' along the line of sight, one can achieve similar effects by con-

On the data side, the next generation of galaxy surveys, inS|der|ngthe angular clustering in the photometric catalog. This

particular the Sloan Digital Sky Survey (SDSS; York et al. 2000; approach alsq offers the benefit of a much deeper Iz>e{<q.3)
Gunn et al. 1998; Fukugita et al. 1996) haeeently begun at the clustering for all galaxies than the SDSS main galaxy

producing the anticipated large, rich galaxy catalogs. The ini- spectroscopic sample £ 0.1) is capable of delivering.

tial galaxy clustering measurements (Zehavi et al., 2001; Con- From the standpoint of the halo model, t.he Importance O.f
nolly et al., 2002; Scranton et al., 2002; Gaztanaga 2001) h‘,jweconstralnmg the h'alo model parameters with observations is
' ' ’ ' two-fold. The various components of the halo model (mass

In the standard picture of structure formation, initial pertur-
bations in the dark matter density collapse into halos (White
& Rees, 1978; White & Frenk, 1991) in a hierarchical man-
ner, starting at small mass scales and moving to larger masse
over time. Simulations of this process have found that these ha-
los have a self-similar shapes (Navarro, Frenk & White, 1996,
NFW, hereafter; Moore et al., 1998), provided that one allows
for some difference in central density for halos as a function of
mass (Navarro, Frenk & White, 1997). Following this distribu-
tion of dark matter, we expect the baryonic matter to fall into
these halos, cool and eventually form galaxies. This process
can be simulated as well and the results can likewise be mod-
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function, concentration, etc.) have all been parameterized inangular clustering for red and blue galaxies given simple com-
various ways and fit to the results of simulations which try to putational methods. However, by performing this seemingly
replicate the underlying physics as close as is feasible. Ourover-zealous calculation, we can determine which of the pa-
approach mirrors those efforts, replacing the simulation input rameters are well-constrained by the angular correlations and
with expected measurements on the sky. From the standpointvhich might be fixed without significantly affecting the errors
of the halo model as a theoretical construct, this sort of con- on the other more sensitive parameters.

straint will provide an invaluable check on whether the param-

eterizations coming out of simulations reasonably correspond 2.1. Dark Matter Halo Parameters

to the data on the sky. If so, then we have a powerful tool for
analytic calculations and future insight into the development of
large scale structure and galaxy evolution. If not, we can isolate
those parts of the formalism have failed (determining that the
disagreement between simulation outputs and the observations p(r) = Ps (1)
is due to a failure in the assignment of galaxies to halos rather (r/rs)™ (1+ r/rs)(3+°‘)

than the halo mass function, for instance). This feeds into the

second aspect of the constraints: improving future S|mulat|ons.Can replace's by a concentrationg = ry /rs, wherer, is the

The simulations carry greater information about the underlying virial radius. This radius is defined as the radius encompassing

physics than is present in the parameterizations that feed into, oiqn \yithin which the fractional overdensity of the halp
the halo model calculations. Replacing simulation constraints

on the halo model parameters with ones taken from the data(Eke’ etal,, 1996) scales as

Beginning with the general halo parameters, the fundamental
unit of the halo model is the halo profile. This can be parame-
terized along the lines of the profile derived by NFW,

wherers is the universal scale radius apg = 23*%p(rs). We

should indicate which aspects of the physics that are included Ay (2) = 18 (Qu(2) ), 2)
in the simulations are necessary to generate the observed clusyhereQy(z) is the matter density relative to the critical density
tering and evolution and what might be ignored. for a given redshift,

In §2, we review the basics of the halo model and the aug- 1
mentations necessary to calculate sub-population power spec- Om(z) = [ n 1-Qum ] 3)
tra, establishing the fiducial set of model parameters we will (1+2z°3%Qm|

use for all our calculations. With this laid 048 discusses the ¢ is the matter density today relative to the critical density,
two types of selection functions we will use to project the three- ;4 \we have chosen/sCDM cosmology wherey + Qp =
dimensional galaxy clustering onto the sk¥.briefly discusses 1 The concentration is a weak function of halo mass (

the formalism for calculating the angular correlations as well co(M/M,)PB, wherecy ~ 0(10) andp ~ —0(10~1)). The tradi-
as the corresponding covariance matrices and the additional injgna| NFW profile givesa = —1, while the Moore profile has

formation needed to account for uncertainties in the selection ; _ —3/2. We will usea = —1.3 for the calculations in this pa-
function. These angular correlations are converted into angularper, but the general results are largely insensitive to the choice
biases i5, with their own attendant covariance matrix. These of a. Bullock et al. (2001) gives, = 9 for a pure NFW profile:

are then fed into the Fisher matrix formalism described@n using Peacock & Smith’s relatiomy ~ 4.5 for a Moore pro—,

to produce constraints ogach of the parameters. Finallyy file. Since we are using an intermediate valueipfve choose
discusses the results of these calculations, the expected eITOrS) — 6 and = —0.15 for all the calculations in this paper. In
and degeneracies on each of the halo model parameters. order to generate power spectra at a variety of redshifts, we also

scale the concentration s~ (1+ z)—l for a given redshift,
2. THE FIDUCIAL MODEL as in Bullock et al. (2001).

For the purpose of calculating the power spectra that will Once we know how the mass in a halo is distributed, we need
feed into our angular correlations, there are two broad classed0 know how many halos of a given mass we expect to find,
of parameters we will consider (we leave the details of how the i.e. the halo mass function. Traditionally, this mass function is
parameters combine to produce power spectra to Appendix A).expressed in terms of a functiditv),

First, we have the general halo model parameters which de- dn )
scribe the overall dark matter halo profile and biasing. These gudM = fviav, 4)

parameters have been measured from a number of N-body sim- dM. . . .
ulations and we will adopt conventional values wherev relates the minimum spherical over-density that has

The second set of parameters describes the halo occupatioff®!2PSed at a given redShI'\?& and the rms spherical fluctua-
density: the abundance and distribution of galaxies (and galaxy!'OnS containing massl (o(M)) as
sub-populations) in the halos. As mentioned previously, a va- 5 \?
riety of semi-analytic techniques have been applied to N-body V= (0(M)) ; ()
simulations. For the purpose of our calculations, we will use _ . . . ,
the outputs of the GIF simulations (Kauffmann et al., 1999) This can be generalized for an arbitrary redshift by taking the
which have been generated using the SDSS magnitudes. Thesforms from Navarro, Frenk and White (1997),
particular implementations of the GIF methodology have not 3 2/3 0.0055
been the subject of extensive inquiry in the literature, giving Oc(2) = 2_0(12”) / (Qm(2) ) 6)
us more flexibility to explore the parameterization possibilities. 44 scalings(M) asa(M, 2) = o(M, 0)D(z) whereD(z) is the
Further, given the relatively light computational load of cal- |inear growth factor for a given redshiftnormalized to unity
culating eventual constraints on these parameters, we will al-5; ; — 9. \we defineM, as the mass correspondingio= 1.
low ourselves a generous parameter space, larger, in fact, thafpe fynctional form forf (v) is traditionally given by the Press-
could easily be constrained by an actual measurement of thegcnechter function (1974). This form tends to over-predict the
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number of halos below,, so we use the form found from TABLE 1
simulations by Sheth and Tormen (1997), FIDUCIAL MODEL PARAMETERS
VE(V) ~ (LHv P22 @) Class Parameter Value
whereVv’ = av, a= 0.707 andp = 0.3. This gives us a total Dark Matter Halo a -1.3
of five general halo model parameters we might constrain with Co 6
angular measurements; co, 3, a andp. B (?-71057
a .
2.2. Galaxy Parameters p 0.3
. . : Galaxy HOD T 50.6
As described in Appendix A, to calculate the galaxy power n 3
spectrum, we need to know the mean number of galaxies for Mr 1.8x 108h~1M
a given halo mass(N)(M)) and the second moment of the VR ’ 11 ©
galaxy distribution{N(N — 1)) (M)). Following the example in M 4.9 10i2h_lM
S02, we will generate different power spectra for red and blue MRO 5 '34 1013h—1M®
galaxies by using differentN) relations for each of the sub- B 2 x 0.93 ©
populations as well as changing the distribution of the galaxies YA\B 0.65
within each halo. Before $#ing on the specific values of the 6 6
respective parameters, we need to establish some necessary for- I\flg 1 l. 73
malism. s .
Figure 1 shows the measurementgdj(M) taken from the Mo (1)22%
GIF simulations for red and blue galaxies. As in S02, we can Oa -

parameterize théN)(M) relations as modified power laws. In
the case of red galaxies, the power law is cut-off by a lower
mass limit Mro),

YR 1/2
(N)R(M) = (MﬂR) e_(MRO/M)/ . (8)

For the blue galaxies, the modification is a bit more involved, AS mentioned above, we must also adopt a form for the second
including a Gaussian term to account for low-mass halos with mrgdert]i:eO:efgjltil?éﬁ?:é“g;égé?c?mlgzr(gﬂe)f ;In é%%l;vag?gh )
a single blue galaxy. Thus, o M) relation is _ )
9 galaxy. yB(N>B( ) lated (N(N — 1)) to (N) as(N(N — 1))(M) = o (M)}{N)2(M),
<N>B(M) = (ﬂ) +Ae_A0(|°g(M)_MBs)2. (9) where
v 1 M > 1013h~ Mg,
G|\/|(M) =

log (\/M/lollh—lM@) M < 1013h~1M,

L e e (10)
INCL(M) = (M/M )vRe(-vMRolM) This gives the galaxies the Poisson di'stri.bution_ at Iarg'e mass

R = and sub-Poisson distribution observed in simulations. Since the
mass dependence of; can significantly affect the small scale
power, we would like to include this effect in our parameter
constraints. However, to make the form easier to incorporate
into our later Fisher matrix formalism, we use a sigmoid func-
tion,

NOTES.—Galaxy Halo Occupation Density (HOD) parameters
taken from GIF simulations &= 0.27. Red galaxies taken to
haveg —i’ > 0.85 in rest frame colors.

-1
GM(M) = |1+ e(l‘)g(M)—Mu)/ou , (]_1)

whereMy andoy are chosen to match the behavior in the GIF
simulations (fitting to match the behavior in Equation 10 results
in values of 12 and 0.45 foMy andog, respectively).

While Equations 8 and 9 are sufficient to describe the ex-
pected number of red and blue galaxies in a halo of given mass,
they do not suffice to match the observation that red and blue
galaxies have different radial distributions within a given halo,
with red galaxies tending to populate the halo center and blue
et galaxies the outer regions. To generate different distributions

1 for our red and blue galaxies within each halo, we follow the
Halo Mass [log,h™ M method outlined in S02, using profiles of the form given in
Equation 1 as the distribution functions for the red and blue

=
S}
LELRLLLL I LU B |

I:N%(M) — (M/M B)VB + Ae—Ao(Iog M- Mg)

sola|]
Fic. 1.—(N)(M) for red and blue galaxies as measured &t0.27 in the

GIF simulations. The solid lines indicate the valuegisjr and(N)g using galaxies within each halo. In principle, one could construct
the forms in Equations 8 and 9 and parameter values in Table 1. The errorbars distribution functions for each of the galaxy spbpulations
in both cases represent the Poisson errors in each mass bin. from observations of their relative abundances at a number of

radii. However, by assuming a form for the distributions, the
power-law indices and relative normalizations of these distri-
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butions are effectively determined by considering two param-
eters: the ratio of blue to red galaxies at large halo ragii (
and the inverse ratio at small radji)( Since these ratios re-
late to the number of galaxies, rather than the mass assigned to
the galaxies, we have to transform these quantities through our
(N) relations from Equations 8 and 9 in order to maintain mass
conservation within the halo. Thus, we defifleand|l as

1

n/ — {n _Ae_AO(|OQ(MR)—MBS)2:| /¥e m_s (12)
_ Ao(log(Mg)—Mgg2) ] VR MR

H= {“(HAG )} Mg’

For large radii, the profiles will both scale ps- r =3, son’ sets
the relative normalization directly:

PSR Ps (13)

=71
!

- n’—I—lpS’

The choice of radiusr() for the measurement @fis somewhat

arbitrary, so we follow S02 in settingc/ry = 0.1, (wherec is

the halo concentration and is the virial radius) for our calcu-

lations. This gives us the difference in the power law indices

for the red and blue galaxieAd),

I/

log(K'n’) Caa
log(1+ric/ry) —log(ric/ry)
With this relation betweenr andag in hand, we can perform
a simple search over values @f to find the sub-profiles that
combine to closest match an overall profile with a given value
of a. Since we know thaf\a must be positive, this relation
guarantees a flatter distribution of blue galaxies in the center
of halos relative to red galaxies and Equation 13 produces rela-
tively more blue galaxies in the outer regions.

With this formalism in place, the only elements missing are
actual values for the parameters in Equations 8, 9, 11, and 12.
Since we need théN) relations to calibratg, n, My andoy,
we begin with(N)r and(N)g.

Typically, the(N) relations are determined from simulations
using very wide or open ended magnitude cuts. However, as
shown in Figure 2, we can see that the shape of Mierela-
tions can change quite dramatically if we consider only a nar-
row range in apparent magnitude (like those described later in
§3), particularly the location of the Gaussian component. As a
consequence of this complication, any constraints made on the
parameters ifN)r(M) and(N)g(M) from a given magnitude
cut will not accurately describe the complete number-mass re-
lationships. This situation can be salvaged to some extent how-
ever, based upon the fact that shape of the number-mass surface
does not appear to vary strongly with redshift (the entire surface
does shift to fainter magnitudes with increasing redshift, as one
would expect for apparent magnitudes). Thus, with a volume
limited sample, one could in principle constrain the entire sur-
face with a series of magnitude limited measurements.

Leaving aside these concerns, we can fit the parameters in

PsB

A0 =dg —0ORr =

Equations 8 and 9 for the magnitude cutih (20< r’ < 21) Fic. 2.—(N) as a function of halo virial mass amtimagnitude from the
gy GIF simulations az= 0.06. From top to bottom, the panels give the surfaces

. ’ . for all galaxies, blue galaxies (rest framge- i’ < 0.85) and red galaxies (rest
The results of these fits are shown in Table 1; a comparisonframeg — i’ > 0.85), respectively. Contours correspond to a change in 0.25

of the fits to the outputs of the simulations and a discussion of for log((N}). Filled contours indicate logN}) > 0 and wire-frame contours
the color cut used are given in Appendix B. The parameters indicate log(N)) <.

for a typical peak redshift in the selection functionzat 0.3.

listed show a significant difference from previous similar fits
(e.g Scoccimarro et al. (2001)). This is not surprising, how-
ever, since our fits are made at higher redshift, resulting in a

log(mass)

log(mass)

log(mass)

15—

141

12F

10




Haln Mndel Canstrajnts from Angular Biases

1= s A T T T T =
L [~ LS 4
E AN ]
: \ T 3
0.8 T -
1R v 5
= F \ { T T 71
[ _ ]
2 F \1 A IRRE
Q H Va -
& 06f . E y: | ]
LL o L \ e [ ) 7
? E /\ ; A E
8 K st 1 .
8 0.4 g / I N =]
N . ~ ]
|1 e D
: % 1 1
oz2H ¢ ‘ =
[l - — — "Red" Galaxies ]
[ N - — - "Blue" Galaxies b
[ e ® Simulated Red Galaxie§
[ _ ’ A Simulated Blue Galaxie;
ok i gl el R

0.1 1 10 100

rcir
%

Fic. 3.— Comparison of fraction of red and blue galaxies as a function
of rc/ry. The lines give the distributions predicted from the sub-population
distributions discussed #PR.2 and the points show the distribution of galaxies
from the GIF simulations. For the simulated data, red galaxies were taken to
haveg’ —i' > 0.85 in the rest frame (see Appendix B for more details). Error
bars represent the Poisson error for all of the galaxies in a given radial bin,
scaled appropriately for the fractional comparison.

correspondingly higher mass scale for all of th& relations.

TABLE 2

REDSHIFT DISTRIBUTION PARAMETERS FOR A SIMPLE
MAGNITUDE CUT AND NARROW WINDOW DISTRIBUTION.

Distribution Galaxy Type| a 2 b
Magnitude Cut Early 26 037 33
Intermediate| 2.0 0.37 245
Late 098 04 228
All 128 042 294
Narrow Window Early 12 035 15
Intermediate| 12 0.3 15
Late 12 0.3 15
All 12 032 15

To project the three dimensional power spectrum onto the sky
we need to know the redshift distributions of the red and blue
galaxies in our sample. In order to separate the galaxies into red
and blue classes, we would need to have photometric redshift
information available on each galaxy, meaning that we could,
in principle, choose the galaxy sample to match any selection
function we desired within the bounds of the survey limits. Al-
ternatively, we could use the redshift distribution resulting from
a simple magnitude cut. The magnitude cut results in a some-
what broad distribution of redshifts, so we will use the arbitrary
redshift distribution to explore the effects of a much narrower
redshift window. In either case, however, we are limited by
the ability of the photometric redshift calculations to cleanly
separate our galaxy sample into red and blue types, which, in
turn, is limited by the photometric errors at a given magnitude.

Likewise, the narrow magnitude cut leads to a relative suppres-Based on early results from the photometric redshift work on

sion of the{N) relations at smaller halo mass giving larger val-
ues ofyg than have been reported previously. It is interesting,

the SDSS, the practical limit for reliable redshiftsiss 21.
For the case of a simple magnitude cut, we can follow the

however, that the combination of magnitude and redshift did method used by Dodelson et al (2001) in modifying the redshift

not significantly change th@N (N — 1)) mass scale, allowing us

to use similar values in Equation 11 as those matching the form
of Equation 10. At this redshift, we also observe a higher value

of win the inner regions of the halo, although the valuehof
is largely unchanged from the= 0 value in S02. To test this

set of parameters, we can compare the distribution of red and

blue galaxies in the simulation to that which we would predict
from our model. As we can see in Figure 3, this combination of

parameters reconstruct the halo galaxy distribution observed in

the simulations reasonably well.

Putting the parameters from Table 1 into our prescription for -
calculating the power spectra leads to the curves shown in Fig-

ure 4 forz= 0.3. As with thez= 0 power spectra in S02, there

is significant biasing in the red galaxy sample and anti-biasing

in the blue galaxies. Likewise, there is a similar (but weaker)
large k break in the blue power spectrum. The power spec-

trum for the whole galaxy sample shows a slight break around

k ~ 10hMpc~! which is not seen in the =0 case or in low
redshift observations (cf. Hamilton et al., 2000). At this small

scale, the power spectra are dominated by the smallest mas

halos which, in turn, are almost exclusively populated by blue

galaxies, particularly at higher redshifts. This suggests that we
should not be surprised to find a break in the power law behav-

ior of wxx (8) for a photometric redshift-selected galaxy sam-
ple.

3. REDSHIFT DISTRIBUTION
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FIG. 4.— Power spectra at= 0.3 for red Prr(k)) and blue Pag(k)) galax-
ies compared to the linear dark mattéy;{(k)) and galaxy Psg(k)) power
spectra.
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PN wherey is the comoving angular diameter distance dnds
/ \ the Bessel function. We could also consider the angular cross-
/ \ correlation between red and blue galaxies, but since we will be
Fmmi \ re-casting the angular correlations in terms of relative biases in
‘ §5, the cross-correlation will not yield any additional informa-
Sl <\ tion. The normalized redshift distributiongz(x) andFs(x),
S/ AN are given by

K4 / \\'\ l d dZ 2
7 N R0 = | o o]

1/N dN/dz

Nx dz dyx (47

n where
N dz 3 )
i |_’l\ &:Ho[Qm(l—l—Z) —I—QK(l—I—Z) —I—Q/\]
[RELE
| for a given Hubble constanHg), matter density@my), cosmo-
— — Red Galaxies Iogicgl constant_&()/\) and curyatures(zK =1-0m—Qp). As
L Blue Galaxies mentioned previously, we will use a flACDM model Qu =
HE ‘\ 0.3, Qp = 0.7,h=0.7) and normalize the linear power spec-
7)) trum such thabg = 0.9 andng = 1.

' - . - L - We can simplify Equation 16 by assuming a linear scaling re-
0 02 04 5 08 08 ! lation for the power spectruryx (k, X) = D?(X)Pxx (k), where

, _ e we chooseéxx (k) to have the shape of the power spectrum at
Fic. 5.— The top panel gives the normalized redshift distributions for all . . . S .

galaxies with 20< r’ < 21 and the red and blue sub-populations, as modified the peak redshift o (x). Making this substitution gives us
for SDSS colors from the CNOC2 survey. The bottom panel gives an example

of narrow redshift distributions possible for a sample of galaxies using photo- ~ Wxx (6) = 4T[2/ dkkRx (K) / dxFx (X)D?(X)Jo(kOX). (19)
metric redshifts.

1/2 (18)

il All Galaxies

1/N dN/dz

The results of performing this calculation for the three power

o ) spectra and the two sets of selection function are shown in
distributions found from the CNOC2 survey (Lin et al, 2000) to Figure 6. In addition to the assumption of linear power spec-

match the SDSS filters. The redshift distributions for red and tyym scaling, we also truncate our integral over wavenumber at
blue galaxies (taken from Lin’s early type and the combination y — 100hMpc1; this does not change the calculated values of
of intermediate and late types, respectively) can be seen in they,, (g) due to the flat shape of the kernel at snklland allows

left panel of Figure 5. Since these distribution functions are s to avoid any complication of the power spectrum shape due
taken from the morphological types rather than the color cut 5 haryon concentration in the innermost regions of the halo.

mentioned in Table 1 and Appendix B, we do not expect these  The price we pay for the assumption of linear power spec-
distributions to exactly match those found in the final SDSS {yym scaling is the neglect of any change in the shape of the
data, but they should give us a reasonable approximation. The
shape of these distributions can be well approximated by a func-
tion of the form

El

dd—NZX ~ zaexp(—(Z/ Zo)b) : (15) 1o

The fits to the parameters in this function for red and blue galax-  1¢*
ies with 20< r’ < 21 are given in Table 2. We also can use
this form to specify the shape of the narrow redshift distribu-
tion, adopting the second set of parameters in Table 2, result
ing in the redshift distributions shown in the right panel of Fig-
ure 5. By design, these artificial distributions have roughly the 4
same peak in redshift as the magnitude cut distributions, whict
should make the eventual comparison independent of evolutiot 1™ -~
effects in the power spectrum. In addition, they all avoid the re- ,
gion aroundz ~ 0.4 as much as possible. This is particularly 10
important due to the limitations of the photometric redshifts — 1o
available in with the SDSS filters; there is a degeneracy in the S ,
colors for early type galaxies near a redshift of 0.4 resultingin = *°

. b

—~
~ . 2
=

large uncertainty in the photometric redshift for these objects. 16 ; xi;s((g))
4. CALCULATING W(B) AND COVARIANCE MATRICES 16 B Wee(0)
4.1. Limber's Equation oy or e R "o
With the power spectra and selection functions in hand, we 8 (degrees)

can calculate the expected angular correlations for the red an'  Fic. 6.— Angular correlations for all galaxiesvga(6)), red galaxies

blue galaxies Wrr(0) andwgg(8), respectively) using Lim-  (Wrr(8)) and blue galaxieswg(6)). The upper panel shows the angular
ber’s equation: correlations for the magnitude-based selection function and the lower for the

1 photometric redshift selection function.
wox (6) = o= [ dkk [ dxFx(X)Pox (k ) %o(kEX)  (16)
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power spectrum at largeas a function of redshift due to non-  prescription given in Eisenstein & Zaldarriaga (2001) (as well
linear effects. For the photometric redshift selection functions, as similar treatments in Cooray & Hu (2001) and Scoccimarro,
this is not a serious problem, but the width of the magnitude- et al. (1999)). The sample variandg@d 6, 8')) consists of two
based selection function gives one pause, particularly when conparts, a component dependent only on the two-point angular
sidering the very small expected errogd.Q). However, given  correlation function (the Gaussian covariance) and a second
the nature of the surfaces in Figure 2, itis clear that any changespiece which is a function of the four-point angular correlation
in the shape of the power spectrum we might see will be a (the non-Gaussian covariance):

reflection of the changingN) relations as a function of red- Cs(6,0) = <(W(e) —W(B)) (W(8) —W(G’)))
shift. This makes our choice of fiducial model f(X)r and ’ . s
(N)g somewhat nebulous. We can see the effects of calculat- =Cg(6,6) +Cng(8,8). (20)

ing wxx (0) with and without the linear approximation for the In order to make the calculation simpler, we can re-write Equa-
two selection functions in Figure 7. As expected, the photo- tion 19 in terms of the angular power spectrufry (K)),

metric redshift selection function shows little to no effect even KdK

when we calculate the power spectrum using the ) and wxx (8) = | ——~Pxx(K)Jo(K8), (21)
(N(N — 1)) surfaces. For the magnitude selection selection
function, the results are identical when we hold {hg rela-
tions the same, but show strong deviations if we use(Mie 1 dxFx (X)
and(N(N — 1)) surfaces to calculatexx (6) without the linear Pxx (K) = —/dkax(k)Fx( )_/ X Pux (K). (22)
approximation. Fortunately, as we will see§n, the equiva- K X2

lent constraints obtained with the photometric redshift selection Using this formulation, we can write the Gaussian covariance
function make this concern moot. matrix (Cg(6,0')) as

/ l /
4.2. Covariance Matrices Cg(8,6) = %/dKKPﬁx(K)JO(KG)JO(KG ), (23)

Since we will need to account for the fact that the angular where the area of the survef{) is Tt steradians in the case of
bins in our measurement are going to be highly correlated, wethe SDSS.
must deal with the full covariance matrix and not just the ex-  To calculate the non-Gaussian component, we need to gen-
pected errors on each bin. For the expected Gaussianamd  erate an estimate of the trispectrum for our halo model. For-
Gaussian sample variance covariance matrices, we follow thetunately, as Cooray and Hu (2001) indicate, the majority of the
non-Gaussian covariance candwoeounted for by merely calcu-
lating the single halo contribution of the trispectrum. This term,
which is independent of configuration under the assumption of
spherical halos, is given by

T4X kla kZa k3a k4) - (24)

wherePxx (K) is given in angular wavenumber spa&e= k)
and

8 10
=4 = / [y(ke, M) ly(ke, M) [ly(ka. M) ly(ka, M) dv,
10°
where(N >( 4 = a,‘(’,,( Y4 under the assumptions in Equation 11.
10° = As with the case of the Gaussian component, we need to project
i the trispectrum into angular wavenumbeasg,
o ’ F)%x x)
; Tax(Ke, Ko Ka,Ka) = [ ax 2588 Tax(ba o ko). (25)
weEe T -
Finally, the angular trispectrum needs to be averaged over an
D 10? 1 - annulus in angular wavenumbersse,
\g [ | Linear evolution, fixedNO 3 2
° o 3 d?K; [ d2K,
16° B  Nonlinear evolution, fixedND — TXX Kl’K2 / / T4X Kl,Kl, Ko, KZ), (26)
B  Linear evolutionNOsurface L 3
- Nonlinear evolution{NUsurface - whereA is the area of the annulus. In the limit of narrow bin-
T T T I ning, we can approximafBxx (K1, K2) by calculating
0.001 0.01 0.1 1 10 e N) (4
0 (degrees) Txx (Ka, ko) = nﬁ/o ) M) Y2 (ki, M)y?(ko, M)dv, (27)

FIG. 7.— Angular correlations for all galaxiegi¢s(6)) under a number of . L
assumptions for power spectrum evolution. The black and red curves show the @Nd appropriately transforming into angular wavenumbacsp

angular correlations (and associated errors) which have been calculated usingWith this in hand, we can calculate the non-Gaussian compo-

the(N)r, (N)s anda relations given by Equations 8, 9 and 11 (respectively) nent of the sample variance using
and the parametervalues in Table 1. The black curve assumes the linear power

spectrum evolution in Equation 19, while the red curve calculateg 6) us- Cna(8, 91) = (28)
ing Equation 16. The blue and cyan curves take tkiir and (N(N — 1)} 1 —

relations taken directly from surfaces like those shown in Figure 2 (shifted in ——— / dKK/ dK'K'Txx (K, K')Jo(K8)Jo(K'®').
magnitude appropriately for a given redshift) to calculate the power spectrum 4meAq

under linear and non-linear assumptions of Equations 19 and 16, respectively.  As the final component of the statistical error, we can add a

The upper panel shows the angular correlations for the magnitude-based selec-p - / ;

tion function and the lower for the photometric redshift selection function. Poisson teerP(e’ © )) to the diagonal elements,
Cp(8,0) =

Ag
N269699 ) (29)
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' ' : ' ' ' ' ' ' the errors due to uncertainties in the selection function are in-
cluded, they quickly dominate the statistical errors on small an-
N gular scales in all but the most modest error regime.
Z
5 5. RELATIVE BIASES
§| In principle, the angular correlations we have calculated so
far are sufficient to calculate the parameter constraints. How-
’ ever, the range of values thaky (6) takes on as a function of
. . 0 can be a problem for numerical derivatives. To avoid that,
' we can instead use the angular biases given by the ratios of the
angular correlations,
N WRR(6)
2 RR
ke] bze(6) =
% WBB(G)
1% Variations WRR(0
2 30/2 Variations bZRG(e) = RR(9) (31)
— 5% Variations WeG(0)
10% Variations
wgg (0
o (6) = 2eB(®)
. T Wea(6)
0 0.2 0.4 0.6 0.8 1 wherewgg(0) is the angular correlation for all of the galaxies.

FiG. 8.— Variations in the redshift distribution function errors. The top As Figure 10 shows, thl-s switch not Only decreases the abSOIU-te
panel gives the variations for the magnitude-based selection function and the faNge of we must con3|d¢r, but also gives us more f,eatures In
bottom for the photometric redshift selection function. the curves to help determine the parameters. The price that we

pay for this improvement is an additional step in the calculation

of the covariance matrix we will use later §6. Likewise, the

larger amplitudenxx (8)’s for the photometric redshift based
whereN is the total number of galaxiedQ is the area of the  selection function (and commensurate larger values in the co-
angular bin andbg g is the standard Kronecker delta. For the variance matrix) results in proportionally larger errors on the
full photometric survey, the SDSS will contain on order 200 resulting relative biases.
m|II|0n objects. We can scale this appropriately for the<20 In order to properly determine the errors on the biases, we
r' < 21 magnitude cut fron§3, using 50 million galaxies for ~ need to take into consideration the correlations between the an-
the full sample and half that for each of the sub-samples. Forgular bins inwxx (6) as indicated by each correlation function’s
the photometric redshift selection function, we can combine it covariance matrix. To do this, we decompose the covariance
with the magnitude selection function, resulting in 8 million
galaxies within the redshift and magnitude ranges. TPt et

In addition to the statistical errors due to sample variance .l ' ' ' !

and shot noise, we need to consider the errors in our calcu

lation of the expected angular correlations due to uncertainty TS T

in the underlying redshift distribution. Indeed, §i, we will SIS T Il ]
see that, given the relatively large area observed and number ¢ " E \ \'\\'T'\
galaxies which will be in the final SDSS data set, the dominant C SO ]

source of error in our final constraints will come from the error
in the redshift distributions. To model the errors in the selec- *° F
tion function, we follow the treatment given in Dodelson et al. -
(2001). Since we do not have the exact errors for the param-
eter fits to the eventual redshift distributions, we will consider
errors on those parameters of 1, 3, 5 and 10 percent. Drawing
from 50,000 Monte Carlo realizations of the redshift distribu- — Poisson
tions with these variations, we can calculate the covariance o0 10° Gaussian \

the expected angular correlation functio® (6, 6')) and use _ - Qg?a%‘tﬁi'ﬁcnal AN
this to approximate the covariance from the redshift distribu- 1% dN/dz Errors N
tion uncertainty. Figure 8 shows the average deviation fromthe ;57— — 3% dN/dz Errors \ -

|
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magnitude cut redshift distribution for each of the parameter F ?o/‘é/odg',’f/ézEEﬁfrs \ 3
variation levels. Bringing these three pieces together gives us W T BT B A |

0.001 0.01 0.1 1 10

our final covariance matrix3(8, 6')) 0 (d
C=Cs+Cns+Cp+Cz. (30) (degrees)

Figure 9 shows the error inG(e) due to each term in the FiG. 9.— Statistical and selection function contributions to the error on

. . . wgg(0) for the magnitude-based selection function. For the photometric red-
covariance matrix as a function of angle. In the absence of se shift selection function, the results are similar for the Poisson, Gaussian and
lection function errors, the errors on the very smallest angu- selection function errors. The contribution from non-Gaussian sample error
lar scales are dominated by shot noise, giving way to Gaussiai is relatively stronger for the photometric selection function, tiilitremains
sample variance at Iarger angles Non-Gaussian sample var small enough to safely ignore in the total covariance matrix.

ance is small enough to ignore even at small angles. Wher
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matrix (C) into its eigenmodes, creating a bad® (vhere each
of the modes is independent and the variance on that mode i
given by the associated eigenvalag .(We can projectvxx (0)
into that basis as

Wxx (8) = RTwxx (), (32)
whereR" is the transpose d®. Since we require that the co-
variance matrix be positive definite, we set anyhich is nega-
tive due to numerical errors to zero and remove that mode fron
r'. Within this basis, we can create a set of Monte Carlo realiza-
tions of eachwxx (8)" which, when transformed back into the
angular basis, will have the correct covariance. Thus, the meal
ratios of these realizations will give us the values for Equa-
tion 32 with the proper correlation between angular bins and
the covariance between these realizations gives us the corre
errors on our relative biases.

6. FISHER MATRIX CALCULATION

To estimate the expected errors on the parameters in Table :
we can use the standard Fisher matrix formalism. Choosin¢
a fiducial set of parameters leads to a reference angular bia:
b?(8). We can approximate the likelihood for some variation of
the parameters as

1
—————exp|-=58(6)Cz(8,6)5(¢ ] , (33
Ik p|-30EIC5 @086 (39)
whereN is the number of angular bin€g(6, &') is the covari-
ance matrix for the angular biases from the Monte Carlo cal-
culations in§5, C is the determinant o€g(6,0') andd(8) =
(b2(8) — b?(6)). The Fisher matrix is related to the likelihood

function as
Fo dinL
GB - anaXB ’

and(F~1)qg gives us the covariance between paramedeasd
B marginalized over all other parameters, Wf(l’r’@g)‘l gives

(34)
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Fic. 10.— Relative angular biasd®g(0), bs(8) andbds(8) for the
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FiGc. 11.— Marginalized and unmarginalized erroéx @nd dx, respec-
tively) for each parameter in each of the selection function error regimes for
the magnitude-based selection function.

us the covariance without marginalizing over all other param-
eters. Plugging our likelihood function from Equation 33 into
Equation 34 gives us the Fisher matrix in terms of first deriva-
tives,
ab?(6) ab?(0')
i) oxg

In principle, only two of the relative biases given in Equa-
tion 32 would be necessary to constrain the halo model param-
eters. However, given the amplitude of the errors when the ef-
fects of errors in the selection function are included (particu-
larly in the 10% case), we find a more stable solution when us-
ing all three relative biases. This makes bfi(6) a concatena-
tion of bag(6), b35(8) andb3s(6) and requires us to calculate
a joint covariance matrix for all biases. In order to eliminate
the presence of singular modes in this joint matrix, we only
consider those angular bins frobdg(0), bag(8) andb3s(0)
which have errors less than the amplitude of the bias in all three
measurements, reducing our number of angular bins by about
one third. The addition of the third relative bias does result in
some degenerate modes in our covariance matrix, but a standard
singular value decomposition routine can handle these modes
adequately, resulting in numerically identical Fisher matrices
for either 2 or 3 relative biases in the small selection function
error cases.

In addition to these concerns, there is also the need to use a
sufficient number of Monte Carlo realizations to ensure that the
statistical noise from the realization (which goesdas 1/v/N
for N realizations) is sufficiently low to allow for an accurate
numerical calculation of the derivatives in Equation 35. To meet
this requirement, we used one million Monte Carlo realizations

C;'(8,9)

Fap (35)

magnitude-based selection function (upper panel) and the photometric redshift for each derivative calculation, achieving a statistical noise in

selection function (lower panel).

the derivatives on order.0%. Given this level of precision,
we calculated the derivatives using centered derivatives with
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FIG. 12.— Same as Figure 11, but for the photometric redshift selection
function.

a typical step size/x/x = &'/3) of 10% for each parameter.
Given the much larger absolute value\dg, Mg, andMgo than
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sive for the magnitude-based selection function, the errors us-
ing this selection function are more robust against errors in the
selection function. In general, we can see that there is not an
enormous difference in expected fractional error between the
two selection functions for most parameters. The magnitude-
based selection function appears to be marginally more robust
against increasing selection function error. This probably does
not compensate for the short-comings of making the linear as-
sumption shown in Figure 7, but is worth bearing in mind if
there is significant error in the photometric redshift (e.g. large
errors due to color degeneracies).

For the general halo model parameters, the expected errors
are quite small. Indeed, given the disparity between values of
a for the NFW and Moore profiles, as well as the scatter on
the concentration parameter listed in Bullock et al. (2001), it
is possible that the expected errors on these parameters could
be smaller than the associated errors from simulations. For the
sub-population parameters, the expected errong andp are
larger than the Poisson errors on these parameters from the GIF
simulations. However, they should be sufficient to determine
that they are different from unity, and hence the usefulness of
the formalism developed i§2.2. The shape of the Gaussian
component (as given b& andAg) in (N)g is not as well de-
termined by the angular correlations as by the simulations, but
the errors on the mass scales and power law indides Mg,

Mro, Mgs, Yr @andyg) should be. Finally, the mass scale for the
deviation from a Poisson distributionin tkid (N — 1)) relation
(Mq) should be constrained as well from the angular correla-
tions as in the simulations, but the rate of that deviatmy) {s

not. As in the case oA andAg, this constraint may improve

the remainder of our parameters, we calculated the estimatedliven a different set ofN) parameters.
constraint on the logarithm of each of these parameters, rather

than the full value. Because of this transformation we reduced

the step size for these parameters (as welgs and M) to
5%. The accuracy of the rdsimg Fisher matrix was verified by
comparison with a Fisher matrix calculated from the estimates
of the noise in each derivative, typically résng in a noise on
the diagonal of the Fisher matrix of less than half a percent.

7. RESULTS

As with any such calculation, there are essentially two ques-
tions to be addressed: what is the expected magnitude of the e
rors on each parameter and what are the expected degenerac

between the various parameters. We will take these questior -

in turn.

7.1. Error Magnitudes

Figures 11 and 12 give the fractional errodg/x anddx/x)
for each of the selection functions and selection function error
regimes, where we takix to be the marginalized error on pa-
rameterx, anddx to be the unmarginalized error:
(0%)? = (F M
(3%)% = (Fu) L.
The immediately striking aspect of each of these plots is the
minuscule expected error in I0dg), log(MR) and lodMRgo),
particularly in the right panel. This is to be expected, how-
ever, since these are the fractional errors in logarithmic quanti
ties. Translated to errors on the actual mass scales, these cc
respond to roughly 1% marginalized errors for both selection
functions in the absence of selection function error. Addition-
ally, we can see that, while the fractional errors are less impres

(36)

7.2. Parameter Degeneracies
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FiG. 13.— Expected error ellipses for four combinations of parameters, nor-
malized by the respective parameter values, for the magnitude-based selection
function. Clockwise from upper leffivs.n, My vs. 0q, avs. p andcg vs. .

Similar results were obtained for the photometric redshift selection function,
with the exception of the vsn plot, which was nearly orthogonal.
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There are two means by which we can examine the degenerathis behavior is fairly consistent for all of the various parame-
cies between the various halo model parameters. First, we carter combinations, with the exception of the 10% error regime.
look at the error ellipses between various parameters we expectn this case, where the covariance on the angular bias is most
to be correlated (e.g1& N, co & B, Mg & 04). While useful for strongly influenced by the selection function error, there are a
considering particular pairs of parameters, this approach doesnumber of parameter combinationdg andMg, for instance)
not reveal the full extent of the correlations between all the pa- where the 10% error ellipses were significantly rotated from the
rameters. To examine this, we can decompose the Fisher matriother ellipses, as much as 90 degrees in some cases. Likewise,
into its eigenvectors. Provided the Fisher matrix is not singular, the behavior of the 10% ellipse for a given pair of parameters
these eigenvectors define a basis of orthogonal combinations ofor the magnitude-based selection function appeared to be of
parameters and tell us which combinations of halo parameterslittle use in predicting the orientation of the same error regime

are naturally constrained by the angular correlations. in the photometric redshift selection function.

The error ellipse foreach pair of parameters can be con-  Having figuratively tested the waters with the error ellipses,
structed taking the four corresponding elements-pfnvert- we can move on to the more daunting task of examining the
ing and decomposing the resulting matrix into its eigencompo- eigenbases for the various Fisher matrices to determine the pa-
nents. This effectively fixes all of the other parameters,ire- rameter combinations that our measurements best constrain. Ta-
sulting in errors oreach parameter on order thosefid by tak- bles 3 and 4 give the eigenbases for the two selection functions

ing (Fxx) ~Y/2. Figure 13 gives the expected error ellipses (nor- in the limit of no selection function error. In both cases, we have
malized by the respective parameter values) for the three com4gnored those parameters éach eigenmode which contribute
binations of parameters listed above, as well as the expected erless than 2% to the total amplitude of the mode (i.e. all those
ror ellipse fora & p, in the limit of a perfect magnitude-based ~parameters whose eigenmode coefficegmtas|g | < 0.14). As
selection function. In all four cases, as with the other 149 com- one might have guessed, there are relatively few modes that are
binations of parameters, the shape of the error ellipse is notsimply determined by one or two halo parameters. The excep-
discernibly different for the two selection functions, although tions to this rule occur for the modes with the best and worst
the size will vary between selection functions according to the constraints, where we find strong constraints on simple combi-
relative values obx for the two selection functions. As we can  nations of a few parametergg( a and) contrasted with rel-
see, our model breaks most of the degeneracy betweaendn atively weaker constraints on single parametegs 1f, Ao and
seen in the model used in S02, resulting in a nearly orthogonally). Not surprisingly, members of this second set tend to also
error ellipse. In contrast, we can see rather strong correlationshave the worst fractional unmarginalized errors and vice versa
between the expected errors for our concentration relation.  for the elements of the first set.

In addition to looking at correlations between parameters, we Likewise, we can see some reflection of the error ellipses in
can also look at how those correlations vary as we increase thehe eigenbasis. The parameter paits n anda & p were very
contribution to our error calculations from the selection func- nearly uncorrelated in Figure 13 and we can see that these com-
tion. For the case oMy & 0y, We can see from Figure 14 binations of parameters do not appear in any of the eigenmodes
that, along with the expected increase in the size of the errorfor either of the Fisher matrices. Conversely, ig& o, pair
ellipse, there is also some degree of wavering in the degree ofalmost invariably appear together in the eigenmodes and with
correlation in the various error regimes. In general, we find that the expected relative signs and amplitudes. This is not a perfect

guide, however, given the correlation betwagrand 3 in the
error ellipses and the absence of an eigenmode containing both
! ' ! ' ! ' ! ' ! parameters.
When we add in errors due to selection function uncertainty,
_______ the effects are similar to those seen in the error ellipses. The
N Tl eigenmodes remain mostly unchanged with increasing selec-
7 - tion function error; the contribution of each parameter to a given
o002l K4 N ] eigenmode remains identical within 2% of the total eigen-
e E mode amplitude and appears to preserve the relative signs. Like-
P, ] wise, we see an increase in the error on each eigenmode as the
selection function error increases; errors increase by a factor
. of 2 for each 5% of selection function error. The one case of
significant change in the eigenbasis we do see is in the best
! . constrained eigenmodes; the degeneracy betweea and 3
K changes for both selection functions, leading to an idependent
-0.002}- E K4 = mode fora in the magnitude-base selection function and inde-
pendent modes for botfg andain the photometric case.

0.004— —1

s O !

do /o

N
L —— Perfect "~ . ]
------ 1% Error "~ _ .=
3% Error 8. CONCLUSION

-0.004f=. —. — 5% Error m .
T 10% Error As hoped, the eventual angular clustering measurements for

I - I - I - | - | red and blue galaxies should provide strong constraints-
o004 o002 dM 7M 0.002 0.004 10%) on a wide variety of halo model parameters. This remains
oo the case for moderate levels of uncertainty in the selection func-
FIG. 14.— Expected error ellipses fity & 04 using the magnitude-based  tion. In the limit of small selection function errors, we can
selection function in each of the five selection function error regimes. achieve similar constraints using both a magnitude and photo_
metric redshift based selection functions. This second approach
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different galaxy biasing by type and color on physical scales, Scranton, R., 2001, submitted to MNRASs{ro-ph/ 0108266)
rather than the angular ones presented here. Likewise, onéScranton, R. etal., 2002, submitted to Apdtfo-ph/ 0107416)
could readily construct alternative formulations of the power Seljak, U., 2000, MNRAS, 318, 203

spectrum (weighting by star formation rate or bulge-to-disk ra- Sheth, R. K. & Jain, B. 1997, MNRAS, 285, 231
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halo concentration and mass function. York, D. G., & The SDSS Collaboration 2000, AJ120, 157
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TABLE 3

FISHER EIGENMODES FOR MAGNITUDEBASED SELECTION FUNCTION

Parameter Basis

Expected Error

0.33r+0.844+04FPB | +1.13x10°7
0.55r-0.53+0.6B | +1.85x10°*
0.7%R-0.6PB | £6.79x 1074
-0.37logMg) - 0.19l0dMRo) + 0.53/5 - 0.28A + 0.55Mlgs + 0.270 + 0.163 | +8.99x 104
0.24logMR) + 0.21yg - 0.19A + 0.90My | +2.29x 1073
0.46lodMRg) + 0.3910dMRo) - 0.30yg + 0.24Vlgs + 0.4804 + 0.400 - 0.26a | +2.88x 10°°
-0.75lodMRo) - 0.2 + 0.24Mgs + 0.18Vq + 0.3604 + 0.28p | +£3.75x 10°°
-0.67lodMg) - 0.18/ + 0.23Vlgs + 0.3Mq + 0.2704 - 0.270 - 0.43p | £4.37x 1073
0.34logdMR) + 0.31logdMRo) + 0.19/5 + 0.38Vlgs- 0.7 + 0.21p | +4.92x 1073
-0.32lodMR) + 0.33lodMRgo) + 0.20/5 + 0.29A + 0.370, + 0.66p | +5.82x 103
0.41lodMg) + 0.62 + 0.29 - 0.33Vlgs + 0.3 - 0.32p | £821x 1073
0.48logMg) + 0.23Vlgs - 0.1%04 + 0.7%0 | +£1.66x 102
-0.55logMg) - 0.36Migs + 0.3104 - 0.310 - 0.20p + 0.5y | +2.04x 1072
-0.31logMg) + 0.80A + 0.26Vlgs - 0.3504 - 0.18p | £3.37x 1072

0.9 +0.20 +0.11

Ao +0.61

K +1.82

TABLE 4

FISHER EIGENMODES FOR PHOTOMETRIC REDSHIFT SELECTION FUNCTION

Parameter Basis Expected Error

0.85R-0.522 | +£1.44x10°*
052r +0.85 | +2.76x 1074
B | +4.89x10°%
-0.29logMg) - 0.17l0dMRo) + 0.40y5 - 0.18A + 0.359Wlgs + 0.200 + 0.710 | +8.23x 104
-0.30logMg) - 0.18lodMRo) + 0.4 - 0.24A + 0.41Mps - 0.660 | +£1.15x 10°3
0.28logMRgo) - 0.14yg + 0.26Vgs - 0.21My + 0.8304 - 0.170 - 0.15p | +2.28x 1073
0.16logMRg) + 0.25/5 - 0.29Mps + 0.80My + 0.370 | +3.38x 1073
-0.15logMg) + 0.68lodMg) - 0.42logdMgo) - 0.30yg + 0.2Mgs + 0.42p | £3.91x 103
0.25logMg) + 0.18lodMR) - 0.34ys - 0.39A + 0.46Mps + 0.41Mq - 0.170, - 0.46p | +4.23x 1073
0.56logMg) - 0.19logdMg) + 0.19l0gMgo) + 0.16y5 - 0.22A+ 0.2Mps + 0.68p | +5.19x 10~3
0.32logMg) + 0.50l0dMRo) + 0.25/ + 0.59 + 0.33Vlgs + 0.18My - 0.240 | +7.54x 1073
-0.45logMR) - 0.4910dMRo) - 0.2y + 0.53A + 0.31Mps + 0.2M, | +8.87x 10°°
0.60logMg) + 0.33logMg) - 0.36l0gMgo) + 0.485 + 0.18A-0.32p | £1.42x 102
Co | +£2.76x 1072

n +0.16

A +0.34

K +3.18
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APPENDIX A On large scales, the power spectrum is dominated by correla-
tions between galaxies in separate halos. We need to convolve
HALO MODEL POWER SPECTRA the halo profile with the mass function to account for the fact

. ] ) . that halos are not point-like objects. Since we are in Fourier
Reer“ng Equaﬂon 1in terms Of the concentration and the Space] we can perform the Convo'ution using s|mp|ﬁ|mu:a-

mass, we get tion. The halo-halo poweP% (k) is then simply,
Ps _
p(r,M) = = : (A1) ® N 2
(re/ry) ™ (1+rc/ry) >t PAR (k) = PLin (K) [9_/ f(v)ﬁb(v)y(k, M)dv| , (A9)
where nJo M(v)
3 _ 3M (A2) whereR v (k) is the linear dark matter power spectrum,
Y amayp’ (3(k)3(K')) = (238 (k — k') AL (K). (A10)
~ Dypc3(M) [ ) xre 17t A3 For small scales, the dominant contributionto the power spec-
- 3 /0 X (14x)%a] (A3) trum comes from correlations between galaxies withinthe same

halo. This single halo term is independenkadt larger scales,
giving it a Poisson-like behavior. In order to account for the
I1‘act that a single galaxy within a halo does not correlate with it-
self, we use the second moment of the galaxy number relation,
(N(N — 1)), to calculate the Poisson pow@&gg(k)),

p is the mean matter density amd is the mass of the halo.
Since we will be working in wavenumber space when we gener-
ate the power spectrum, we actually need to consider the Fourie
transform of the halo profile,

1 /v 5 sin(kr) _

y(kM) = = /0 amw?p(r, M) = =dr, (A4) PEL(K) = %/ fo) NN g myav. (A1)
where we have normalized over mass so fatM) = 1 and . n=Jo M
y(k>0,M) < 1. Note that this implies that(r > ry) = 0, trun- Seljak (2000) takeg = 2 for (N(N—1)) > 1 and{ = 1 for
cating the mass integration at the virial radius. This condition (N(N—1)) <1; thisis done t@ccount for the galaxy at the cen-
can be relaxed, provided that one scales the halo mass apprde€r of the halo in the limit of small number of galaxies. Adding
priately. PAR (k) andPEg(K), we recover the galaxy power spectrum at

With this in hand, we can move on to the next component all wavenumbersPeg(K).

of the halo model, the halo mass functiotin(dM). The form

of the mass function is given in Equation 7, but we need to A.1. Calculating Subpopulation Power Spectra

properly normalize it by requiring that With the modifications to the mass distributions which go
1/ dn B B into red and blue galaxies given by Equations 13 and 14, we
pJo d_MMdM - / fvidv=1, (AS) need to regeneratgk, M) for each profile. We also need to re-

tnormalizef(v) for each sulpopulation using Equation A8 to

for the dark matter distribution. On nonlinear scales, we expec . t _
P gccount for the differences iiN) andn:

the halos to cluster more strongly than the mass, and vice vers

for linear scales (Mo & White, 1996). This means we need to * (N)R NR
positively bias the clustering of the high mass halos relative to /0 M(v) fr(v)dv = D (A12)
the low mass halos. We can generate this sort of halo biasing ® (N _
scheme for the ST mass function using / Ii/|(>B) fg(v)dv = n:B
vi—1 2 0 v P
b(v) =1+ + D o (A6) Once this has been done, we can insert the above (along with
Oc Oc(1+V'P)

, the color-dependent halo profiles) into Equations A9 and A1l
In order for the eventual power spectrum to reduce to a linear generate the power spectra for red and blue galaxies:
power spectrum on large scales, we need to impose the further

constraint that PRR(K) [5 /°° (N)R ]2
® S — | = fr(v b(v)yr(k,M)dv| (A13
f(v)b(v)dv = 1, (A7) At~ [rdo RV iy PVR(CMIdV] - (AL3)
0
_[° N(N-1
requiring that the biased halos with mass greater tarbe PRr(K) =P fR(V)HWR(k’ M)|Cdv,
balanced out by anti-biased halos with mass less kharThis 0 RM(v) )
integral is satisfied automatically if we use Equation A6 and PO (k) p[® (N)B
have properly normalizeti(v). F’Eﬁ(k) = [E/o ( )M(V)b(V)YB(k,M)dV]
Using just these three components, we can generate the power - N(N—1
spectrum for the dark matter. However, in order to predict the PEs (k) = 5/ fB(V)MWB(k, M)|Sdv.
galaxy power spectrum, we need to know how many galaxies 0 NEM(v)

are in a given halo (under the assumption that the distribution og pefore. we generate the total power spechig(k) and

of galaxies in the halo follows the halo profile). Thes rela- Pas (K)) by taking the sum of these parts
tions are given in Equations 8 and 9. The inclusion of galaxies :

does change the normalization of Equation A5 to Prr(k) = PRR(K) + PRe(K) (A14)
® (N) n Pes (k) = PBS(K) + PEg (K).
——f(v)dv = =, A8
o iy v =3 (A8)

wherenis the mean number of galaxies gmi the mean mat-
ter density at redshift
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APPENDIX B progenitor halos are now satellite galaxies of the new halo and
remain associated with their original particles. In the GIF simu-
SUB-POPULATION SELECTION AND(N) PARAMETERS lation outputs used for our calculations, each catalog contained
~ 90,000 halos and~ 180,000 galaxies (of which- 35 000
For all of the parameter values related to the red and bluefe|| within our apparent magnitude cut).
galaxy HOD, we fit the relations in Equations 8, 9, and 11tothe  Once the positions of the individual galaxies within each halo
galaxy catalogs produced by the GIF simulations. The detailshave been set, the evolution of the stars in each galaxy can be
of the semi-analytic methods applied in the simulations can be determined. Even in the simplest terms, this requires a num-
found in Kaufmann et al. (1999), but we will briefly discuss ber of considerations: availability of cool gas, star formation
some of the relevant features here. . rate, supernovae feedback, initial stellar mass function, metal-
In the broadest strokes, semi-analytic methods like those ap-icity (this is held at solar levels throughout the calculations),
plied in the GIF simulations take the outputs of an N-body etc. In addition to these intra-galactic effects, there are also
cosmological simulation at a number of time-steps, determine merger effects (combination of two satellite galaxies or in-fall
where galaxies will have formed based on some prescriptionof satellite galaxies into the central halo galaxy) and the as-
and let the galaxies evolve from that point in time until the sociated creation of galaxy bulges and star-burst activity. All
present. In the case of the GIF simulations, the N-body sim- of these processes require tuning to one degree or another in
ulations were generated usiiktydra (Couchman, Thomas &  order to reasonably reproduce observed luminosity functions
Pearce, 1995), an adaptive particle-particle particle mesh codeand Tully-Fisher relations. Since future SDSS angular cluster-
written as part of the VIRGO collaboration. Four different cos- ing measurements discussed here will combine both the galaxy
mological models were used in the initial work, but, for the pur- eyolution and clustering aspects of the model (at a variety of
poses of the calculations in this paper, we only used\tbBM redshifts), they should serve as an excellent test for many as-
OUtpUtS QM =0.3,Q,=0.7, h= 0.7, Og = 09) with the SDSS pects of these treatments.
filters (not mentioned !n Kaufmann et al) These _simulations In Sp||tt|ng the GIF simulation ga|axy Cata|ogs into red and
are 141h~* Mpc on a side and have a mass resolution on order plue samples, we had two primary considerations. First, we
1011h_l|\/|®-_ . wanted to produce a selection method for the data that was ro-
At each time step used in the GIF simulations, a friends-of- pust in segregating what appear to be two rather distinct sub-
friends group finding routine with linking length 0.2 was ap- populations. Second, we wanted a criterion which could rea-
plied to the N-body outputs arehich group of 10 or more par-  sonably be applied to actual galaxies near the limit of our mag-
ticles was marked as a dark matter halo. The most bound memnjtude selection of’ = 21. The first of these requirements
ber of each such group was flagged as the central galaxy of themeant choosing a color cut that varied between the two pop-
halo. In subsequent time steps, previously determined halosylations slowly enough that passive evolution in galaxy colors
are checked against mergers with other halos. In the case of @ver the extent of the redshift range was relatively small. The

merger, the galaxy at the center of the most massive progenitolgther requirement meant restricting ourselves toghe’ and
halo is considered to be at the center of the combined halo and’ pands, as objects at the faint end of our magnitude cut will

the properties of that galaxy are transferred to the most boundgften fall below the detection thresholdihandZ.

particle of the new halo. Galaxies associated with less massive The data sets we considered for this selection consisted of
6 redshift epochsz = 0.06, 013, 027, 035, 042 and 052.
Figure 15 shows the distribution of rest-fragie-r’ andg’ — i’
colors for the galaxies at each of the redshift epochs. In both
cases, the distribution is roughly bimodal, with a spike of very
blue star-forming galaxies @t —r’ = ¢ —i’ ~ 0. There is not

an enormous difference between the two color distributions and
it is clear that a simple straight line cut will select a slightly
different population at higher redshift than at lower redshift.
However, given the wider distribution of — i’, we should suf-

fer from less difference with redshift than wigh— r’. With this

in mind, we split our sample at

g —i'=0.85 (B1)

We can test the effectiveness of our color selection by look-
ing at the variation of théN) surfaces as a function of redshift.
In Figure 16, we plot the surfaces for the whole galaxy sam-
ple. As mentioned i§2, the overall galaxy surface appears rea-
sonably static as a function of redshift and the sub-population
surfaces behave similarly. We can also see that the shifting in
apparent magnitude proceeds with redshift as we would expect.
For a more specific look at the possible evolution of {Né
relations as it applies to the calculations in this paper, we can
g-i shift the surface from each redshift regime appropriately for the
FIG. 15.— Color distributions as a function of redshift usgig-r' (upper) z~ 0.3 selection funCt'_On’ apply our magnitude C,UI and com-
andg — i (lower). pare the(N) curves. Figure 17 shows tH&) relations pro-
duced by this method for the= 0.06, 013, 027 and 035
epochs. TheN)g curves show no significant signs of evo-
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FiGc. 16.—(N) as a function of halo virial mass amtimagnitude from the

GIF simulations az = 0.06, 27 and 052 (top to bottom). As in Figure 2,

filled contours indicate logN}) > 0, wire-frame contours indicate 6iN})) <
0 and successive contours a change of 0.25 if{ 9.
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lution. There is some shift in the mass scales(fd}gr, both
Mg andMgo, but theyr is largely unchanged. In choosing our
fiducial model, we fit theN)r parameters from the= 0.27
epoch. While this behavior does make the modeling of Mie
relations more complicated than would be the case if the all the
surfaces were static, the prediction of a red galaxy distribution
evolving against a background of a static blue galaxy distribu-
tion is intriguing.

In addition to theN) relations, we can also check tiié¢(N—
1)) relations for evolution. As one might expect from Figure 17,
measurements dN(N — 1))r from the simulations were very
noisy and did not lend themselves to a reliable fit in the region
where one expects strong deviation from a Poisson distribution.
Rather, since we chose to use a univergal we fit My and
0q from Equation 11 usingN(N — 1)) and(N) measurement
of the blue sub-sample. This approach may miss some of the
evolution present in the red galaxy sample, but this seems un-
avoidable. Unlike in théN) measurements, more recent red-
shift epochs did show stronger Poisson behavior at lower mass
scales;Mq stayed roughly fixed, buty increased, leading to
a more gradual decreaseanry for lower mass halos. As with
(N)R, the effect was not dramatic, but did result in roughly dou-
bling o from thez= 0.06 epoch from its value for the= 0.35
epoch. As before, we chose the parameter fits usingth@27
surfaces for our fiducial model.



