Search for Long-lived Charged Massive Particles in $\bar{p}p$ Collisions at $\sqrt{s} = 1.8$ TeV

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
4 Brandeis University, Waltham, Massachusetts 02254
5 University of California at Davis, Davis, California 95616
6 University of California at Los Angeles, Los Angeles, California 90024
7 University of California at Santa Barbara, Santa Barbara, California 93106
8 Instituto de Física de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
9 Carnegie Mellon University, Pittsburgh, PA 15218
10 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
11 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
12 Duke University, Durham, North Carolina 27708
13 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
14 University of Florida, Gainesville, Florida 32611
15 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
16 University of Geneva, CH-1211 Geneva 4, Switzerland
17 Glasgow University, Glasgow G12 8QQ, United Kingdom
18 Harvard University, Cambridge, Massachusetts 02138
19 Hiroshima University, Higashi-Hiroshima 724, Japan
20 University of Illinois, Urbana, Illinois 61801
21 The Johns Hopkins University, Baltimore, Maryland 21218
22 Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
23 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
24 Center for High Energy Physics, Kyungpook National University, Taegu 702-701; Seoul National University, Seoul 151-742; and SungKyunKwan University, Suwon 440-746; Korea
25 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
26 University College London, London WC1E 6BT, United Kingdom
27 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
28 University of Michigan, Ann Arbor, Michigan 48109
29 Michigan State University, East Lansing, Michigan 48824
30 Institute for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
31 University of New Mexico, Albuquerque, New Mexico 87131
32 Northwestern University, Evanston, Illinois 60208
33 The Ohio State University, Columbus, Ohio 43210
34 Osaka City University, Osaka 588, Japan
35 University of Oxford, Oxford OX1 3RH, United Kingdom
36 Università di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
37 University of Pennsylvania, Philadelphia, Pennsylvania 19104
Abstract

We report a search for production of long-lived charged massive particles in a data sample of 90 pb$^{-1}$ of \sqrt{s} = 1.8 TeV \(pp \) collisions recorded by the Collider Detector at Fermilab (CDF). The search uses the muon-like penetration and anomalously high ionization energy loss signature expected for such a particle to discriminate it from backgrounds. The data is found to agree with background expectations, and cross section limits of \(\mathcal{O}(1) \)pb are derived using two reference models, a stable quark and a stable scalar lepton.

Many models for new physics introduce new particles which can be long-lived either due to a new conserved quantum number (e.g., R-parity in supersymmetry) or because the decays are suppressed by kinematics or couplings [1][2]. If they are electrically charged, these particles can be detected directly. The possibility of new charged particles which are absolutely stable is constrained by cosmological considerations and by searches for exotic particles in stable matter [3]. However, particles which are not absolutely stable but are long-lived on an experimental scale (100 ns) are constrained only by direct searches. The most stringent limits are set by a previous
search at Fermilab’s Tevatron collider [4] and by searches at CERN’s LEP2 collider [5] probing masses up to about 90 GeV/c^2. In this letter, we present the results of a new search for production of long-lived charged massive particles (CHAMPS) using a data sample of 90 pb^{-1} of \(\sqrt{s} = 1.8 \text{ TeV} \) pp collisions recorded by the Collider Detector at Fermilab (CDF) during 1994-5. We search for particles with anomalously high ionization energy loss rate, \(dE/dx \), which would be produced by a slow massive charged particle.

The search can be applied to several models which fall naturally into two distinct categories; weakly produced particles (e.g., new leptons), and strongly produced particles (e.g., new quarks). The lower production cross section of weakly produced particles only yields sufficient events for masses \(\lesssim 100 \text{ GeV}/c^2 \) where the background is high, while the higher cross section of strongly produced particles allows sensitivity at higher mass where the background is low. The search is made as model independent as possible, but to quantify the results we use a long-lived fourth generation quark as a reference model for a strong production search and Drell-Yan production of a long-lived slepton from gauge-mediated supersymmetry breaking (GMSB) scenarios for a weak production search.

The CDF detector, described in detail in Ref. [6], measures the trajectories (tracks) and transverse momenta \(p_T \), of charged particles in the pseudorapidity region \(|\eta| < 1.1 \) with the central tracking chamber (CTC) and silicon vertex detector (SVX), which are immersed in a 1.4 T solenoidal magnetic field. Up to 54 time-over-threshold measurements made by the CTC for each track determine the \(dE/dx \) with an average resolution of 13%. The charge deposited in each of the four layers of the SVX provides a second measure of the \(dE/dx \) with an average resolution of 18% [8]. Control samples with well identified particle types are used to calibrate the \(dE/dx \) measurements at different velocities; electrons and muons from W boson decay at high velocity (\(\beta \gamma > 100 \)), muons from J/\(\psi \) decay and pions \(K_S \) decay at intermediate velocity, and protons and deuterons from secondary interactions in the beampipe at low velocity (\(\beta \gamma < 1 \)). Fig. 1 shows the comparison of these measurements to the predictions. Electromagnetic and hadronic calorimeters, located outside the superconducting solenoid, measure energy in segmented \(\eta-\phi \) towers and identify electron candidates. Drift chambers for muon identification are situated outside the \(\geq 5.3 \) interaction lengths (\(\lambda_{\text{int}} \)) thick calorimeters and behind an additional \(\geq 3.5 \lambda_{\text{int}} \) thick steel absorber.

Three different trigger data sets are used for this search. A muon trigger selects events with hits in the muon chambers which match a track with
$p > 12 \text{ GeV}/c$ in the CTC within 5°. A massive particle can penetrate the calorimeters and pass the muon trigger even if it is strongly interacting. By the energy lost in hadronic interactions with the relatively light nucleons the muon mass is so the energy available in the center-of-mass frame falls below the threshold for single plan production. $[9]$ and $[7]$. This trigger also provides acceptance for events containing neutralities, as is possible in CMB models where the region $|p| < 0.6$ are used because at larger $|p|$ timing requirements that $M > 100 \text{ GeV}/c^2$ would be moving too slowly to be efficiently recovered.

The search selects charged particles containing additional interaction with backgrounds from beam losses. The search selects charged particle tracks with $|p| > 1$ which have sufficient hits in the CTC and SVX to reduce background from these events. $[9]$. Only triggers in the range $|p| < 1$ and with $E_t > 18 \text{ GeV}$ provides acceptance for events containing neutrinos, as is possible in CMB models where the region $|p| < 0.6$ are used because at larger $|p|$ timing requirements that $M > 100 \text{ GeV}/c^2$ would be moving too slowly to be efficiently recovered.
tical to the search sample but at lower momentum \((20 < |\vec{p}| < 35 \text{ GeV}/c)\) where signal would not contribute. The fake rate, defined as the fraction of tracks in the control sample with \(dE/dx\) measurements high enough to correspond to \(\beta\gamma \leq 0.85\), is measured to be \(\mathcal{O}(10^{-4})\) for all the different trigger datasets described above. The momentum dependence of the fake rate within the control sample matches expectations which allows us to extrapolate the fake rate to the high momentum signal region. The probability of a high fluctuation in the \(dE/dx\) distribution obtained from this fake rate is used to scale the number of candidate tracks, which pass all selections except the \(dE/dx\) requirement, to obtain background predictions of \(12 \pm 2\) tracks in the muon trigger dataset and \(63 \pm 9\) in the \(E_T\) trigger dataset. The expected mass distribution for fake tracks in the signal region is shown in Fig. 2. It is obtained by folding the momenta of the tracks into the \(dE/dx\) distribution from the control sample with the assumption that large values of \(dE/dx\) are due to high mass particles. In the data, 12 and 45 tracks pass all cuts for the muon and \(E_T\) trigger datasets respectively. Their mass distribution, also in Fig. 2, shows no significant excess over the predicted background.

For the weak production search, the isolation cut reduces the background to \(0.85 \pm 0.25\), \(4.0 \pm 2.8\), and \(0.7 \pm 0.5\) tracks in the muon, \(E_T\), and electron trigger datasets respectively. In the data, 0, 1, and 0 tracks are observed in these samples.

The signal efficiencies are determined using Monte Carlo simulation programs and control data samples. The muon trigger efficiency is \(80.5 \pm 3.0\%\), and the track selection efficiency is \(51.3 \pm 2.5\%\), dominated by acceptance in the SVX. The tracking efficiency decreases at low velocity, \(\beta\gamma < 0.4\), due to drift time limits in the CTC track finding algorithms. This is measured with a sample of deuterons which are produced from secondary interactions in the beampipe. The efficiencies of the cuts on the kinematic variables \(|\eta|\), \(|p|\), \(\beta\gamma (dE/dx)\) and mass are model dependent. To set generally applicable limits, we determine these efficiencies using easily quantifiable reference models. For the strong production case we use a long-lived fourth generation quark calculated with the Pythia Monte Carlo program [11]. The total efficiency increases from 1.5 to 2.9\% over the mass range \(100 - 270 \text{ GeV}/c^2\) for a charge \(\frac{2}{3}e\) quark \((U)\) and from 0.8 to 1.6\% for a charge \(-\frac{1}{3}e\) quark \((D)\). The charge asymmetry of the efficiency arises from the light quark \((u, d, s)\) contributions to the fragmentation; \(U\bar{s}\) and \(U\bar{d}\) mesons are charged while only the \(D\bar{u}\) meson is charged. Furthermore, although a massive quark would efficiently penetrate the calorimeters, the hadron containing it can undergo
charge exchange from interactions in the calorimeter which replace the light quark in it, and a $\frac{2}{3}e$ quark is more likely to remain in a charged hadron and be detected by the muon chambers. The efficiency for this depends on the s quark suppression which is taken to be 30% [12]. The uncertainty from this effect, estimated by taking half of the efficiency difference obtained if every hadron is assumed to interact, is 20% for $q = \frac{1}{3}e$ and 13% for $q = \frac{2}{3}e$. Other systematic uncertainties are 4% for trigger efficiency, 5% for track selection, 4% for luminosity, and 7% from the choice of CTEQ3M [13] as the parton distribution function. The total systematic uncertainties on efficiency are 23% and 17% for $q = \frac{1}{3}e$ and $q = \frac{2}{3}e$ respectively.

Figure 3 shows the cross-section limits we derive as a function of mass. From comparison with the expected cross-section, we derive mass limits at 95% confidence level of $M > 190$ GeV/c2 for $q = \frac{1}{3}e$ and $M > 220$ GeV/c2 for $q = \frac{2}{3}e$. The charge exchange effects described above could be different for other models. To ease comparison with other models, we include in Fig. 3 a limit calculated without these effects. These limits are based on data collected with the muon trigger. The E_T trigger dataset is also searched since it could provide sensitivity to signal, but the E_T trigger efficiency depends critically on the calorimeter’s response to a CHAMP which is very uncertain. This makes any cross-section calculations unreliable, so the E_T trigger dataset is not included in the limit calculation for the strong production search.

For the weak production search, the muon trigger and track quality cut efficiencies are similar to the strongly interacting case. The efficiencies of the model dependent kinematic cuts are estimated using as a reference model the Drell-Yan pair-production of stable sleptons calculated with the SPhydia Monte Carlo program [14]. The total efficiency varies from 2.5% to 4.5% over the mass range $80 - 120$ GeV/c2. The systematic uncertainties on these efficiencies are similar to the strongly interacting case, without the charge exchange uncertainty. The cross-section limits obtained for direct slepton production range from 1.3 pb at $M = 80$ GeV/c2 to 0.75 pb at 120 GeV/c2. The expected cross section is over an order of magnitude below this level of sensitivity. Stable sleptons can also be produced from cascade decays of heavier particles such as charginos. Such decays would also produce charged leptons and neutrinos, and the electron and E_T trigger data samples are searched to add sensitivity to these decays. The efficiency for this is very model dependent, and we quantify it only for a single point in the GMSB parameter space which makes the three charged sleptons nearly degenerate with masses ~ 105 GeV/c2, slightly above the existing limits [15]. The mod-
ified kinematics from the decays increases the efficiency to 6.7% for the muon trigger data set. Including the p_T and electron triggers increases it to 8.2%. The p_T trigger and isolation requirement introduce additional systematic uncertainties from the modelling of initial and final state radiation, making the total systematic uncertainty 12.5%. When cascade decays from all production modes are included, the cross-section limit is lowered to 550 fb compared to the model prediction of 80 fb.

In summary, we have searched for long-lived charged massive particles in 90 pb$^{-1}$ of data at CDF. No excess over background was observed. We derive cross-section limits using reference models for the two cases of strongly and weakly produced particles. In the strongly interacting case, these limits extend the excluded mass region to about 200 GeV/c^2.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. We thank S. Ambrosanio, J.L. Feng, J.F. Gunion, and P.Q. Hung for useful theoretical discussions. This work is supported by the U.S. Department of Energy and the National Science Foundation; the Natural Sciences and Engineering Research Council of Canada; the Istituto Nazionale di Fisica Nucleare of Italy; the Ministry of Education, Science and Culture of Japan; the National Science Council of the Republic of China; and the A.P. Sloan Foundation.

References

Figure 1: dE/dx measurements in control samples are compared to predictions for SVX’ (open points) and CTC (solid points). The CTC prediction is a fit including detector effects. The SVX’ prediction is the Bethe-Bloch formula. The agreement is good in the low and high $\beta\gamma$ regions important to this search.
Figure 2: Observed $M_{dE/dx}$ distribution for tracks passing all the cuts for the strong production search in the muon trigger and E_T trigger data samples [10]. The curves are the expected background distributions which have an uncertainty of about 15% which is shown by the gray bands.
Figure 3: Limits set at 95% confidence level on the production cross section of long-lived fourth generation quarks are compared to the theoretical prediction.

[7] The CDF coordinate system defines the transverse momentum of a particle as \(p_T \equiv \hat{p}\sin \theta \), where \(\theta \) as the polar angle with the z-axis defined along the proton beam, \(\phi \) as the azimuthal angle in the transverse plane, and pseudorapidity as \(\eta \equiv -\ln (\tan \frac{\theta}{2}) \).

[8] FERMILAB-CONF-97/430-E. A low-end truncated mean is used for both the CTC and SVX to suppress Landau fluctuations.

[15] The GMSB parameters for the point used are \(N_5 = 3, M = 64 \text{ TeV}, \Lambda = 32 \text{ TeV}, \tan(\beta) = 3, \mu > 0 \).