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II. CAUSET THEORY

Here, we will review the arguments leading to a 
uctuating cosmological term and then describe the speci�c ansatz
via which we have chosen to implement their main implication: that � can be expected to 
uctuate and with a
magnitude that diminishes as the universe grows older.
In causal set (\causet") theory, the predicted 
uctuations arise, as a kind of residual (and nonlocal) quantum

e�ect, from the underlying space-time discreteness. More speci�cally, the basic inputs to the argument are: space-
time discreteness leading to a �nite number N of elements; the interpretation of space-time volume V as a direct
re
ection of N ; the conjugacy of � to space-time volume V; and the existence of 
uctuations in V coming from
Poisson 
uctuations in N . (Of these four inputs, the �rst is not peculiar to causal sets, but the remaining ones all
are to a greater or lesser extent.)
The two most basic tenets of causal set theory are �rst, that the causal ordering of events in macroscopic space-time

re
ects a more fundamental order relation among the elements of an underlying discrete structure to which continuous
spacetime is only an approximation, and second, that the four-volume of a region of spacetime re
ects the number of
discrete elements of which the region is \composed". The hypothesized discrete substratum or causal set is taken to be
a partially ordered set and its dynamics is conceived of as a kind of growth process in which elements come into being,
one at a time. Although a classically stochastic dynamics expressing these ideas is by now fairly well developed [10],
a corresponding quantum dynamics is only just beginning to be sought. Any prediction of quantum 
uctuations in �
must therefore rest on an anticipation of certain features of this \new QCD" (quantum causet dynamics).
Let us begin by assuming that, at some level of approximation, this dynamics will correspond to a space-time \path

integral" in which one is summing over certain classes of four-geometries. At the deeper level however, this will still be
a sum over causal sets. Then let us take from the already developed classical growth models for causal sets the feature
that the ever growing number N of causet elements plays the role of a kind of parameter time { the time in which the
stochastic process which mathematically represents the growth unfolds, and with respect to which the probabilities
are normalized. Just as one does not sum over time in ordinary quantum mechanics, one would not expect to sum
over causets with di�erent values of N in the quantum theory. But, because number corresponds macroscopically to
volume V, this translates into the statement that one should hold V �xed in performing the gravitational path integral.
Any wave function that arises will therefore depend not only on suitable boundary data (say a three-geometry) but
also on a four-volume parameter V. Such a restricted path integral may be called \unimodular".
Now the unimodular modi�cation of ordinary GR has been fairly well studied [11], and it is understood that within

it, � and V are conjugate in the same way that energy and time are conjugate in ordinary quantummechanics. (Indeed
this is almost obvious from the fact that the cosmological constant term in the action-integral of general relativity is
just the product ��V.) In particular, this means that, to the extent that V is held �xed in the gravitational sum-
over-histories, � will be entirely undetermined by the fundamental parameters of the theory. (Again this is almost
obvious by reference to the classical limit of unimodular gravity, where the Lagrange multiplier used to implement
the �xed V constraint combines with any \bare" � in such a way that the observed or \renormalized" � represents
nothing more than a constant of integration.)
If this were the whole story, then our conclusion would be that � is subject to quantum 
uctuations (just like

energy E in ordinary quantum mechanics) but it would not be possible to say anything about their magnitude, nor
about the magnitude of the mean � about which the 
uctuations would occur.
But here there enters a second aspect of the causal set hypothesis that we have not mentioned earlier. In order to

do justice to local Lorentz invariance, the correspondence between number and volume cannot be exact, but it must
be subject to Poisson type 
uctuations3, which of course have a typical scale of

p
N . This means that, in holding

N �xed at the fundamental level, we in e�ect �x V only up to 
uctuations of magnitude �
p
V . (Notice that these

are not dynamical 
uctuations. Rather they occur at a kinematic level: that of the correspondence between order
theoretic and spatio-temporal variables.) Hence, we do end up integrating over some limited range of V after all, and
correspondingly we do determine � to some degree | but only modulo 
uctuations that get smaller as V gets larger.
Speci�cally, we have

�� � 1=�V � 1=
p
V : (1)

As any proper dilemma should, that of the cosmological constant has two horns: Why is � so nearly zero and Why
is it not exactly zero? None of what we have said so far bears on the �rst question, only on the second. All we can

3 More speci�cally, the correspondence between the underlying causet and the approximating space-time is via a notion of \Poisson
sprinkling" at unit density, see references [9, 12] for details.
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conclude is that partially integrating over V in the e�ective gravitational path integral will drive us toward some value
of �. We must assume, as the evidence overwhelmingly suggests, that this \target value" is zero, for reasons still to
be understood.4 Then we end up predicting 
uctuations about zero of a magnitude given by (1).
Independent of speci�cs, the space-time volume V should be roughly equal to the fourth power of the Hubble radius,

H�1. Therefore, at all times we expect the energy density in the cosmological constant to be of order

�� � V�1=2 � H2 � �critical (2)

the critical density (recall that we are setting 8�G = 1). We thus obtain a prediction for today's � which agrees in
order of magnitude with current �ts to the astronomical data. And this argument is not limited to today: at all times
we expect the energy density in the cosmological constant to be of order the critical density.
This is the basic idea, but any attempt to implement it immediately raises questions whose answers we can at

present only guess at, pending the development of a fuller quantum dynamics for causets. At a conceptual level there
is �rst of all the question of precisely how to interpret the V that �gures in equation (1) and second of all the question
how to incorporate a 
uctuating � into some suitable modi�cation of the Einstein equations. At a more practical
level, if we aim to understand, for example, how 
uctuations in � would have a�ected structure formation, we need to
know, not only their typical magnitude at each moment of cosmic time, but also how the 
uctuations at one moment
correlate with those at other moments.
Concerning the conceptual questions, we will, for present purposes, resolve them provisionally as follows. First we

impose spatial homogeneity, so that the Einstein equations reduce to a pair of ordinary di�erential equations for the
scale factor a. Of these two equations, one, the so called Friedmann equation or Hamiltonian constraint, is �rst order
in time and embodies the energy law in this setting, while the second involves �a and, in the case of a non-
uctuating

�, adds no information to the �rst, except at moments when _a = 0. They cannot both be compatible with a time
dependent cosmological term when other energy momentum components are separately conserved, so we choose one
over the other. Speci�cally, we choose to interpret � via its role in the Friedmann equation. That is, we retain the
Friedmann equation but let � be a function of time, dropping the second equation entirely.
The quantity V which governs the magnitude of the 
uctuations in � we will identify (up to an unknown factor

of order unity) with the volume of the past light cone of any representative point on the hypersurface for which we
want the value of V, as illustrated in Figure 1. Although this interpretation is somewhat at odds with the meaning
that V has in the unimodular context, it seems more in accord with causality, and it is the only number accessible to
observation in any useful sense.
With these choices made, the only remaining question is what sort of random process we want to use to simulate our


uctuating �. Ideally perhaps, this would be some sort of \quantal stochastic process" (since the underlying process
is quantal), but here we do the simplest thing possible and let the 
uctuations in � be driven by those of an unadorned
random walk. In fact the ansatz we will use has some appeal in its own right as an independent \story" of why the
cosmological constant might be expected to 
uctuate in any discrete quantum gravity theory that incorporates the
equality N = V between volume and number of elements.
With reference to the Einstein-Hilbert Lagrangian, one could describe the cosmological constant as the \action

per unit space-time volume which is due just to the existence of space-time as such, independent of any excitations
such as matter or gravitational waves". Re-interpreting volume as number of elements, we can say then that � is
the \action per element". One would expect this to be of order unity in fundamental units, and if we identify the
latter with Planck units, we get the old answer which is o� by some 120 orders of magnitude. On the other hand, if
we suppose that each element makes its own contribution and these contributions 
uctuate in sign5 then the relative
smallness of � will be explained; but one would also expect a residual

p
N contribution to S to remain uncanceled.

Consequently, there would remain a residual contribution to the action per element of
p
N=N = 1=

p
N , in agreement

with our earlier argument.
To implement such an ansatz is now straightforward. What we need for the sake of the Friedmann equation is just

� as a function of N (or equivalently of V). To produce such a function we just generate a string of random numbers
of mean 0 and standard deviation 1 (say) and identify �(N ) with the ratio S(N )=N , where S(N ) is the sum of the
�rst N of our random numbers. Modulo implementational details this is the scheme we have used in the simulations
on which we report next.

4 One possible mechanism is that only � = 0 is stable against the destructive interference induced by non-manifold 
uctuations of the
causal set.

5 It would probably be more suitable to speak not in terms of action S but rather exp(iS=�h) and say that the contributions (now
multiplicative rather than additive) 
uctuate in phase.
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FIG. 1: Schematic representation of the backward light-cone at two di�erent cosmic times. Evolution of the scale factor between
the two time slices is determined by the Friedmann equation while � varies stochastically.

III. SIMULATIONS

We take as the space-time volume

V(t) = 4�

3

Z t

0

dt0a(t0)3
�Z t

t0
dt00=a(t00)

�3
(3)

where a(t) is the scale factor of the universe at proper time t. Note from this formula that the backward light-cones
depicted in Figure 1 are quite deceptive: because a(t) was much smaller in the past and vanishes at the Big Bang,
most of the four-volume V of these light cones accumulates recently. One consequence of this is that V � H�4 recently
even if there was a period of cosmic in
ation in the early universe.
Our algorithm for calculating the cosmological constant at time-step i+ 1 is then to set

ÆNi � Ni+1 �Ni = V(ti+1)� V(ti) (4)
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and then write

��;i+1 =
Si+1
Ni+1

=
Si + ��i+1

p
ÆNi

Ni + ÆNi
: (5)

Here � is an unknown dimensionless parameter which governs the dynamics of the theory; �i+1 is a random number
with mean 0 and standard deviation 1; and S0 is set to zero at some very early time t0. We then expand the universe
according to

H2 =

�
_a

a

�2

=
1

3
(�matter + �radiation + ��) ; (6)

recompute the new space-time volume and repeat.
Figure 2 shows the evolution of the energy density in one such realization. During the radiation era, �� scales

roughly as a�4, while during the matter era it scales as a�3. Thus at all times it is comparable to the ambient
energy density. If the recipe we have devised for implementing the ideas of causal set theory and unimodular gravity
is an accurate approximation to the ultimate quantum theory, then these modi�cations of GR do indeed lead to an
Everpresent �, a cosmological term which is always with us [13].

FIG. 2: Evolution of the energy densities in the universe. The thick curve is the absolute value of the energy density in the
cosmology constant. The 
uctuating �� is always of order the ambient density, be it radiation (early on) or matter (later).
Here the dimensionless parameter � which governs the amplitude of the 
uctuations has been set to 0:01.

Hidden in the gross structure of Figure 2 are the 
uctuations about this average scaling. These 
uctuations are
crucial if the theory is to describe the real universe for two reasons: First, there cannot be too much excess energy at
a � 10�9 or else the successful predictions of Big Bang Nucleosynthesis (BBN) will be destroyed. Second, if �� scales
exactly as matter today, it will not have the correct equation of state to account for the cosmological observations.
Figure 3 shows the ratio of the energy density in � to the total energy density as a function of the scale factor for
another realization, this time with a slightly larger value of �. This ratio, 
�, 
uctuates about zero with an amplitude
of order 0:5 (as we will shortly see, this amplitude is a function of �). In this particular realization, � accounts for
over �fty percent of the energy density today and changes very little going back to redshift z = 1 (a = 0:5); thus it
behaves recently as a true cosmological constant, and therefore satis�es the observed cosmological constraints.
In half the realizations, �� will be positive today. Whether or not it is positive enough to explain the observations

then becomes a question of probability. For � = 0:02, it clearly is not that improbable (indeed in the same run, we
see another spike in the energy density at a ' 0:1).
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FIG. 3: The ratio of the energy density in cosmological constant to the total density as a function of scale factor. Here � = 0:02.

The same qualitative argument applies to the BBN constraint. In fact the situation there is even better. Half the
time the extra energy density will be negative, thereby reducing the total energy density in the universe. This in
turn will reduce the predicted abundance of 4He. There is some disagreement at present as to whether the current
observations agree with the standard cosmologicalmodel or not [14], with some cosmologists arguing that the observed
abundances are too low. A negative �� �xes this problem.
Why have we chosen � to be small? Our choice is in response to a fundamental incompleteness in our implemen-

tation. If � � 1, there will inevitably be times during which the total e�ective energy density, the sum of the terms
in parenthesis on the right side of equation (6), goes negative, thereby invalidating the equation. (Whenever this
happens, we terminate the run.) In the next section we o�er some thoughts on this problem; here we simply spell it
out.
Figure 3 shows a history for � = 0:02 going back to the time of decoupling. If we had started earlier, say at the

\Planck time" a = 10�32, we would have had only about a 1 in 3 chance of completing the run without hitting a time
at which �tot went negative. Moving � down to 0:01 evades this problem; for that parameter choice, very few runs hit
a time at which the total energy goes negative. However, for � that small, the 
uctuations are also small. Figure 4
shows a histogram of �nal values of 
� for 6000 realizations each with � = 0:01. Only rarely does the �nal value of

� approach those necessary to explain the observations.
There is therefore a tension: if we push � too low, it becomes very unlikely that �� will be large enough today to

agree with observations. If we push � too high, there inevitably comes a time at which the total energy density in the
universe becomes negative, and the simulation cannot continue. Of course we are dealing with probabilities, so for
any value of � there is always the chance that the total energy density remains positive throughout the history of the
universe and the �nal value of �� is large enough to account for observations. Fortunately, this happens reasonably
often for � in the range 0:01� 0:02. Nonetheless, we suspect that we will ultimately have to deal more directly with
possibility that �tot goes negative.

IV. COMPLICATIONS

We can think of two ways to deal with a negative �tot without having to terminate the simulation: change the
implementation so that this never occurs or reinterpret �tot going to zero (or negative) so as to give a viable cosmology
without having to �ne tune �.
One approach would be to suppose that � 
uctuates but is positive semi-de�nite. This is the position adopted by

Ng and van Dam in reference [15]. There, they argue that the kernel for the Euclidean gravitational path integral
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FIG. 4: A histogram of the �nal value of 
�, the ratio of �� to the total density. The dimensionless parameter governing the

uctuations in � has been set to � = 0:01.

over � histories takes the form

e�SE / exp

�
24�2

�

�
; (7)

in our units. From this, they argue that the most probable value of � is zero and that, if it is not zero, it must be
positive. As they observe, however, this result is peculiar to the assumptions of Euclidean quantum gravity with all its
uncertainties and controversy. In particular, this result does not seem to follow from causal set theory or unimodular
gravity by themselves and we do not favour it.
Another possibility would be to suppose that the cosmological term comes from a decrease in the local energy

of one of the matter �elds or gravitational waves. This is the philosophy of, for example, Chen and Wu [16] who
consider a non-
uctuating, but time dependent, cosmological term �(t) / a�2(t). Of course, this supposition is forced
upon us if all of Einstein's equations are to be simultaneously satis�ed exactly. That is, Einstein's equations|the
contracted Bianchi identity in particular|require that total energy-momentum be conserved. Thus, in classical GR,
the cosmological term cannot 
uctuate without a compensating 
uctuation in the energy-momentum density of one
or more of the matter �elds.
As stated in the introduction, our approach has been to solve this problem by maintaining only the Friedmann

equation as exact. Nevertheless, let us try instead to adapt the solution above to our case. Suppose that some matter
component, let us take gravitational waves as a concrete example, is somehow converted into the energy density of a
cosmological term, while the energy density in every other component (dust, radiation, etc.) is separately covariantly

conserved. The �rst law, d
dt

�
(�tot + ptot) a

3
�
= a3 dptotdt , applied to these two components becomes:

_�grav = �4H�grav � _�(t) ; (8)

where H is the Hubble parameter. As could be expected, an increase in � must lead to a decrease in the energy
density in the gravity waves. However, for a generic 
uctuating �(t), the cosmological term might increase enough
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that the energy density in gravity waves becomes negative. It's not clear how this could be interpreted and it appears
that we would simply exchange one problem with another. Note that, in the case of Chen and Wu [16], this is not
a problem. Their cosmological term decreases monotonically with the expansion of the universe. Thus, we see that
this solution can work with a 
uctuating � if we demand that _� � 0. In fact, relaxation processes of this sort have
been considered for some time. The earliest we are aware of is that of Abbott [17]. Recently, there has been renewed
interest in a similar suggestion of Brown and Teitelboim [18] where domains of four-form 
ux decay spontaneously,
relaxing the e�ective local value of the cosmological term, see [19] for recent references. The diÆculty with these
proposals is again the \Why now?" problem: relaxation rates and/or boundary values must be tuned for any hope
to obtain a viable cosmology.6

All in all, neither of these proposals really seems to address the central diÆculty: Within the contexts of causal set
theory and unimodular gravity, the sign of the total e�ective energy density is fundamentally not constrained. We see
no good reason to assume either that � is positive de�nite or that � will always decrease. Thus, let us seek instead to
understand what happens when �tot approaches and perhaps goes through zero. Our guide will be the classical theory.
Consider, for example, a dust �lled, 
at universe with a negative cosmological constant �0 < 0 (a true constant). The
0-0 component of Einstein's equations gives us the Friedmann equation: 3H2 = �tot. Meanwhile, the i-i component
gives us the deceleration: 2 �a

a = �j�0j�H2. We see that, once the matter has red-shifted enough that the total energy
density vanishes, the universe stops expanding and begins to contract. As it contracts, the energy density in matter
once again begins to exceed the magnitude of the cosmological term and �tot never becomes negative.
We expect that something like this phenomenology will carry over into our case except that, with a 
uctuating

cosmological term, it seems likely that the collapse can reverse itself if the cosmological term later becomes suÆciently
negative a second time. This is in contrast with the classical example above where once the universe starts to collapse,
the matter term always dominates and keeps �a=a negative. In our model, however, we would expect the amplitude of
the cosmological term's 
uctuations to track the matter or radiation energy density in the collapsing universe.
Of course, none of this follows from the simple evolution ansatz we have applied in this paper. Such detailed

dynamical understanding must await further developments. Nevertheless, it is reasonable to suppose that the complete
theory will reduce in stages: a full theory with non-metric structures at the Planck scale and a semi-classical theory
describing metric structures at larger scales. Furthermore, it is reasonable that the semi-classical theory will be
describable as some sort of sum-over-histories, where the intermediate states are three-geometries. We can envisage
the evolution equation we propose as some sort of classical approximation to propagation in a stochastic potential. In
the sum-over-histories theory, we expect the case �tot < 0 will correspond to a tunneling-type solution. Our diÆculty
in handling �tot < 0 here is, in this sense, no di�erent from the standard problem of �nding an e�ective, classical
description of barrier penetration.

V. CONCLUSION

It is still too early to understand the full implications of recent cosmic discoveries that point to dark energy in
the universe. A number of possibilities have previously been explored in detail, including a non-zero cosmological
constant � and zero � with dark energy hidden in a scalar �eld.
It is also possible, though, that the measurements are telling us that we need to modify our understanding of space

and time. In particular, the notion that space-time is continuous may be simply an approximation that breaks down
on scales as small as the Planck scale. If so, drawing on ideas from causal set theory { which postulates a discrete
space-time { and unimodular gravity, we have shown that the cosmological \constant" need not be a �xed parameter.
Rather, it arguably 
uctuates about zero with a magnitude 1=

pV , V being some measure of the past four volume. The
amplitude of these 
uctuations is then of the right order of magnitude to explain the dark energy in the universe. This
argument is so general that it would apply at all times, and, indeed, we expect the energy density in the cosmological
\constant" to always be of order the ambient density in the universe.
In xIV, we presented a number of issues which inevitably will confront anyone wishing to implement this idea. Until

these issues are resolved, it will be diÆcult to make unambiguous, robust predictions. Nevertheless, one can already
see that this theory of a 
uctuating � di�ers signi�cantly from most other solutions to the dark energy problem.
Most important for its testability is the notion that it may have a�ected the evolution of the universe at early times.
Thus, the primordial generation of perturbations during a possible in
ationary phase; production of light elements in

6 Of course, back when Abbott and Brown and Teitelboim �rst made their suggestions, there was no compelling evidence for a non-
vanishing cosmological term. One needed only to make it small enough.
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Big Bang Nucleosynthesis; acoustic oscillations in the background radiation; and the evolution of structure at more
recent times all may yield clues and tests of the idea of an everpresent �.
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