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Fig. 1. The complex distribution of dark matter (a) found in numerical simulations
can be easily replaced with a distribution of dark matter halos (b) with the mass
function following that found in simulations and with a pro�le for dark matter
within halos.

1 Introduction

This review presents astrophysical applications of an approach which has its
origins in papers by Jerzy Neyman & Elizabeth Scott and their collaborators
nearly �fty years ago. Neyman & Scott [199] were interested in describing
the spatial distribution of galaxies. They argued that it was useful to think
of the galaxy distribution as being made up of distinct clusters with a range
of sizes. Since galaxies are discrete objects, they described how to study sta-
tistical properties of a distribution of discrete points; the description required
knowledge of the distribution of cluster sizes, the distribution of points around
the cluster center, and a description of the clustering of the clusters [199]. At
that time, none of these ingredients were known, and so in subsequent work
[200,201], they focussed on inferring these parameters from data which was
just becoming useful for statistical studies.

Since that time, it has become clear that much of the mass in the Universe
is dark, and that this mass was initially rather smoothly distributed. There-
fore, the luminous galaxies we see today may be biased tracers of the dark
matter distribution. That is to say, the relation between the number of galax-
ies in a randomly placed cell and the amount of dark matter the same cell
contains, may be rather complicated. In addition, there is evidence that the
initial 
uctuation �eld was very close to a Gaussian random �eld. Linear
and higher order perturbation theory descriptions of gravitational clustering
from Gaussian initial 
uctuations have been developed (see Bernardeau et
al. [15] for a comprehensive review); these describe the evolution and mildly
non-linear clustering of the dark matter, but they break down when the clus-
tering is highly non-linear (typically, this happens on scales smaller than a few
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Megaparsecs). Also, perturbation theory provides no rigorous framework for
describing how the clustering of galaxies di�ers from that of the dark matter.

The non-linear evolution of the dark matter distribution has also been stud-
ied extensively using numerical simulations of the large scale structure clus-
tering process. These simulations show that an initially smooth matter dis-
tribution evolves into a complex network of sheets, �laments and knots (e.g.,
�gure 1). The dense knots are often called dark matter halos. High resolution,
but relatively small volume, simulations have been used to provide detailed
information about the distribution of mass in and around such halos (i.e.,
the halo density pro�le of [198,195]), whereas larger volume, but lower res-
olution simulations (e.g., the Hubble Volume simulations [80] of the Virgo
consortium[278]), have provided information about the abundance and spa-
tial distribution of halos [135,41]. Simulations such as these show that the
halo abundance, spatial distribution, and internal density pro�les are closely
related to the properties of the initial 
uctuation �eld. When these halos are
treated as the analogs of Neyman & Scott's clusters, their formalism provides
a way to describe the spatial statistics of the dark matter density �eld from
the linear to highly non-linear regimes.

Such a halo based description of the dark matter distribution of large scale
structure is extremely useful because, following White & Rees [292], the idea
that galaxies form within such dark matter halos has gained increasing cre-
dence. In this picture, the physical properties of galaxies are determined by
the halos in which they form. Therefore, the statistical properties of a given
galaxy population are determined by the properties of the parent halo popu-
lation. There are now a number of detailed semianalytic models which imple-
ment this approach [157,264,42,10]; they combine simple physically motivated
galaxy formation recipes with the halo population output from a numerical
simulation of the clustering of the dark matter distribution to make predic-
tions about how the galaxy and dark matter distributions di�er (see, e.g.,
Figure 2).

In the White & Rees based models, di�erent galaxy types populate di�erent
halos. Therefore, the halo based approach provides a simple and natural way of
modelling the dependence of galaxy clustering on galaxy type in these models.
It is also the natural way of modelling the di�erence between the clustering
of galaxies relative to dark matter.

Just as the number of galaxies in a randomly placed cell may be a biased
tracer of the amount of dark matter in it, other physical properties such as the
pressure, the velocity or the momentum, of a cell are also biased tracers of the
amount of dark matter a cell contains. The assumption that dark matter halos
are in virial equilibrium allows one to estimate these physical properties for
any given halo. If the distribution of halos in a randomly chosen cell is known,
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Fig. 2. Distribution of galaxies (in color) superposed on the dark matter distribution
(grey scale) in simulations run by the GIF collaboration [157]. Galaxy colors blue,
yellow, green and red represent successively smaller star formation rates. Di�erent
panels show how the spatial distributions of dark matter and galaxies evolve; the
relation between the two distributions changes with time, as do the typical star
formation rates.

then the halo{based approach allows one to estimate statistical properties of,
say, the pressure and the momentum, analogously to how it transforms the
statistics of the dark matter �eld into that for galaxies.

Data from large area imaging and redshift surveys of galaxies (e.g., the 2dF-
GRS and the Sloan Digital Sky Survey) are now becoming available; these
will provide constraints on the dark matter distribution on large scales, and
on galaxy formation models on smaller scales. Weak gravitational lensing [146]
provides a more direct probe of the dark matter density �eld. The �rst gen-
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eration of wide-�eld weak lensing surveys, which cover a few square degrees
are now complete (see recent reviews by Bartlemann & Schneider [7] and
Mellier [186]), and the next generation of lensing surveys will cover several
hundreds of square degrees. The Sunyaev-Zel'dovich (SZ) e�ect [274], due to
the inverse-Compton scattering of cosmic microwave background (CMB) pho-
tons o� hot electrons in clusters, is a probe of the distribution of the pressure
on large scales. Several wide-�eld surveys of the SZ are currently planned (see
review by Birkinshaw [17]). In addition, the next generation CMB experiments
will measure temperature 
uctuations on small angular scales. On these small
scales the density, velocity, momentum and pressure �elds of the dark and/or
baryonic matter leave their imprints on the CMB in a wide variety of ways. For
example, in addition to the thermal and kinematic SZ e�ects, the small scale
temperature 
uctuations are expected to be weakly lensed. The halo model
provides a single self-consistent framework for modelling and interpretting all
these observations.

The purpose of this review is twofold. The �rst is to outline the principles
which underly the halo approach. The second is to compare the predictions
of this approach with results from simulations and observations. Section 1 in-
troduces background materials which are relevant for this review. Sections 2
to 5 present the halo approach to clustering. What we know about dark mat-
ter halos is summarized in x3, how this information is incorporated into the
halo model is discussed in x4, and the �rst result, the halo model description
of the dark matter density �eld is presented in x5. The galaxy distribution is
discussed in x6, the velocity and momentum�elds are studied in x7, weak grav-
itational lensing in x8, and secondary e�ects on the cosmic microwave back-
ground, including the thermal and kinetic Sunyaev-Zel'dovich e�ects [274,206],
and the non-linear integrated Sachs-Wolfe e�ect [229,222], are the subject of
x9.

We have chosen to discuss those aspects of the halo model which are relevant
for the statistical studies of clustering, such as the two-point correlation func-
tions and higher order statistics. We do not discuss what cosmological and
astrophysical information can be deduced from the redshift distribution and
evolution of halo number counts. The abundance of halos at high redshift is an
important ingredient in models of reionization and the early universe. We do
not discuss any of these models here, since they are described in the recent re-
view by Barkana & Loeb [8]. Finally, our description of the clustering of halos
relies on some results from perturbation theory which we do not derive in de-
tail here. For these, we refer the reader to the recent comprehensive review on
the pertubation theory description of gravitational clustering by Bernardeau
et al. [15].
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2 Background Materials

This section describes the properties of adiabatic cold dark matter (CDM)
models which are relevant to the present review.

The expansion rate for adiabatic CDM cosmological models with a cosmolog-
ical constant is

H2(z) = H2
0

h

m(1 + z)3 + 
K(1 + z)2 + 
�

i
; (1)

whereH0 can be written as the inverse Hubble distance today cH
�1
0 = 2997:9h�1Mpc.

The critical density is �crit = 3H2=8�G. The total density is a sum over di�er-
ent components i, where i = c for the cold dark matter, � for the cosmological
constant, and b for baryons. Our convention will be to denote the contribution
to the total density from component i, as 
i = �i=�crit. The contribution of
spatial curvature to the expansion rate is 
K = 1 � P

i
i, and the matter
density is 
m = 
c + 
b.

Convenient measures of distance and time include the conformal distance (or
lookback time) from the observer at redshift z = 0

r(z) =

zZ
0

dz0

H(z0)
; (2)

(we have set c = 1) and the angular diameter distance

dA = H�1
0 
�1=2

K sinh(H0

1=2
K r) : (3)

Note that as 
K ! 0, dA ! r and we de�ne r(z =1) = r0.

2.1 Statistical description of random �elds

The dark matter density �eld in the adiabatic CDM model possesses n�point
correlation functions, de�ned in the usual way. That is, in real coordinate
space, the n�point correlation function �n of density 
uctuations Æ(x) is de-
�ned by

hÆ(x1) � � � Æ(xn)ic � �n(x1; � � � ;xn): (4)
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Here, we have expressed the density perturbations in the universe as 
uctua-
tions relative to the background mean density, ��:

Æ(r) =
�(r)

��
� 1 : (5)

If all the xi are the same, then

hÆic= hÆi (6)

hÆ2ic= hÆ2i � hÆi2c � �2 (7)

hÆ3ic= hÆ3i � 3 hÆ2ic hÆic � hÆi3c (8)

hÆ4ic= hÆ4i � 4 hÆ3ic hÆic � 3 hÆ2i2c � 6hÆ2ic hÆi2c � hÆi4c : (9)

We will almost always consider the case in which hÆi = 0.

Many of the calculations to follow simplify considerably in Fourier space.
Throughout, we will use the following Fourier space conventions:

A(x)=
Z

d3k

(2�)3
A(k) exp(ik � x) and

ÆD(k1:::i)=
Z

d3x

(2�)3
exp[�ix � (k1 + � � � + ki)] (10)

for the Dirac delta function, which is not to be confused with the density
perturbation which does not have the subscript D.

Thus, the real space 
uctuations in the density �eld is a sum over Fourier
modes:

Æ(x) =
Z

d3k

(2�)3
Æ(k) exp(ik � x) (11)

and the two, three and four-point Fourier-space correlations are

hÆ(k1) Æ(k2)i= (2�)3 ÆD(k12)P (k1) ; (12)

hÆ(k1) Æ(k2) Æ(k3)i= (2�)3 ÆD(k123)B(k1;k2;k3) ; (13)

hÆ(k1) : : : Æ(k4)ic= (2�)3 ÆD(k1234)T (k1;k2;k3;k4) ; (14)

where ki:::j = ki+ : : :+kj. The quantities P , B and T are known as the power
spectrum, bispectrum and trispectrum, respectively. Notice that

�2(r) =
Z

d3k

(2�)3
P (k) exp(ik � r); (15)
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the two-point correlation function and the power spectrum are Fourier trans-
form pairs. Similarly, we can relate higher order correlations and their Fourier
space analogies.

Rather than working with P (k) itself, it is often more convenient to use the
dimensionless quantity

�(k) � k3 P (k)

2�2
; (16)

which is the power per logarithmic interval in wavenumber. Similarly, we can
de�ne a scaled dimensionless quantity for the Nth Fourier space correlation
such that it scales roughly as the logarithmic power spectrum de�ned above:

�N(k1; :::;kN) =
k3

2�2
[PN (k1; :::;kN)]

1
N : (17)

We will also often use the quantity

�2(R) =
Z dk

k

k3 P (k)

2�2
jW (kR)j2; (18)

this is the variance in the smoothed density �eld when the smoothing win-
dow has scale R. If the window is a tophat in real space, then W (kR) =
[3=(kR)3](sinkR� (kR) cos kR); it is exp(�k2R2=2) if the real space smooth-
ing window is a Gaussian: exp[�(r=R)2=2]=

p
2�R2.

The initial perturbations due to in
ation are expected to be Gaussian [268,109,98,5,160],
so they can be characterized by a power spectrum or a two point correlation
function (Wick's theorem states that, for a Gaussian �eld, correlations in-
volving an odd number of density 
uctuations are exactly zero). Thus, the
bispectrum and trispectrum are de�ned so that, for a Gaussian �eld, they are
identically zero; in the jargon, this means that only the connected piece is
used to de�ne them, hence the subscript c in the expression equation (14). All
these quantities evolve. Here and throughout, we do not explicitly write the
redshift dependence when we believe no confusion will arise.

2.2 Results from perturbation theory

The large scale structure we see today is thought to be due to the gravita-
tional evolution of initially Gaussian 
uctuations [217,18,64]. In an expanding
universe �lled with CDM particles, the action of gravity results in the gener-
ation of higher order correlations: the initially Gaussian distribution becomes
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non-Gaussian. The perturbation theory description of the gravitational evolu-
tion of density perturbations is well developed [15]. Here we brie
y summarize
some of the results which are most relevant for what is to follow.

The evolution of large scale structure density perturbations are governed by
the continuity equation,

@Æ

@t
+
1

a
r � (1 + Æ)u = 0 ; (19)

and the Euler equation,

@Æ

@t
+Hu+

1

a
[(u � r)u+r�] = 0 ; (20)

where the potential 
uctuations due to density perturbations are related by
the Poisson equation:

r2� = 4�G��a2Æ; (21)

while the peculiar velocity is related to the Hubble 
ow via

u = v �Hx : (22)

The linear regime is the one in which Æ � 1. In the linear regime, the continuity
and Euler equations may be combined to yield [216]

@2Æ

@t2
+ 2H

@Æ

@t
� 4�G��Æ = 0 : (23)

This is a second-order di�erential equation with two independent solutions;
these correspond to modes which grow and decay with time. For our purposes,
only the growing mode solution of equation (23) is relevant. This has the form
[216]

Æ(k; r) = G(r) Æ(k; 0); (24)

where

G(r)/ H(r)

H0

1Z
z(r)

dz0(1 + z0)

"
H0

H(z0)

#3

� 5

2


m(z)=(1 + z)


m(z)4=7� 
�(z) + (1� 
m(z)=2)(1 + 
�(z)=70)
: (25)

11



This shows that the linear theory density �eld may be scaled in time, or
redshift, with the use of the growth solution G(z). Note that G / a = (1+z)�1

as 
m ! 1. The approximation in the second line of equation (25) is good to
a few percent [164,167,34].

In linear perturbation theory 1 , the power spectrum of the initial density 
uc-
tuation �eld is

k3P lin(k)

2�2
= Æ2H

 
k

H0

!n+3

T 2(k) : (26)

Here, n is said to be the slope of the initial spectrum. A scale free form
for P (k) � kn is rather generic; models of in
ation generally produce n �
1 (the so-called Harrison-Zel'dovich spectrum [108,299,214]). The quantity
T (k), de�ned such that T (0) = 1, describes departures from the initially
scale free form. Departures are expected because the energy density of the
Universe is dominated by radiation at early times but by matter at late times,
and the growth rate of perturbations in the radiation dominated era di�ers
from that in the matter dominated era. The transition from one to the other
produces a turnover in the shape of the power spectrum [20,18]. Baryons and
other species, such as massive neutrinos, leave other important features in
the transfer function which can potentially be extracted from observational
data. Accurate �tting functions for T (k) which include these e�ects have been
available for some time [6,117,73]. When illustrating calculations presented in
this review, we use �ts to the transfer functions given by [74].

When written in comoving coordinates, the continuity equation (19) shows
that the Fourier transforms of the linear theory (i.e., when Æ � 1) density and
velocity �elds are related [216]:

u(k) = �i _GÆ(k) k
k2
; (27)

where the derivative is with respect to the radial distance r(z) de�ned in
equation (2). This shows that the power spectrum of linear theory velocities
is

P lin
vel(k) =

_G2

k2
P lin(k) : (28)

1 It should be understood that \lin" denotes here the lowest non-vanishing order
of perturbation theory for the object in question. For the power spectrum, this is
linear perturbation theory; for the bispectrum, this is second order perturbation
theory, etc.
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The 
uctuations in the linear density �eld are also simply related to to those in
the potential [4]. In particular, the Fourier transform of the Poisson equation
(21) shows that

�(k) =
3

2

m

�
H0

k

�2 "
1 + 3

�
H0

k

�2

K

#�2 �
G

a

�
Æ(k) : (29)

Since gravity induces higher order correlations in the density �eld, pertur-
bation theory can be used to calculate them also. The bispectrum, i.e., the
Fourier transform of the three point correlation function of density perturba-
tions, can be calculated using second order perturbation theory [93,178,132]:

Blin(kp;kq;kr)= 2F s
2(kp;kq)P (kp)P (kq) + 2 Perm:;

(30)

where

F s
2(q1;q2) =

1

2

"
(1 + �) +

q1 � q2
q1q2

 
q1
q2

+
q2
q1

!
+ (1� �)

(q1 � q2)2
q21q

2
2

#
: (31)

The bispectrum depends only weakly on 
m, the only dependence coming
from the fact that � � (3=7)
�2=63

m for 0:05 < 
m < 3 [153].

The expressions above show that, in perturbation theory, the bispectrum gen-
erally scales as the square of the power spectrum. Therefore, it is conventional
to de�ne a reduced bispectrum:

Q123 � B123

P1P2 + P2P3 + P3P1
: (32)

To lowest order in perturbation theory, Q is independent of time and scale
[85,86]. When the k vectors make an equililateral triangle con�guration, then

Qeq(k) � 1

3

"
�2

eq(k)

�2(k)

#2
; where �2

eq(k) �
k3

2�2

q
B(k; k; k) (33)

represents the bispectrum for equilateral triangle con�gurations. In second
order perturbation theory,

QPT
eq = 1� 3

7

�2=63
m ; (34)

this should be a good approximation on large scales.
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Similarly, the perturbation theory trispectrum is

T lin = 4 [F s
2(k12;�k1)F s

2(k12;k3)P (k1)P (k12)P (k3) + Perm:]

+6 [F s
3(k1;k2;k3)P (k1)P (k2)P (k3) + Perm:] ; (35)

there are 12 permutations in the �rst set and 4 in the second [86]. The function
F s
3 can be derived through a recursion relation [93,132,178]

F s
n(q1; :::;qn) =

n�1X
m=1

Gs
m(q1; :::;qm)

(n � 1)(2n + 3)

h
(2n + 1)

q1;n � q1;m
q1;m � q1;mF

s
n�m(qm+1; :::;qn)

+
(q1;n � q1;n)(q1;m � qm+1;n)

(q1;m � q1;m)(qm+1;n � qm+1;n)
Gs
n�m(qm+1; :::;qn)

i
(36)

with qa;b = qa + :::+ qb, F s
1 = Gs

1 = 1 and

Gs
2(q1;q2) = �+

1

2

q1 � q2
q1q2

 
q1
q2

+
q2
q1

!
+ (1� �)

(q1 � q2)2
q21q

2
2

; (37)

where � has the dependence on 
m as in F s
2 (equation 31). The factor of 2 in

equation (30) and the factors of 4 and 6 in equation (35) are due to the use
of symmetric forms of the F s

n. Once again, it is useful to de�ne

Q1234 � T1234
[P1P2P13 + cyc:] + [P1P2P3 + cyc:]

; (38)

where the permutations include 8 and 4 terms respectively in the ordering of
(k1; k2; k3; k4). For a square con�guration,

Qsq(k) � T (k;�k;k?;�k?)
[8P 2(k)P (

p
2k)][4P 3(k)]

: (39)

In perturbation theory, Qsq � 0:085.

The perturbation theory description of clustering also makes predictions for
correlations in real space. For clustering from Gaussian initial conditions, the
higher order moments of the dark matter distribution in real space satisfy

hÆni = Sn hÆ2in�1; if hÆ2i � 1; (40)

where the Sn are numerical coeÆcients which are approximately independent
of scale over a range of large scales on which hÆ2i � 1. These coeÆcients are
[12]

14



Slin
3 =

34

7
+ 
1; Slin

4 =
60712

1323
+
62

3

1 +

7

3

21 +

2

3

2; and

Slin
5 =

200575880

305613
+
1847200

3969

1 +

1490

63

2 +

50

9

1
2 +

10

27

3 ; (41)

where


j � dj ln�2(R)

d(lnR)j
(42)

and �(R) is de�ned by inserting the linear theory value of P lin(k) in equa-
tion (18). Note that 
1 = �(n+3) and 
i = 0 for i > 1 if the initial spectrum
is a power-law with slope n. For the CDM family of spectra, one can ne-
glect derivatives of �2(R) with respect to scale for R � 20 h�1 Mpc. Also
note that the S lin

n depend only slightly on cosmology: e.g., the skewness is
Slin
3 = 4 + 6

7

�2=63
m + 
1 [29,114,84].

Although all derivations to follow will be general, we will often illustrate our
results with the currently favored �CDM cosmological model. Following the
de�nition of the expansion rate (equation 1) and the power spectrum of linear
density �eld (equation 26), the relevant parameters for this model are 
c =
0:30, 
b = 0:05, 
� = 0:65, h = 0:65, and n = 1.

The associated power spectrum of linear 
uctuations is normalized to match
the observed anisotropy in the cosmic microwave background at the largest
scales, i.e., those measured by the COBE mission. This means [32] that we
set ÆH = 4:2 � 10�5. A constraint on the shape of the spectrum also follows
from specifying the amplitude of the power spectrum on a smaller scale. This
additional constraint is usually phrased as requiring that �8, the rms value of
the linear density 
uctuation �eld when it is smoothed with a tophat �lter of
scale R = 8h�1 Mpc (i.e., �8 is calculated using equation 18 with R = 8h�1

Mpc), has a speci�ed value. This value is set by requiring that the resulting

uctuations are able to produce the observed abundance of galaxy clusters.
Uncertainties in the conversion of X-ray 
ux, or temperature, to cluster mass,
yield values for �8 which are in the range (0.5 { 0.6)
�(0:5�0:6)

m [77,284]. Another
constraint on the value of �8 is that when properly evolved to past, the same
density power spectrum should also match associated 
uctuations in the CMB;
the two constraints are generally in better agreement in a cosmology with a
cosmological constant than in an open universe. The use of a realistic value for
�8 is important because higher order correlations typically depend non-linearly
on the amplitude of the initial linear density �eld.
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2.3 Beyond perturbation theory

The following ansatz, due to [102], provides a good description of the two-
point correlations in real space, �2(r), and in Fourier space, P (k), even in
the regime where perturbation theory becomes inaccurate. The argument is
that non-linear gravitational evolution rescales all lengths, so pairs initially
separated by scale rL will later be separated by a di�erent scale, say rNL. The
initial and �nal scales are related by

rNL =
rL

[1 + ��NL(rNL)]1=3
where ��NL(x) =

3

x3

xZ
0

dr r2 �2(r): (43)

The ansatz is that there exists some universal function

��NL(rNL) = XNL

h
��L(rL)

i
: (44)

This is motivated by noting that ��NL(rNL) / ��L(rL) in the linear regime where
��NL � 1, and ��NL(rNL) / [��L(rL)]3=2 in the highly non-linear regime where
�� � 1. The 3/2 scaling comes if ��NL / a3 in the highly non-linear regime
(this is expected if, on the smallest scales, the expansion of the background is
irrelevant), whereas ��L / a2. In the intermediate regime, it has been argued
that ��NL(rNL) / [��L(rL)]3 [202]. The exact transitions between the di�erent
regimes, however, must be calibrated using numerical simulations.

For similar reasons, one expects a scaling for the non-linear power spectrum

kL =
kNL

[1 + �NL(kNL)]1=3
with �NL(kNL) = fNL

h
�L(kL)

i
: (45)

Fitting formulae for XNL and fNL, obtained by calibrating to numerical sim-
ulations, are given in [209,131]; in what follows we will use the �ts given by
[210] for the power spectrum with

fNL(x) = x

"
1 +B�x+ (Ax)��

1 + ([Ax]� g3= [V x1=2])
�

#1=�
; (46)

where,

A=0:482
�
1 +

n

3

��0:947
B = 0:226

�
1 +

n

3

��1:778

�=3:310
�
1 +

n

3

��0:244
� = 0:862

�
1 +

n

3

��0:287
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V =11:55
�
1 +

n

3

��0:423
; (47)

and

n(kL) =
d lnP

d ln k

���
k=kL=2

: (48)

Note that in equation (46), the redshift dependence comes only from the factor
of g3, where g is the growth suppression factor relative to an 
m = 1 universe:
g = (1 + z)G(z), with G(z) the linear growth factor given in equation (25).
The parameters of the above �t come from a handful of simulations and are
valid for a limited number of cosmological models. Fits to the non-linear power
spectrum in some cosmological models containing dark energy are provided
by [171].

Although this ansatz, and the associated �tting function represents a signi�-
cant step beyond perturbation theory, there have been no successful extensions
of it to higher order clustering statistics. In addition, it is not obvious how to
extend it to describe �elds other than the density of dark matter.

Hyper-extended perturbation theory (HEPT; [238]) represents a reasonably
successful attempt to extract what is known from perturbation theory and
apply it in the highly nonlinear regime. This model makes speci�c predictions
about higher order clustering. For example,

QHEPT
eq (k) =

4� 2n

1 + 2n+1
and Qsat

sq =
1

2

�
54� 27 � 2n + 2 � 3n + 6n

1 + 6 � 2n + 3 � 3n + 6 � 6n
�
; (49)

where n(k) is the linear power spectral index at k. Fitting functions for Qeq(k)
for 0:1 . k . 3h Mpc�1, calibrated from numerical simulations, can be found
in [239].

3 Dark Matter Halo Properties

In this section, and the next, we will describe an approach which allows one
to describe all n�point correlations of large scale structure. This description
can be used to study clustering of a variety of physical quantities, includ-
ing the dark matter density �eld, the galaxy distribution, the pressure, the
momentum, and others.

The approach assumes that all the mass in the Universe is partitioned up into
distinct units, which we will often call halos. If distinct halos can be identi�ed,
then it is likely that they are small compared to the typical distances between
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them. This then suggests that the statistics of the mass density �eld on small
scales are determined by the spatial distribution within the halos; the precise
way in which the halos themselves may be organized into large scale structures
is not important. On the other hand, the details of the internal structure of
the halos cannot be important on scales larger than a typical halo; on large
scales, the important ingredient is the spatial distribution of the halos. This
realization, that the distribution of the mass can be studied in two steps: the
distribution of mass within each halo, and the spatial distribution of the halos
themselves, is the key to what has come to be called the halo model.

The halo model assumes that, in addition to thinking of the spatial statistics
in two steps, it is useful and accurate to think of the physics in two steps
also. In particular, the model assumes that the regime in which the physics
is not described by perturbation theory is con�ned to regions within halos,
and that halos can be adequately approximated by assuming that they are in
virial equilibrium.

Clearly, then, the �rst and the most important step is to �nd a suitable def-
inition of the underlying units, i.e. the halos. This section describes what we
know about the abundance, spatial distribution, and internal density pro�les
of halos. All these quantities depend primarily on halo mass. In the next sec-
tion, we combine these ingredients together to build the halo model of large
scale structure.

3.1 The spherical collapse model

The assumption that non-linear objects formed from a spherical collapse is a
simple and useful approximation. The spherical collapse of an initially tophat
density perturbation was �rst studied in 1972 by Gunn & Gott [96]; see [82,16]
for a discussion of spherical collapse from other initial density pro�les.

In the tophat model, one starts with a region of initial, comoving Lagrangian
size R0. Let Æi denote the initial density within this region. We will suppose
that the initial 
uctuations were Gaussian with an rms value on scale R0

which was much less than unity. Therefore, jÆij � 1 almost surely. This means
that the mass M0 within R0 is M0 = (4�R3

0=3)��(1 + Æi) � (4�R3
0=3)�� where ��

denotes the comoving background density.

As the Universe evolves, the size of this region changes. Let R denote the
comoving size of the region at some later time. The density within the region
is (R0=R)

3 � (1 + Æ). In the spherical collapse model there is a deterministic
relation between the initial comoving Lagrangian size R0 and density of an
object, and its Eulerian size R at any subsequent time. For an Einstein{de
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Sitter universe, one can obtain a parametric solution to R(z) in terms of �:

R(z)

R0
=

(1 + z)

(5=3) jÆ0j
(1 � cos �)

2
and

1

1 + z
=
�
3

4

�2=3 (� � sin �)2=3

(5=3) jÆ0j ; (50)

where Æ0 denotes the initial density Æi extrapolated using linear theory to the
present time (e.g. [216]). If Æi < 0, then (1 � cos �) should be replaced with
(cosh � � 1) and (� � sin �) with (sinh � � �).

In the spherical collapse model, initially overdense regions collapse: with � = 0
at start, they `turnaround' at � = �, and have collapsed completely when
� = 2�. Equation (50) shows that the size of an overdense region evolves as

R0

R(z)
=

62=3

2

(� � sin �)2=3

(1� cos �)
: (51)

At turnaround, � = �, so [R0=R(zta)]3 = (3�=4)2; when an overdense region
turns around, the average density within it is about 5.55 times that of the
background universe.

At collapse, the average density within the region is even higher: formally,
R(zcol) = 0, so the density at collapse is in�nite. In practice the region does
not collapse to vanishingly small size: it virializes at some non-zero size. The
average density within the virialized object is usually estimated as follows.
Assume that after turning around the object virializes at half the value of
the turnaround radius in physical, rather than comoving units. In the time
between turnaround and collapse, the background universe expands by a factor
of (1 + zta)=(1 + zcol) = 22=3 (from equation 50), so the virialized object is
eight times denser than it was at turnaround (because Rvir = Rta=2). The
background density at turnaround is (22=3)3 = 4 times the background density
at zvir. Therefore, the virialized object is

�vir � (9�2=16) � 8 � 4 = 18�2 ; (52)

times the density of the background at virialization.

What was the initial overdensity of such an object? The �rst of equations (50)
shows that if the region is to collapse at z, the average density within it must
have had a critical value, Æsc, given by

Æsc(z)

1 + z
=

3

5

�
3�

2

�2=3
: (53)

Thus, a collapsed object is one in which the initial overdensity, extrapolated
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using linear theory to the time of collapse, was Æsc(z). At this time, the actual
overdensity is signi�cantly larger than the linear theory prediction. Although
the formal overdensity is in�nite, a more practical estimate (equation 52) says
that the object is about 178 times denser than the background.

There is an important feature of the spherical collapse model which is ex-
tremely useful. Since (1+Æ) = (R=R0)3, the equations above provide a relation
between the actual overdensity Æ, and that predicted by linear theory, Æ0, and
this relation is the same for all R0. That is to say, it is the ratio R=Ro which
is determined by Æi, rather than the value of R itself. Because the mass of the
object is proportional to R3

0, this means that the critical density for collapse
Æsc is the same for all objects, whatever their mass. In addition, the evolution
of the average density within a region which is collapsing is also independent
of the mass within it (of course, it does depend on the initial overdensity).

To see what this relation is, note that the parametric solution of equation (50)
can be written as a formal series expansion, the �rst few terms of which are
[13]

Æ0
1 + z

=
1X
k=0

ak Æ
k = Æ � 17

21
Æ2 +

341

567
Æ3 � 55805

130977
Æ4 + : : : (54)

To lowest order this is just the linear theory relation: Æ is the initial Æ0 times
the growth factor. A good approximation to the spherical collapse relation
Æ0(Æ), valid even when Æ � 1, is [190]

Æ0
1 + z

=
3 (12�)2=3

20
� 1:35

(1 + Æ)2=3
� 1:12431

(1 + Æ)1=2
+

0:78785

(1 + Æ)0:58661
: (55)

While these are all convenient estimates of the parameters of collapsed ob-
jects, it is important to bear in mind that the collapse is seldom spherical,
and that the estimate for the virial density is rather adhoc. Descriptions of
ellipsoidal collapse have been considered [129,21,194,257], as have alternative
descriptions of the Æ0(Æ) relation [79]. In most of what follows, we will ignore
these subtleties.

Though we have used an Einstein-de Sitter model to outline several properties
related to spherical collapse, our discussion remain qualitatively similar in
cosmologies for which 
m � 1 and/or 
� � 0. The actual values of Æsc and �vir

depend on cosmology: �tting functions for these are available in the literature
[77,198,197,24,112].
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3.2 The average number density of halos

Let n(m; z) denote the comoving number density of bound objects, halos, of
mass m at redshift z. (Some authors use dn=dm to denote this same quantity,
and we will use the two notations interchangeably.) Since halos formed from
regions in the initial density �eld which were suÆciently dense that they later
collapsed, to estimate n(m; z), we must �rst estimate the number density of
regions in the initial 
uctuation �eld which were dense enough to collapse. A
simple model for this was provided by Press & Schechter in Ref. [219]:

m2n(m; z)

��

dm

m
= �f(�)

d�

�
; (56)

where �� is the comoving density of the background with

�f(�) =

r
�

2�
exp(��=2); and � � Æ2sc(z)

�2(m)
: (57)

Here Æsc(z) is the critical density required for spherical collapse at z, extrap-
olated to the present time using linear theory. In an Einstein-de Sitter cos-
mology, Æsc(z = 0) = 1:686 while in other cosmologies, Æsc depends weakly on

m and 
� [77]. In equation (57), �2(m) is the variance in the initial density

uctuation �eld when smoothed with a tophat �lter of scale R = (3m=4���)1=3,
extrapolated to the present time using linear theory:

�2lin(m) �
Z dk

k

k3P lin(k)

2�2
jW (kR)j2; (58)

where W (x) = (3=x3) [sin(x)� x cos(x)].

A better �t to the number density of halos in simulations of gravitational
clustering in the CDM family of models is given by Sheth & Tormen [254]:

�f(�) = A(p)
�
1 + (q�)�p

� � q�
2�

�1=2
exp(�q�=2); (59)

where p � 0:3, A(p) = [1 + 2�p�(1=2 � p)=
p
�]�1 � 0:3222, and q � 0:75. If

p = 1=2 and q = 1, then this expression is the same as that in equation (57).
At small � � 1, the mass function scales as �f(�) / �0:5�p. Whereas the small
mass behavior depends on the value of p, the exponential cuto� at � � 1 does
not. The value � = 1 de�nes a characteristic mass scale, which is usually
denoted m�: �(m�) � Æsc(z) and is � 2 � 1013 M� at z = 0; note that halos
more massive than m� are rare.
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Fig. 3. The halo mass function in numerical simulations of the Virgo collabo-
ration. The measured mass distribution is show in color; dashed line shows the
Press-Schechter mass function; dotted line is a �tting formula which is similar to
the Sheth-Tormen mass function. The �gure is from [135].

Elegant derivations of equation (57) in [71,211,19] show that it can be re-
lated to a model in which halos form from spherical collapse. When extended
to the ellipsoidal collapse model described by [21], the same arguments give
equation (59) [257,256]. Alternative models for the the shape of n(m; z) are
available in the literature [1,180,166,106]; we will not consider them further,
however, as equation (59) has been found to provide a good description of the
mass function in numerical simulations.

This is shown in Figure 3, which is taken from numerical simulations run
by the Virgo collaboration [135]. The jagged lines show the mass function at
various output times in the simulation rescaled from mass m to �(m). The
�gure shows that, when rescaled in this way,

f(�; z) � m

��

dn(m; z)

d ln��1
; (60)
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is a universal curve (results from all output times in the simulations trace out
approximately the same curve). The dashed line shows that this distribution
of halo masses is not so well described by equation (57). The dotted line shows

f(�) = 0:315 exp
�
�j ln��1 + 0:61j3:8

�
; (61)

this �tting formula is accurate to 20% in the range �1:2 � ln��1 � 1:05 [135].
It is very well described by equation (59), which is physically motivated, and
so it is equation (59) which we will use in what follows.

3.3 The number density of halos in dense regions

Suppose we divide space up into cells of comoving volume V . The di�erent cells
may contain di�erent amounts of mass M , which means they have di�erent
densities: M=V � ��(1 + Æ). Let N(m; z1jM;V; z0) denote the average number
of m halos which collapsed at z1, and are in cells of size V which contain mass
M at z0. The overdensity of halos in such cells is

Æh(m; z1jM;V; z0) =
N(m; z1jM;V; z0)

n(m; z1)V
� 1: (62)

Since we already have a model for the denominator, to proceed, we need a
good estimate of N(m; z1jM;V; z0).

A halo is a region which was suÆciently overdense that it collapsed. So the
number of halos within V equals the initial size of V times the number density
of regions within it which were suÆciently dense that they collapsed to form
halos. If V is overdense today, it's comoving size is smaller than it was initially;
the initial comoving size wasM=�� = V (1+Æ). If we write N(m; z1jM;V; z0) =
n(m; z1jM;V; z0)V (1 + Æ), then we need an estimate of the number density
n(m; z1jM;V; z0).

The average number density of halos n(m; z1) is a function of the critical den-
sity required for collapse at that time: Æsc(z1). In the present context, n(m; z)
should be thought of as describing the number density of halos in extremely
large cells which are exactly as dense as the background (i.e., cells which have
M ! 1 and Æ = 0). Denser cells may be thought of as regions in which
the critical density for collapse is easier to reach, so a good approximation to
n(m; z1jM;V; z0) is obtained by replacing Æsc(z) in the expression for n(m; z)
with Æsc(z1)� Æ0(Æ; z0) [190]. Note that we cannot use Æ itself, because Æsc(z1)
has been extrapolated from the initial conditions using linear theory, whereas
Æ, being the actual value of the density, has been transformed from its value
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in the initial conditions using non-linear theory. Equations (54) and (55) show
the spherical collapse model for this non-linear Æ0(Æ; z) relation. Here, Æ0(Æ; z0)
denotes the initial density, extrapolated using linear theory, which a region
must have had so as to have density Æ at z0.

Thus, a reasonable estimate of the density of m-halos which virialized at z1
and are in cells of size V with mass M at z0 is

m2n(m; z1jM;V; z0)

��

dm

m
= �10 f(�10)

d�10
�10

where �10 =
[Æsc(z1)� Æ0(Æ; z0)]2

�2(m)� �2(M)
; (63)

and f(�) is the same functional form which described the unconditional mass
function (equation 57 or 59).

Two limits of this expression are interesting. As V ! 1, Æ ! 1 and Æ0 !
Æsc(z0) independent of the value of M . A region of small size which contains
mass M , however, is what we call a halo, with mass M . Thus, if we are given
a halo of mass M at z0, then N(m; z1jM;V = 0; z0) is the average number
of subclumps of mass m it contained at the earlier time when z1 � z0. This
limit of equation (63) gives what is often called the conditional or progenitor
mass function [23,19,163,255]. The opposite limit is also very interesting. As
V ! 1, M ! 1 as well: in this limit, �2(M) ! 0 and jÆj ! 0, and so
equation (63) reduces to n(m; z1), as expected.

Suppose that we are in the large cell limit. By large, we mean that the rms
density 
uctuation in these cells is much smaller than unity. Thus, jÆj � 1
in most cells and we can use equation (54) for Æ0(Æ). Large cells contain large
masses, so M in these cells is much larger than the mass m� of a typical
halo. In this limit, �(M) � �(m) for most values of m allowing one to set
�(M)! 0. This leads to

n(m; z1jM;V; z0) � n(m; z1)� Æ0(Æ; z0)

 
@n(m; z1)

@Æsc

!
Æsc(z1)

+ : : : ; (64)

such that

Æh(m; z1jM;V; z0) � Æ � (1 + Æ) Æ0(Æ; z0)

 
@ lnn(m; z1)

@Æsc

!
Æsc(z1)

: (65)

Inserting equation (59) for n(m; z) and keeping terms to lowest order in Æ give
(e.g., [45,190,252,254])

Æh(m; z1jM;V; z0) � Æ

 
1 +

q� � 1

Æsc(z1)
+
2p=Æsc(z1)

1 + (q�)p

!
= b1(m; z1) Æ; (66)
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where � � Æ2sc(z1)=�
2(m). This expression states that the overdensity of halos

in very large cells to be linearly proportional to the overdensity of the mass;
the constant of proportionality, b1(m; z1), depends on the masses of the halos,
and the redshifts they virialized, but is independent of the size of the cells.

If q = 1 and p = 0, then massive halos (those which have � > 1 or masses
greater than the characteristic mass scale of m�) have b1(m; z1) > 1 and are
said to be biased relative to the dark matter, while less massive halos (� < 1)
are anti-biased. Notice that b1 can be very large for the most massive halos,
but it is never smaller than 1�1=Æsc(z1). Equation (53) shows that halos which
virialized at the present time (i.e., z1 = 0), have bias factors which are never
less than � 0:41. Since Æsc(z1) � 1, in equation (53), halos that virialized at
early times have bias factors close to unity (See [204,87,276] for a derivation
of this limiting case which uses the continuity equation.)

Since M=V � ��(1 + Æ), the results above show that, in large cells, n(mjÆ) �
[1 + b1(m)Æ]n(m). Since b1(m) � 1 for the most massive halos, they occupy
the densest cells. It is well known that the densest regions of a Gaussian ran-
dom �eld are more strongly clustered than cells of average density [227,143,6].
Therefore, the most massive halos must also be more strongly clustered than
low mass halos. This is an important point to which we will return shortly.

3.4 The distribution of halos on large scales: Deterministic biasing

The linear bias formula is only accurate on large scales. If we write

Æh(m; z1jM;V; z0) =
X
k>0

bk(m; z1) Æ
k (67)

then inserting equation (63) in equation (62), setting �(M)! 0, and expand-
ing gives [236,189]

b1(m; z1)= 1 + �1 + E1;

b2(m; z1)= 2(1 + a2)(�1 + E1) + �2 + E2;

b3(m; z1)= 6(a2 + a3)(�1 + E1) + 3(1 + 2a2)(�2 + E2) + �3 + E3;

b4(m; z1)= 24(a3 + a4)(�1 + E1) + 12[a22 + 2(a2 + a3)](�2 + E2)

+4(1 + 3a2)(�3 + E3) + �4 + E4 (68)

for the �rst few coeÆcients. Here

�1=
q� � 1

Æsc(z1)
; �2 =

q�

Æsc(z1)

 
q� � 3

Æsc(z1)

!
; �3 =

q�

Æsc(z1)

 
q� � 3

Æsc(z1)

!2
;
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�4=

 
q�

Æsc(z1)

!2  
q2�2 � 10q� + 15

Æsc(z1)

!
; (69)

and

E1=
2p=Æsc(z1)

1 + (q�)p
;

E2

E1
=

1 + 2p

Æsc(z1)
+ 2�1;

E3

E1
=

4(p2 � 1) + 6pq�

Æ2sc(z1)
+ 3�21;

E4

E1
=

2q�

Æ2sc(z1)

 
2q2�2

Æsc(z1)
� 15�1

!

+2
(1 + p)

Æ2sc(z1)

 
4(p2 � 1) + 8(p � 1)q� + 3

Æsc(z1)
+ 6q��1

!
: (70)

If p = 0, all the Eks are also zero, and these expressions reduce to well known
results from [189]. By construction, note that the bias parameters obey con-
sistency relations:

Z
dm

mn(m; z)

��
bk(m; z) =

8><
>:
1 if k = 1

0 if k > 1
: (71)

Figure 4 compares these predictions for the halo bias factors with measure-
ments in simulations (from [254]). Note that more massive halos tend to be
more biased, and that halos of the samemass were more strongly biased at high
redshift than they are today. The solid and dotted lines show the predictions
from equation (68) with equations (57) and (59) for the halo mass function,
respectively. Figure 3 shows that equation (57) predicts too few massive halos;
as a result, it predicts a larger bias factor for these massive halos than is seen
in the simulations. Equation (59) provides an excellent �t to the halo mass
function; the associated bias factors are also signi�cantly more accurate.

The expressions above for the bias coeÆcients are obtained from our expression
for the mean number of halos in cells V which contain massM . If the relation
between Æh and Æ is deterministic, that is, if the scatter around the mean
number of halos at �xed M and V is small, then the distribution of halo
overdensities is related to that of the dark matter overdensities by a non-
linear transformation; the coeÆcients bk describe this relation. Thus, if the
dark matter distribution at late times is obtained by a transformation of the
initial distribution, then the halos are also related to the initial distribution
through a non-linear transformation.

While a deterministic relation between Æh and Æ is a reasonable approximation
on large scales, on smaller scales the scatter is signi�cant [190]. On small scales,
the bias is both non-linear and stochastic. Accurate analytic models for this
stochasticity are presented in [252,35], but we will not need them for what
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Fig. 4. Large scale bias relation between halos and mass (from [254]). Symbols
show the bias factors at zobs for objects which were identi�ed as virialized halos
at zform = 4,2,1 and 0 (top to bottom in each panel). Dotted and solid lines show
predictions based on the Press-Schechter and Sheth-Tormen mass functions.

follows. Also, ignored in what follows are: i) the deterministic bias coeÆcients
bk(m; z1) which follow from the assumption that halos are associated with
peaks in the initial density �eld [189]; ii) the deterministic bias coeÆcients
which are motivated by perturbation theory rather than the spherical collapse
model [36]. (Also, see [91] for a discussion of the relation between perturbation
theory and the coeÆcients ak in the expressions above).

On large scales where deterministic biasing is a good approximation, the vari-
ance of halo counts in cells is

D
Æh(m; z1jM;V; z0)

2
E
=
D0@X

k>0

bk(m; z1) Æ
k

1
A
2E
� b21(m; z1)

D
Æ2
E
V
: (72)

Thus, to describe the variance of the halos counts we must know the variance
in the dark matter on the same scale: hÆ2iV . On very large scales, it should
be a good approximation to replace hÆ2i by the linear theory estimate. On
slightly smaller scales, it is better to use the perturbation theory estimates
of [236]. Given these, the variance of halo counts in cells on large scales is
straightforward to compute.

The higher order moments can also be estimated if the biasing is deterministic.
This is because equation (67) allows one to write the higher order moments
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Fig. 5. Higher order moments of the halo distribution if the initial 
uctuation spec-
trum is scale free and has slope n = �1:5. Dotted and solid curves show the result of
assuming the halo mass function has the Press{Schechter and Sheth{Tormen forms.

of the halo distribution, hÆnh i, in terms of those of the dark matter, hÆni.
Quasi-linear perturbation theory shows that hÆni = Sn hÆ2in�1 if hÆ2i � 1
(see equation 40). The Sn are numerical coeÆcients which are approximately
independent of scale over a range of scales on which hÆ2i � 1; for clustering
from Gaussian initial conditions, the Sn are given by equation (41). By keeping
terms to consistent order, one can show that [88]

D
Ænh(m; z1jM;V; z0)

E
= Hn

D
Æ2h(m; z1jM;V; z0)

En�1
; (73)

where

H3= b
�1
1 (S3 + 3c2); H4 = b�21 (S4 + 12c2S3 + 4c3 + 12c22);

H5= b
�3
1

h
S5 + 20c2S4 + 15c2S

2
3 + (30c3 + 120c22)S3 + 5c4 + 60c3c2 + 60c32

i
;

ck = bk=b1 and we have not bothered to write explicitly that Hn depends on
halo mass and on the cell size V .

The expressions above show that the distribution of halos depends explicitly
on the distribution of mass. On large scales where the relation between halos
and mass is deterministic, one might have thought that the linear theory
description of the mass distribution can be used. For clustering from Gaussian
initial conditions, however, linear theory itself predicts that Sn = 0 for all
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n > 2. Therefore, to describe the halo distribution, it is essential to go beyond
linear theory to the quasi-linear perturbation theory.

Figure 5 shows an example of how the �rst few Hn depend on halo mass,
parameterized by b(m). Note that, in general, the less massive halos (those
for which b < 1) have larger values of Hn. This is a generic feature of halo
models. At high masses (b� 1) both sets of curves asymptote to Hn = nn�2.

Before moving on to the next subsection, consider some asymptotic properties
of the bk in equation (68), and of the high order moments Hn derived from
them. For small halos (� � 1) identi�ed at early times (z1 � 1), b1 � 1 and
bk � 0 for k > 1. Therefore Hn = Sn and such halos are not biased relative
to mass. In contrast, when � � 1 and z1 is not large, i.e. for massive halos
identi�ed at low redshift, bk = bk1 for k > 1. In this limit, the Hn are indepen-
dent of both Sn and ak. Therefore, the spatial distribution of these halos is
determined completely by the statistical properties of the initial density �eld
and are not modi�ed by the dynamics of gravitational clustering. In the limit
of � � 1, for an initially Gaussian random �eld, Hn = nn�2; these are the
coeÆcients of a Lognormal distribution which has small variance. This shows
that the most massive halos, or the highest peaks in a Gaussian �eld, are not
Gaussian distributed.

For small halos identi�ed at low redshift (� � 1 and z1 � 1), b1 � 1�1=Æsc(z1)
and bk � �k!(ak�1 + ak)=Æsc(z1) for k � 2. In this case Hn may depend
signi�cantly on the dynamical evolution of the underlying mass density �eld.
The skewness of such halos, H3, can be larger than S3. On the other hand, for
halos with � = 1, the skewness is H3 = S3 � 6=Æ2sc(z1), which is substantially
smaller than S3 unless z1 is high.

The most important result of this subsection is that, in the limit in which
biasing is deterministic, the bias parameters which relate the halo distribution
to that of the mass are completely speci�ed if the halo abundance, i.e., the
halo mass function, is known. If perturbation theory is used to describe the
distribution of the mass, then these bias parameters allow one to describe the
distribution of the halos. The perturbation theory predictions and the halo
mass function both depend on the shape of the initial power spectrum. Thus,
in this model, the initial 
uctuation spectrum is used to provide a complete
description of halo biasing.

3.5 Halo density pro�les

Secondary infall models of spherical collapse [82,16] suggest that the density
pro�le around the center of a collapsed halo depends on the initial density
distribution of the region which collapsed. If halos are identi�ed as peaks in
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Fig. 6. Distribution of dark matter around halo centers (from [198]). The density is
in units of 1010 M�/kpc

3 and radii are in kpc. Di�erent panels show the density
pro�le around the least and most massive halos in simulations of a wide variety of
cosmological models and initial power spectra (labelled by the density parameter
and spectral index). Arrows show the softening length; measurements on scales
smaller than this are not reliable. Solid lines show the NFW �t to the density
distribution is extremely accurate.

the initial density �eld [143,116], then massive halos correspond to higher
peaks in the initial 
uctuation �eld. The density run around a high peak is
shallower than the run around a smaller peak [6]: high peaks are less centrally
concentrated. Therefore one might reasonably expect massive virialized halos
to also be less centrally concentrated than low mass halos. Such a trend is
indeed found [198].
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Fig. 7. Mean concentration at �xed mass, c� = rvir=rs, for dark matter halos as
a function of halo mass (from results presented in [78]). Di�erent panels show the
same cosmological models and power spectra as Figure 6.

Functions of the form

�(rjm) =
�s

(r=rs)�(1 + r=rs)�
or �(rjm) =

�s
(r=rs)�[1 + (r=rs)�]

; (74)

have been extensively studied as models of elliptical galaxies [111,300]. Setting
(�; �) = (1; 3) and (1; 2) in the expression on the left gives the Hernquist [111]
and NFW [198] pro�les, whereas (�; �) = (3=2; 3=2) in the expression on the
right is the M99 pro�le [195].

The NFW and M99 pro�les provide very good descriptions of the density run
around virialized halos in numerical simulations (�gure 6). The two pro�les
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Fig. 8. Distribution of concentrations at �xed mass for dark matter halos �t to
NFW pro�les. Di�erent symbols show results for halos in di�erent mass bins. When
normalized by the mean concentration in the bin, the distribution is well described
by a log-normal function (equation 77). The pile up of halos at small values of the
concentration is due to numerical resolution of the GIF simulations.

di�er on small scales, r � rs, and whether one provides a better description
of the simulations than the other is still being hotly debated. Both pro�les are
parameterized by rs and �s, which de�ne a scale radius and the density at that
radius, respectively. Although they appear to provide a two-parameter �t, in
practice, one �nds an object of given massm and radius rvir in the simulations,
and then �nds that rs which provides the best �t to the density run. This is
because the edge of the object is its virial radius rvir, while the combination
of rs and the mass determines the characteristic density, �s, following

m �
rvirZ
0

dr 4�r2�(rjm): (75)

For the NFW and M99 pro�les,

m = 4��sr
3
s

�
ln(1 + c)� c

1 + c

�
and m = 4��sr

3
s

2 ln(1 + c3=2)

3
; (76)
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where c � rvir=rs is known as the concentration parameter. Note that we
have explicitly assumed that the halo pro�le is truncated at rvir, even though
formally, the NFW and M99 pro�les extend to in�nity. Because these pro�les
fall as r�3 at large radii, the mass within them diverges logarithmically. Our
decision to truncate the pro�le at the virial radius insures that the mass within
the pro�le is the same as that which is described by the halo mass function
discussed previously.

Since most of the mass is at radii much smaller than rvir, the �tted value of rs
is not very sensitive to the exact choice of the boundary rvir. The simulations
show that for halos of the same mass, there is a distribution of concentrations
c = rvir=rs which is well-�t by a log-normal distribution [138,31]:

p(cjm; z) dc = d ln cq
2��2c

exp

"
� ln2[c=�c(m; z)]

2�2ln c

#
: (77)

Although the mean concentration �c(m; z) depends on halo mass, the width of
the distribution does not. This is shown in Figure 8, which is taken from [256].
The Figure shows that the distribution of c=�c is indeed well approximated by
a log-normal function.

For the NFW pro�le,

�c(m; z) =
9

1 + z

"
m

m�(z)

#�0:13
and �ln c � 0:25 ; (78)

where m�(z) is characteristic mass scale at which �(m; z) = 1. A useful ap-
proximation, due to [212], is that �c[M99] � (�c[NFW]=1:7)0:9. Equation (78)
quanti�es the tendency for low mass halos to be more centrally concentrated,
on average, than massive halos.

In what follows, it will be useful to have expressions for the normalized Fourier
transform of the dark matter distribution within a halo of mass m:

u(kjm) =

R
d3x �(xjm) e�ik�xR
d3x �(xjm)

: (79)

For spherically symmetric pro�les truncated at the virial radius, this becomes

u(kjm) =

rvirZ
0

dr 4�r2
sin kr

kr

�(rjm)

m
: (80)

Table 1 contains some �(rjm) and u(kjm) pairs which will be useful in what

33



follows.

For the NFW pro�le,

u(kjm)=
4��sr3s
m

(
sin(krs)

h
Si([1 + c]krs)� Si(krs)

i
� sin(ckrs)

(1 + c)krs

+cos(krs)
h
Ci([1 + c]krs) �Ci(krs)

i)
; (81)

where the sine and cosine integrals are

Ci(x) = �
1Z
x

cos t

t
dt and Si(x) =

xZ
0

sin t

t
dt : (82)

Figure 9 shows u(kjm) as a function of m for NFW halos. In general, the shape
of the Fourier transform depends both on the halo concentration parameter,
c, and the mass m. The �gure shows a trend which is to all the pro�les in
Table 1: the small scale power is dominated by low mass halos.

There are no complete explanations for why the NFW or M99 pro�les �t
the dark matter density distribution of dark matter in numerical simulations,
although there are reasonably successful models of why the concentrations
depend on mass [198,205,288]. In the present context, the reason why they �t
is of secondary importance; what is important is that these �ts provide simple
descriptions of the density run around a halo. In particular, what is important
is that the density run around a dark matter halo depends mainly on its mass;
though the density pro�le also depends on the concentration, the distribution
of concentrations is determined by the mass.

4 Halos and large scale structure

At this point, we have formulae for the abundance and spatial distribution of
halos, as well as for the typical density run around a halo. This means that we
are now in a position to construct the halo model. The treatment below will
be completely general. To make the model quantitative, one simply inserts
their favorite formulae for the halo pro�le, abundance and clustering (such as
those presented in the previous section) into the expressions below.

The formalism written down by Neyman & Scott [199], which we are now in
a position to consider in detail, had three drawbacks. First, it was phrased
entirely in terms of discrete statistics; some work is required to translate it
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Fig. 9. Fourier transforms of normalized NFW pro�les u(kjm), for a variety of
choices of halo mass, at the present time (redshift z = 0). Equation (78) for the halo
mass{concentration relation has been used. The curves show that the most massive
halos contribute to the total power only at the largest scales, whereas smaller halos
contribute power even at small scales.

into the language of continuous density �elds. Second, it was phrased entirely
in terms of real coordinate space quantities. As we will see shortly, many of
the formulae in the model involve convolutions which are considerably easier
to perform in Fourier space. And, �nally, the particular model they assumed
for the clustering of halos was not very realistic.

Scherrer & Bertschinger [232] appear to have been the �rst to write the model
for a continuous density �eld, using Fourier space quantities, in a formulation
which allows one to incorporate more general and realistic halo{halo correla-
tions into the model. It is this formulation which we describe below.

4.1 The two-point correlation function

In the model, all mass is bound up into halos which have a range of masses
and density pro�les. Therefore, the density at position x is given by summing
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Table 1
Density pro�les and associated normalized Fourier transforms. Distances are in units
of the scale radius: x = r=rs, c = rvir=rs and � = krs, and, when truncated, the
boundary of the halo is rvir. The sine and cosine integrals are de�ned in the main
text.

�(x) range u(�)

(2�)�3=2 exp(�x2=2) exp(��2=2)

exp(�x)=8� (1 + �2)�2

exp(�x)=(4�x2) atan(�)=�

x�2(1 + x2)�1=(2�2) [1� exp(��)]=�

3=(4�c3) x � c 3 [sin(c�)� c� cos(c�)]=(c�)3

(4�c x2)�1 x � c Si(c�)=c�

x�1(1 + x)�2 x � c Equation (81)

up the contribution from each halo:

�(x)=
X
i

fi(x� xi) =
X
i

�(x� xijmi) �
X
i

mi u(x� xijmi)

=
X
i

Z
dmd3x0 Æ(m�mi) Æ

3(x0 � xi) mu(x� x0jm); (83)

where fi denotes the density pro�le of the ith halo which is assumed to be
centered at xi. The second equality follows from assuming that the density run
around a halo depends only on its mass; this pro�le shape is parameterized
by �, which depends on the distance from the halo center and the mass of the
halo. The third equality de�nes the normalized pro�le u, which is � divided
by the total mass contained in the pro�le:

R
d3x0 u(x� x0jm) = 1.

The number density of halos of mass m is

DX
i

Æ(m�mi) Æ
3(x0 � xi)

E
� n(m); (84)

where h:::i denotes an ensemble average. The mean density is

��=
D
�(x)

E
=
DX

i

mi u(x� xijmi)
E
=
Z
dmn(m)m

Z
d3x0 u(x� x0jm)

=
Z
dmn(m)m; (85)
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where the ensemble average has been replaced by an average over the halo
mass function n(m) and an average over space.

The two-point correlation function is

�(x � x0) = �1h(x� x0) + �2h(x� x0) (86)

where

�1h(x� x0)=
Z
dm

m2 n(m)

��2

Z
d3y u(yjm)u(y+ x� x0jm)

�2h(x� x0)=
Z
dm1

m1 n(m1)

��

Z
dm2

m2 n(m2)

��

Z
d3x1 u(x� x1jm1)

�
Z
d3x2 u(x

0 � x2jm2) �hh(x1 � x2jm1;m2) ;

the �rst term describes the case in which the two contributions to the density
are from the same halo, and the second term represents the case in which
the two contributions are from di�erent halos. Both terms require knowledge
of how the halo abundance and density pro�le depend on mass. The second
term also requires knowledge of �hh(x� x0jm1;m2), the two-point correlation
function of halos of mass m1 and m2.

The �rst term is relatively straightforward to compute: it is just the convo-
lution of two similar pro�les of shape u(rjm), weighted by the total number
density of pairs contributed by halos of mass m. This term was studied in the
1970's, before numerical simulations had provided accurate models of the halo
abundances and density pro�les [215,184]. The more realistic values of these
inputs were �rst used to model this term some twenty years later [250].

The second term is more complicated. If u1 and u2 were extremely sharply
peaked, then we could replace them with delta functions; the integrals over
x1 and x2 would yield �hh(x� x0jm1;m2). Writing x1� x2 = (x� x0) + (x0�
x2) � (x� x1), shows that this should also be a reasonable approximation if
�hh(rjm1;m2) varies slowly on scales which are larger than the typical extent
of a halo. Following the discussion in the previous section with respect to halo
bias, on large scales where biasing is deterministic,

�hh(rjm1;m2) � b(m1) b(m2) �(r) (87)

Now �(r) can be taken outside of the integrals over m1 and m2, making the
two integrals separable. The consistency relations (equation 71) show that
each integral equals unity. Thus, on scales which are much larger than the
typical halo �2h(r) � �(r). However, on large scales, �(r) � �lin(r), and so the
two-halo term is really very simple: �2h(r) � �lin(r).
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Setting �hh(rjm1;m2) � b(m1) b(m2) �(r) will overestimate the correct value
on intermediate scales. Furthermore, on small scales the halo-halo correlation
function must eventually turn over (halos are spatially exclusive|so each halo
is like a small hard sphere); assuming that it scales like �(r) is a gross overes-
timate. Using �hh(rjm1;m2) � b(m1) b(m2) �

lin(r), i.e., using the linear, rather
than the non-linear correlation function, even on the smallest scales, is a crude
but convenient way of accounting for this overestimate. Although the results
of [252] allow one to account for this more precisely, it turns out that great
accuracy is not really needed since, on small scales, the correlation function is
determined almost entirely by the one-halo term anyway. Although almost all
work to date uses this approximation, it is important to bear in mind that it's
form is motivated primarily by convenience. For example, if volume exclusion
e�ects are only important on very small scales, then setting �(r) � �1�loop(r)
rather than �lin(r), i.e., using the one{loop perturbation theory approximation
rather than the simpler linear theory estimate, may provide a better approxi-
mation.

Because the model correlation function involves convolutions, it is much easier
to work in Fourier space: the convolutions of the real-space density pro�les
become simple multiplications of the Fourier transforms of the halo pro�les.
Thus, we can write the dark matter power spectrum as

P (k)=P 1h(k) + P 2h(k); where

P 1h(k)=
Z
dmn(m)

 
m

��

!2
ju(kjm)j2

P 2h(k)=
Z
dm1 n(m1)

 
m1

��

!
u(kjm1)

Z
dm2 n(m2)

 
m2

��

!
u(kjm2)Phh(kjm1;m2) :

(88)

Here, u(kjm) is the Fourier transform of the dark matter distribution within
a halo of mass m (equation 80) and Phh(kjm1;m2) represents the power spec-
trum of halos of mass m1 and m2. Following the discussion of the halo{halo
correlation function (equation 87), we approximate this by

Phh(kjm1;m2) �
2Y
i=1

bi(mi)P
lin(k) (89)

bearing in mind that the one-loop perturbation theory estimate may be more
accurate than P lin(k).
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4.2 Higher-order correlations

Expressions for the higher order correlations may be derived similarly. How-
ever, they involve multiple convolutions of halo pro�les. This is why it is much
easier to work in Fourier space: the convolutions of the real-space density
pro�les become simple multiplications of the Fourier transforms of the halo
pro�les. Similarly, the three-point and four-point correlations include terms
which describe the three and four point halo power spectra. The bi- and tri-
spectra of the halos are

Bhhh(k1;k2;k3;m1;m2;m3)=
3Y
i=1

bi(mi)

"
Blin(k1;k2;k3)

+
b2(m3)

b1(m3)
P lin(k1)P

lin(k2)

#
;

Thhhh(k1;k2;k3;k4;m1;m2;m3;m4)=
4Y
i=1

bi(mi)

"
T lin(k1;k2;k3;k4)

+
b2(m4)

b1(m4)
P lin(k1)P

lin(k2)P
lin(k3)

#
:

(90)

Notice that these require the power, bi- and trispectra of the mass, as well as
mass-dependent ith-order bias coeÆcients bi(m). Whereas P , B and T come
from perturbation theory (x 2.2), the bias coeÆcients are from the non-linear
spherical or ellipsoidal collapse models and are given in x 3.3.

Using this information, we can write the dark matter bispectrum as

B123 = B1h +B2h +B3h ; (91)

where,

B1h =
Z
dmn(m)

 
m

��

!3 3Y
i=1

u(~kijm)

B2h =
h Z

dm1 n(m1)

 
m1

��

!
u(k1jm1)

Z
dm2 n(m2)

 
m2

��

!2
u(k2jm2)u(k3jm2)

�Phh(k1jm1;m2) + cyc:
i

B3h =

"
3Y
i=1

Z
dmi u(kijmi)n(mi)

 
mi

��

!#
B123
hhh(m1;m2;m3) ;

(92)
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where B123
hhh(m1;m2;m3) � Bhhh(k1; k2; k3jm1;m2;m3) and denotes the bispec-

trum of halos of mass m1;m2 and m3.

Finally, the connected part of the trispectrum can be written as the sum of
four terms

T1234 = T 1h + T 2h + T 3h + T 4h ; (93)

where

T 1h =
Z
dmn(m)

 
m

��

!4 4Y
i=1

u(~kijm)

T 2h =
h Z

dm1 n(m1)

 
m1

��

!
u(k1jm1)

Z
dm2 n(m2)

 
m2

��

!3

�u(k2jm2)u(k3jm2)u(k4jm2)Phh(k1jm1;m2) + cyc:
i

+
h Z

dm1 n(m1)

 
m1

��

!2
u(k1jm1)u(k2jm2)

Z
dm2 n(m2)

 
m2

��

!2
u(k3jm2)u(k4jm2)

�Phh(jk1 + k2jjm1;m2) + cyc:
i

T 3h =
Z
dm1 n(m1)

 
m1

��

!
u(k1jm1)

Z
dm2 n(m2)

 
m2

��

!
u(k2jm2)

�
Z
dm3 n(m3)

 
m3

��

!2
u(k3jm3)u(k4jm3)Bhhh(k1;k2;k3 + k4jm1;m2;m3)

T 4h =

"
4Y

i=1

Z
dmi u(kijmi)n(mi)

 
mi

��

!#
T 1234
hhhh(m1;m2;m3;m4): (94)

For simplicity, we reduce the notation related to integrals over the Fourier
transform of halo pro�les and write the power spectrum,

P (k) = P 1h(k) + P 2h(k)

P 1h(k) =M02(k; k)

P 2h = P lin(k) [M11(k)]
2
; (95)

bispectrum,

B123 = B1h +B2h +B3h

B1h =M03(k1; k2; k3)

B2h =M11(k1)M12(k2; k3)P
lin(k1) + cyc:
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B3h =

"
3Y
i=1

M11(ki)

#
Blin
123 +M11(k1)M11(k2)M21(k3)P

lin(k1)P
lin(k2) + cyc: ;

(96)

and trispectrum,

T1234 = T 1h + T 2h + T 3h + T 4h

T 1h =M04(k1; k2; k3; k4)

T 2h =
h
M11(k1)M13(k2; k3; k4)P

lin(k1) + cyc:
i

+
h
M12(k1; k2)M12(k3; k4)P

lin(jk1 + k2j) + cyc:
i

T 3h =M11(k1)M11(k2)M12(k3; k4)B
lin(k1;k2;k3 + k4)

+
h
M11(k1)M11(k2)M22(k3; k4)P

lin(k1)P
lin(k2) + cyc:

i

T 4h =

"
4Y

i=1

M11(ki)

#
T lin
1234

+M11(k1)M11(k2)M11(k3)M21(k4)P
lin(k1)P

lin(k2)P
lin(k3) + cyc: : (97)

Here, b0 � 1 and

Mij(k1; : : : ; kj) �
Z
dmn(m)

 
m

��

!j

bi(m)[u(k1jm) : : : u(kjjm)] ; (98)

with the three-dimensional Fourier transform of the halo density distribution,
u(kjm), following equation (80).

The one-point moments, smoothed on scale R, can also be obtained by an
integral with the appropriate window functionW (kR). In the case of variance,

�2(R) =
Z
k2dk

2�2
P (k)jW (kR)j2

=
Z k2dk

2�2
P lin(k) [M11(k)]

2 jW (kR)j2 +
Z k2dk

2�2
M02(k; k)jW (kR)j2

��2lin(R) +
Z
dmn(m)

 
m

��

!2
u2(Rjm) (99)

where

un(Rjm) =
Z
k2dk

2�2
un(kjm)jW (kR)j2 : (100)

In simplifying, we have written the fully non-linear power spectrum of the den-
sity �eld in terms of the halo model (equation 95) and taken the large-scale
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limitM11 � 1. This is a reasonable approximation because of the consistency
conditions (equation 71). Here, �2lin(R) follows from equation (58). With sim-
ilar approximations, we can derive higher-order connect moments (see [236]
for details).

With the same general integral de�ned in [236],

Aij(R) �
Z
dmn(m)

 
m

��

!2
bi(m)u2(Rjm)uj(Rjm) ; (101)

we can write the one point moments as

hÆ2i � �2 = �2lin +A00

hÆ3i = S lin
3 �

4
lin + 3�2linA10 +A01

hÆ4ic = Slin
4 �

6
lin + 6

Slin
3

3
�4linA10 + 7

4�2lin
7

A11 +A02

hÆ5ic = Slin
5 �

8
lin + 10

Slin
4

16
�6linA10 + 25

3Slin
3

5
�4linA11 + 15

�2lin
3
A12 +A03 ;

(102)

where the terms in hÆnic are ordered from n-halo to 1-halo contributions. The
coeÆcient of an m-halo contribution to hÆnic is given by s(n;m) (e.g. 6 and 7
in the second and third terms of equation 102), the Stirling number of second
kind, which is the number of ways of putting n distinguishable objects (Æ) into
m cells (halos), with no cells empty [232].

In general, we can write the nth moment as

hÆnic = SPT
n �

2(n�1)
L +

n�1X
m=2

s(n;m) �nmS
PT
m �

2(m�1)
L A1n�m�1 +A0n�2; (103)

where the �rst term in equation (103) represents the n�halo term, the second
term is the contribution from m-halo terms, and the last term is the 1-halo
term. The coeÆcients �nm measure how many of the terms contribute as
A1n�m�1, with the other contributions being subdominant. For example, in
equation (102), the 2-halo term has a total contribution of 7 terms, 4 of them
contain 3 particles in one halo and 1 in the other, and 3 of them contain 2
particles in each. The factor 4=7 is included to take into account that the 3�1
amplitude dominates over the 2� 2 amplitude. Note that in these results, we
neglected all contributions from the non-linear biasing parameters in view of
the consistency conditions given in equation (71). The SPT

n were de�ned in
equation (41).
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4.3 An illustrative analytic example

To introduce the general behavior of the halo based predictions, we �rst con-
sider a simple illustrative example. We assume that the initial spectrum of the
density 
uctuation �eld is P0(k) = A=k3=2. This is not a bad approximation
to the shape of the power spectrum on cluster-like scales in CDM models. If
we set �2

0(k) � k3 P0(k)=(2�2) then the variance on scale R is

�2(R) =
Z dk

k
�2

0(k)W
2
TH(kR) =

16
p
�

15

A

2�2
R�3=2: (104)

Setting �(R�) � Æsc means

�2
0(k) =

15 Æ2sc
16
p
�
(kR�)

3=2: (105)

We will approximate the fraction of mass in virialized halos of mass m using
equation (57):

f(m) dm =
mn(m) dm

��
=

d�

�

r
�

2�
exp

�
��
2

�
;

where � � Æ2sc=�
2(m) = (m=m�)1=2 and m� = 4�R3

���=3. We will assume that
the density run around the center of a virialized halo scales as

�(rjm)

��
=

2�nl

3�
c3(m)

y�2

1 + y2
; (106)

when �� is the background density, y = r=rs, c = rvir=rs, �nl = (R=rvir)3, and
m=�� = 4�R3=3. Here R is the initial size of the halo, rvir is the virial size, and
rs is the core radius. Since the pro�le falls more steeply than r�3 at large r,
the total mass is �nite: 4�

R
dr r2�(rjm) = m. We will assume that the core

radius depends on halo mass: c(m) = c� (m�=m)
.

The normalized Fourier transform of this pro�le is

u(kjm)=

R
dr r2�(rjm) sin(kr)=(kr)R

dr r2�(rjm)
=

1 � e�krs

krs
;

where krs =
kR�

�1=3
nl c�

�
m

m�

�
+1=3
� �

�
m

m�

�
+1=3
: (107)

Note that at large k, u(kjm) decreases as 1=k.
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If we set 
 = 1=6 (so more massive halos are less concentrated), then krs = ��,
and the integrals over the mass function which de�ne the power spectrum can
be done analytically. For example, the contribution to the power from particles
which are in the same halo is

�2
1h(k) =

Z
dm

m2n(m)

��2
ju(kjm)2j = 2�nl

3�
c3� �

 
1 +

1p
1 + 4�

� 2p
1 + 2�

!
;

and the contribution from pairs in separate halos is

�2
2h(k) = B2(k)�2

0(k) = B2(k)
15 Æ2sc
16
p
�
(�1=3

nl c�)
3=2 �3=2;

where

B(k) =
1

�

"
2

Æsc
� 1 +

p
1 + 2�

�
1� 1

Æsc

�
� 1=Æscp

1 + 2�

#
:

Here B(k) � R
dm [mn(m)=��] b(m)u(kjm) and we have used the fact that, if

the mass function is given by equation (57), then b(m) = 1 + (� � 1)=Æsc from
equation (66).

At small �, the one-halo term is 2�nl c
3
�=� times �3, whereas the two-halo term

is �2
0(k) times B2(k) ! 1 � (2=Æsc + 1)�; the e�ect is to multiply the linear

spectrum by a k dependent factor which is less than unity. Thus, at small k
most of the power comes from the two-halo term. At large k, the two-halo
term is 2(1 � 1=Æsc)2=� times the linear spectrum, so it grows as �1=2. On the
other hand, the one-halo term is 2�nlc

3
�=3� times �. Thus, the power on small

scales is dominated by the one-halo term.

If, on the other hand, 
 = �1=3 (so more massive halos are more concentrated,

unlike numerically simulated halos), then � = krs = kR�=(c��
1=3
nl ) is indepen-

dent of m, and so u(kjm) is also independent of m. Since
R
dm (m=��)2 n(m) =

3 (m�=��), the two power spectrum terms are

�2
1h(k) =

2�nl

�
c3� �

3

 
1� e��

�

!2
and �2

2h(k) =

 
1� e��

�

!2
�2

0(k):

This shows how the variation of the central concentration with halo mass
changes the contribution to the total power from the two terms. In addition,
changing the halo mass function would obviously change the �nal answer. And,
for 
 = �1=3, changing the initial power spectrum only changes the prefactor
in front of �2

1h(k). The prefactor in front of �2
2h(k) is una�ected, though, of

course, �2
0(k) has been changed.
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4.4 Compensated pro�les

This section considers density pro�les which are `compensated'; these are com-
binations of over- and under-dense perturbations, normalized so that the mass
in each of the two components is the same. The reason for considering such
pro�les is to illustrate a curious feature of the halo model: when only positive
perturbations are present, then, as k ! 0, the single halo contribution to the
power tends to a constant:

P 1h(k ! 0)!
Z
dmn(m)

 
m2

��2

!
(108)

In CDM{like spectra, the linear power-spectrum is / k at small k, so that the
single halo term eventually dominates the power. This problem is also present
in the higher order statistics such as the bi- and trispectra. For the power
spectrum, this constant is like a mean square halo mass, so that this excess
large scale power resembles a shot-noise like contribution. This suggests that
it must be subtracted{o� by hand. However, subtracting the same constant at
all k is not a completely satisfactory solution, because the power at suÆciently
large k can be very small, in which case subtracting o� P 1h(k = 0) might lead
to negative power at large k. The compensated pro�le model is designed so
that the one-halo term is well behaved at small k. On the other hand, as we
show, compensated models su�er from another problem: they have no power
on large scales!

Consider the correlation function which arises from a random, Poisson, distri-
bution of density perturbations, in which all perturbations are assumed to be
identical. We will consider what happens when we allow perturbations to have
a range of sizes later, and correlations between perturbations will be included
last. The density at a distance r from a compensated perturbation can be
written as the sum of two terms:

�(r) = �+(r) + ��(r): (109)

So that we have a concrete model to work with, we will assume that

�+(x)

��
= a exp

 �x2
2�2+

!
and

��(x)

��
= 1� exp

 �x2
2�2�

!
; (110)

where �� denotes the mean density of the background in which these pertur-
bations are embedded. (The Gaussian is a convenient choice because it is a
monotonic function for which the necessary integrals are simple.) We will re-
quire a > 1, so that the positive perturbation is denser than the background.
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We will discuss the scales �+ and �� of the two perturbations shortly. For
now, note that the negative perturbation is bounded between zero and one:
��(x) is always less than the mean density. The reason for this is that we
are imagining that the perturbation can be thought of as an initially uniform
density region of size �� from which mass has been scooped out according to
��(x), and replaced by mass which is distributed as �+(x). The total density

uctuation is

Æ(x) � �(x)

��
� 1 = a exp

 �x2
2�2+

!
� exp

 �x2
2�2�

!
: (111)

The integral of Æ over all space is

g � 4�

1Z
0

dx x2 Æ(x) = (2�)3=2
�
a�3+ � �3�

�
; (112)

and depends on the amplitudes and scales of the positive and negative per-
turbations.

If we set

�� = a1=3�+ (113)

then g = 0. This corresponds to the statement that the positive perturbation
contributes exactly the same amount of mass which the negative perturbation
removed. The only di�erence is that the mass has been redistributed into the
form �+(x). It is in this sense that the pro�les are compensated.

We can build a toy model of evolution from this by de�ning �+(t)=�� � R(t).
We will imagine that, at some initial time, R(t) � 1, and that it decreases
thereafter. This is supposed to represent the fact that gravity is an attractive
force, so the mass which was initially contained with �� is later contained
within the smaller region �+. If mass is conserved as �+ shrinks (equation 113),
then it must be that a(t) = R(t)�1. Thus, the amplitude a is related to the
ratio of the initial and �nal sizes of �+. The fact that R(t) � 1 initially re
ects
the assumption that the initial density �eld was uniform. Today, the mass
is in dense clumps|the positive perturbations. Each positive perturbation
assembled its mass from a larger region in the initial conditions. Our particular
choice of setting g to zero comes from requiring that all the mass in the positive
perturbation came from the negative one.

Note that we haven't yet speci�ed the exact form for the evolution of the
pro�le, R(t). Independent of this evolution, we can use the formalism in [183]
to compute the correlation functions as a function of given t. The correlation
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function is the number density of pro�les, �, times the convolution of such
a pro�le with itself, �(r). Since all the mass is in the positive perturbations,
and each positive perturbation contains mass m = (2�)3=2 �� �3�, we can set
� = ��=m. In our compensated halo model, � is the sum of three terms:

�(r) = �++(r) + ���(r) � 2�+�(r); (114)

where �++,���, and �+�, denote the various types of convolutions. For the
Gaussian pro�les we are considering here,

�++(r) = a
2 �3=2 �3+ exp

 �r2
4�2+

!
; ���(r) = �3=2 �3� exp

 �r2
4�2�

!
;

�+�(r) = a�
3=2

 
2�2+ �

2
�

�2+ + �2�

!3=2
exp

 �r2=2
�2+ + �2�

!
: (115)

Inserting equation (113) makes the factors in front of the exponentials resemble
each other more closely.

It is a simple matter to verify that these compensated pro�les satisfy the
integral constraint:

� 4�

1Z
0

dr r2 �(r) = 0: (116)

If the correlation function were always positive, this integral constraint would
not be satis�ed. Because of the minus sign in equation (114) above, the cor-
relation function in compensated halo models can be negative on large scales.

The power spectrum is obtained by Fourier-transforming the correlation func-
tion. Since the Fourier transform of a Gaussian is a Gaussian, equation (115)
shows that, in these compensated models, the power spectrum is the sum of
three Gaussians:

P (k)=
1

2�2

Z
dr r2 ��(r)

sin kr

kr

= � (a�3+)
2
�
e�k

2�2+ + e�k
2�2

� � 2 e�k
2�2+=2e�k

2�2
�
=2
�
: (117)

The form of this expression is easily understood, since convolutions in real
space are multiplications in Fourier space such that the power spectrum is
simply a sum of products of Gaussians. Indeed, if we let U(k) andW (k) denote
the Fourier transforms of the positive and negative perturbations, then

P (k) =
h
U(k)�W (k)

i2
: (118)
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Fig. 10. Density pro�les and correlation functions associated with uncompensated
(dashed) and compensated (solid) Gaussian perturbations. The correlation function
� is negative for r=�+ in the range 3� 15 or so, so we have plotted j�j instead.

It is interesting to compare this expression with the case of a positive per-
turbation only. In this case, � = �++, and P (k) = U(k)2. Since �++ � 0
always, such a model does not satisfy the integral constraint. Analogously,
uncompensated pro�les have P (k)! constant at small k. If one thinks of the
compensated pro�le as providing a correction factor to the power spectrum of
positive perturbations, then the expression above shows that this correction
is k dependent: simply subtracting-o� a constant term from U(k) is incor-
rect. In the compensated Gaussian model above, W (k) ! 0 at large k, so
P (k) ! U(k) on small scales. However, P (k) ! 0 at small k|there is no
power on large scales.

Fig. 10 shows all this explicitly. The panels show density pro�les, correlation
functions and power spectra for uncompensated (dashed curves) and compen-
sated (solid curves) Gaussian perturbations which have a = 200 and �+ = 1.
Notice how, for compensated pro�les, the correlation function oscillates about
zero. Notice also how P (k) for the two cases tends to very di�erent limits at
small k.

So far we have assumed that all pro�les had the same shape, parameterized
by ��. Because m / �3�, allowing for a range of masses is the same as allowing
for a range of pro�le shapes. Thus,

P (k) =
Z
dm n(m)P (kjm); (119)
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where n(m) is the number density of perturbations which have mass m, and
P (kjm) is the power spectrum for perturbations which contain this mass.
Since each of the P (kjm)s tends to zero at small k, this will also happen for
P (k). The shape of n(m) depends on the initial spectrum of 
uctuations. If
we insert the shape of n(m) associated with an initial P (k) / 1=k spectrum,
and use the Gaussian pro�les above, then the integral over m can be done
analytically. Using, Æ2sc=�

2(m) = (m=m�)2=3 = �, and �� to denote �� for an
m� halo, m� = (2�)3=2���3�, we get

k3P (k) = k3
Z
dm n(m)

 
m

��

!2 �
e�k

2�2+ + e�k
2�2

� � 2 e�k
2�2+=2e�k

2�2
�
=2
�

=

 
k3m�

��

!Z d�

�
�3=2+1=2

exp(��=2)p
2�

�
�
e�(k��=a

1=3)2� + e�k
2�2

�
� � 2 e�(k��=a

1=3)2�=2 e�k
2�2

�
�=2
�

=8��3
 

1

[1 + 2�2=a2=3]2
+

1

[1 + 2�2]2
� 2

[1 + �2 + �2=a2=3]2

!
(120)

where we have set � � k��.

This spectrum is di�erent from the one in which all halos had the same mass
(equation 117). The power associated with any given halo mass falls expo-
nentially at large k; the result of adding up the contributions from all halos
means that P (k) only decreases as k�4 at large k. This is a consequence of the
fact that the less massive halos are smaller and much more numerous than
the massive halos.

We can also work out these relations for tophat perturbations. Here,

Æ(r)=A� 1 if 0 � r � R+

=�1 if R+ < r � R�; (121)

and it equals zero for all r > R�. If we require the mass in the positive
perturbation cancel the mass in the negative one, then A = (R�=R+)3. The
various convolution integrals that should be substituted in equation (114) are

�++(r) =A
2 4�R

3
+

3

2
41� 3

4

r

R+
+

1

16

 
r

R+

!335 if 0 � r � 2R+

���(r) =
4�R3

�

3

2
41 � 3

4

r

R�

+
1

16

 
r

R�

!335 if 0 � r � 2R�

�+�(r) =A
4�R3

+

3
if 0 � r � (R� �R+)
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=
A�

12r
(R� +R+ � r)2

�
r2 + 2r(R� +R+)� 3(R� �R+)

2
�

(122)

when (R� � R+) � r � (R+ + R�). It is now straightforward to verify that
the resulting expression for �(r) satis�es the integral constraint given in equa-
tion (116).

Allowing for a range of pro�le shapes means that �(r) =
R
dm p(m) ��(rjm),

where m parameterizes the pro�le shape, and p(m) is the probability that
a perturbation had shape m. Note that in most models of current interest,
the pro�le shape is a function of the mass contained in the halo. Since each
of the �(rjm)s satis�es the integral constraint, �(r) will also. Similarly, the
contribution to P (k) at small k will be zero.

Thus, in contrast to positive perturbations, compensated pro�les satisfy the
integral constraint on the correlation function, and have vanishing power at
small k. Both these are physically desirable improvements on the positive
perturbation alone model.

The model with only positive perturbations is the only one which has been
studied in the literature to date. One consequence of this is that, in these
models, P 1h(k) ! R

dmm2n(m)=��2 6= 0 as k ! 0. Since P 2h(k) tends to the
linear perturbation theory value in this limit, the sum of the two terms is
actually inconsistent with linear theory on the largest scales. The discrepancy
is small in models of the dark matter distribution, but, for rare objects, the
shot-noise-like contribution from the P 1h(k) term can be large [244]. How
to treat this discrepancy is an open question [236]. One might have thought
that compensating the pro�les provides a natural way to correct for this.
Unfortunately, compensated pro�les are constructed so that u(kjm) ! 0 at
small k. Since P 2h(k) also depends on u(kjm), in compensated models it too
tends to zero at small k. Therefore, whereas uncompensated pro�les lead to
a little too much power on large scales, compensating the pro�les leads to no
large scale power at all! (The physical reason for this is clear: because they
are compensated, the total mass in the pro�les integrates to zero. Therefore,
the pro�les represent only local rearrangements of the mass; on scales larger
than the typical perturbation, this rearrangement can be ignored|hence, the
models have no large scale power.) This drawback of the model which should
be borne in mind when making predictions about the power on large scales.

5 Dark Matter Power Spectrum, Bispectrum and Trispectrum

We will now discuss results related to the dark matter distribution. We show
how the power spectrum is constructed under the halo model, discuss some
aspects of higher order clustering, and include a calculation of correlations in
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Fig. 11. Power spectrum of the dark matter density �eld at the present time. Curve
labeled `PD' shows the �tting formula of [210]. Dot dashed curve labeled `lin' shows
the linear P lin(k). Dotted and short dashed curves show the two terms which sum
to give the total power (solid line) in the halo model.

estimates of the power spectrum. We conclude this section with a discussion
of the extent to which the halo model can be used as a astrophysical and
cosmological tool, and suggest some ways in which the model can be extended.

5.1 Power Spectrum

Figure 11 shows the power spectrum of the dark matter density �eld at the
present time (z = 0). Dotted and short dashed lines show the contributions
to the power from the single and two halo terms. Their sum (solid) should be
compared to the power spectrum measured in numerical simulations, repre-
sented here by the dashed curve labeled `PD' which shows the �tting function
of equation (46). (At the largest k shown, this �tting function represents an
extrapolation well beyond what has actually been measured in simulations to
date, so it may not be reliable.) In computing the halo model curves we have
included the e�ect of the scatter in the halo concentrations (equation 78).
Although ignoring the scatter is actually a rather good approximation, for
precise calculations, the scatter is important, especially for statistics which
are dominated by massive halos.

In general, the linear portion of the dark matter power spectrum, k � 0:1h
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Fig. 12. The (a) equilateral bispectrum and (b) square trispectrum of the dark
matter in the halo model. Solid lines show the total bispectrum and trispectrum,
and the di�erent line styles show the di�erent contributions to the total.

Mpc�1, results from the correlations between dark matter halos and re
ects the
halo{mass dependent bias prescription. The spherical or ellipsoidal collapse
based models described previously describe this regime reasonably well at all
redshifts. At k � 0:1�1h Mpc�1, the one- and two{halo terms are comparable;
on these scales, the power comes primarily from halos more massive than M?.
At higher k's, the power comes mainly from individual halos with masses
below M?.

The small scale behavior of the power spectrum is sensitive to assumptions
we make with regarding the halo pro�le. If we change the shape of the density
pro�le, e.g., from NFW to M99, then P (k) will change. However, if we also
modify the mean mass{concentration relation, then the di�erence between the
two P (k)s can be reduced substantially. We discuss the e�ect of allowing a
distribution p(cjm) of concentrations at �xed mass (i.e., allowing some scatter
around the mean mass{concentration relation) at the end of this section.

5.2 Bispectrum and trispectrum

Figures 12(a) and (b) show the bispectrum and trispectrum of the density

uctuation �eld at z = 0. Since the bispectrum and trispectrum depend
on the shape of the triangle and quadrilateral, respectively, the �gure is for
con�gurations which are equilateral triangles and squares. Since the power
spectra and equilateral bispectra share similar features, it is more instruc-
tive to study Qeq(k), de�ned by equation (32). Figure 13(a) compares the
halo model estimate of Qeq with the second order perturbation theory (PT)
and HEPT predictions (equations 34 and 49). In the halo prescription, Qeq

at k & 10knonlin � 10h Mpc�1 arises mainly from the single halo term. Fig-
ure 13(a) also shows the �tting function for Qeq(k) from [239], which is based
on simulations in the range 0:1h . k . 3h Mpc�1. This function is designed to
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Fig. 13. (a) Qeq(k) and (b) Qsq at z = 0. Di�erent lines styles show the di�erent
contributions to the total (bold dashed) in the halo model description. Thin solid
lines show the second order perturbation theory (PT) and HEPT values. In (a), the
thick solid line shows the �tting formula for Qeq from [239]. Notice that on linear
scales, the halo model prediction is about twenty percent larger than the PT value
in (a), and about a factor of two larger than the PT value in (b).

converge to the HEPT value at small scales and the PT value at large scales.
Notice that the HEPT prediction is considerably smaller than the halo model
prediction on small scales.

Figure 14 (from [236]) compares the predicted Qeqs with measurements in
numerical simulations. To the resolution of the simulations, the data are con-
sistent with perturbation theory at the largest scales, and with HEPT in the
non-linear regime. The halo model predictions based on the two mass function
choices (Press-Schechter and Sheth-Tormen) generally bracket the numerical
simulation results, assuming the same halo pro�le and concentration{mass re-
lations are the same in both cases. The most massive halos are responsible
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(a)

(b)

Fig. 14. Qeq(k) as a function of scale, (a) measured in numerical simulations and
(b) compared to halo model predictions. In (a), the triangles are measurements
in a box of size 100h�1 Mpc while squares denote measurements in box sizes of
300h�1 Mpc. The linear perturbation theory (PT) and hyperextended perturbation
theory (HEPT) values are show as solid lines. In (b), the halo model predictions
associated with Press-Schechter and Sheth-Tormen mass functions generally bracket
the measurements. The dashed lines show the result of only including contributions
from halos less massive than 1014 h�1M�. They lie signi�cantly below the solid
curves, illustrating that massive halos provide the dominant contributions to these
statistics. The �gure is taken from [236].

for a signi�cant fraction of the total non-Gaussianity in the non-linear density
�eld. This is shown in the bottom panel of Figure 14; when halos more massive
than 1014M�=h are absent, Qeq is reduced substantially (compare dashed and
solid curves).

The halo based calculation suggests Qeq increases, whereas HEPT suggests
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that Qeq should remain approximately constant, on the smallest scales. These
small scales are just beyond the reach of numerical simulations to date. As we
discuss later, the scales where the two predictions di�er signi�cantly are not
easily probed with observations either, at least at the present time.

For the trispectrum, and especially the contribution of trispectrum to the
power spectrum covariance as we will soon discuss, we are mainly interested
in terms of the form T (k1;�k1;k2;�k2), i.e. parallelograms which are de�ned
by either the length k12 or by the angle between k1 and k2. To illustrate, our
results, we will take k1 = k2 and the angle to be 90Æ (k2 = k?) so that the
parallelogram is a square. It is then convenient to de�ne

�2
sq(k) �

k3

2�2
T 1=3(k;�k;k?;�k?) : (123)

This quantity scales roughly as �2(k). This spectrum is shown in �gure 12(b)
with the individual contributions from the 1h, 2h, 3h, 4h terms shown explic-
itly. At k & 10knonlin � 10hMpc�1, Qsq is due mainly from the single halo
term.

As for Qeq, the halo model predicts that Qsq will increase at high k. Numerical
simulations do not quite have enough resolution to test this [236].

Figures 13(a) and (b) show that as one considers higher order statistics, the
halo model predicts a substantial excess in power at linear scales compared to
the perturbation theory value. This is another manifestation of the problem,
noted in x 4.4, that, in positive perturbation models, the single-halo contribu-
tion to the power does not vanish as k ! 0. While this discrepancy appears
large in the Qsq statistic, it does not a�ect the calculations related to the
covariance of large scale structure power spectrum measurements since, on
linear scales, the Gaussian contribution usually dominates the non-Gaussian
contribution. However, we caution that dividing the halo model calculation on
linear scales by the linear power spectrum to obtain, say halo bias or galaxy
bias, may lead to errors.

5.3 Power Spectrum Covariance

The trispectrum is related to the variance of the estimator of the binned power
spectrum [235,185,76,56]:

P̂i =
1

V

Z
si

d3k

Vsi
Æ�(�k)Æ(k) ; (124)
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Table 2

Dark Matter Power Spectrum Correlations

k 0.031 0.058 0.093 0.110 0.138 0.169 0.206 0.254 0.313 0.385

0.031 1.000 0.041 0.086 0.113 0.149 0.172 0.186 0.186 0.172 0.155

0.058 (0.023) 1.000 0.118 0.183 0.255 0.302 0.334 0.341 0.328 0.305

0.093 (0.042) (0.027) 1.000 0.160 0.295 0.404 0.466 0.485 0.475 0.453

0.110 (0.154) (0.086) (0.028) 1.000 0.277 0.433 0.541 0.576 0.570 0.549

0.138 (0.176) (0.149) (0.085) (0.205) 1.000 0.434 0.580 0.693 0.698 0.680

0.169 (0.188) (0.138) (0.177) (0.251) (0.281) 1.000 0.592 0.737 0.778 0.766

0.206 (0.224) (0.177) (0.193) (0.314) (0.396) (0.484) 1.000 0.748 0.839 0.848

0.254 (0.264) (0.206) (0.261) (0.355) (0.488) (0.606) (0.654) 1.000 0.858 0.896

0.313 (0.265) (0.202) (0.259) (0.397) (0.506) (0.618) (0.720) (0.816) 1.000 0.914

0.385 (0.270) (0.205) (0.262) (0.374) (0.508) (0.633) (0.733) (0.835) (0.902) 1.000r
Cii
CG
ii

1.00 1.02 1.04 1.07 1.14 1.23 1.38 1.61 1.90 2.26

NOTES.|Diagonal normalized covariance matrix of the binned dark matter den-
sity �eld power spectrum with k in units of h Mpc�1. Upper triangle displays the
covariance found under the halo model. Lower triangle (parenthetical numbers) dis-
plays the covariance found in numerical simulations by [185]. Final line shows the
fractional increase in the errors (root diagonal covariance) due to non-Gaussianity
as calculated using the halo model.

where the integral is over a shell in k-space centered around ki, Vsi � 4�k2i Æk
is the volume of the shell and V is the volume of the survey. Recalling that
Æ(0)! V=(2�)3 for a �nite volume,

Cij �
D
P̂iP̂j

E
�
D
P̂i
E D
P̂j
E
=

1

V

"
(2�)3

Vsi
2P 2

i Æij + Tij

#
; (125)

where

Tij �
Z
si

d3ki
Vsi

Z
sj

d3kj
Vsj

T (ki;�ki;kj;�kj) : (126)

Although both terms scale in the same way with the volume of the survey,
only the (�rst) Gaussian piece necessarily decreases with the volume of the
shell. For the Gaussian piece, the sampling error reduces to a simple root-N
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Fig. 15. The correlations in dark matter power spectrum between bands centered
at k (see Table 1) and those centered at k = 0:031h Mpc�1 a (lower triangles) and
k = 0:169h Mpc�1 ((upper squares). The open and �lled symbols in these cases are
for 200 h�1 Mpc box simulations with 1283 and 2563 particles, respectively. The
solid lines with �lled circles represent the halo model predictions for same bands
and are consistent with numerical simulations at the level of 10% or better. The
�gure is reproduced from [185].

mode counting of independent modes in a shell. The trispectrum quanti�es
the non-independence of the modes both within a shell and between shells.
Therefore, calculating the covariance matrix of the power spectrum estimates
reduces to averaging the elements of the trispectrum across con�gurations in
the shell. For this reason, we now turn to the halo model description of the
trispectrum.

To test the accuracy of the halo trispectrum, we compare dark matter cor-
relations predicted by our method to those from numerical simulations by
[185] (see also, [235]). Speci�cally, we calculate the covariance matrix Cij from
equation (126) with the bins centered at ki and volume Vsi = 4�k2i Æki cor-
responding to their scheme. We also employ the parameters of their �CDM
cosmology and assume that the parameters that de�ned the halo concentration
properties from our �ducial �CDM model holds for this cosmological model
also. The physical di�erences between the two cosmological model are minor,
though normalization di�erences can lead to large changes in the correlation
coeÆcients.

Table 2 compares the halo model predictions for the correlation coeÆcients

Ĉij =
Cijq
CiiCjj

(127)
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Fig. 16. Real-space moments with p = 3 (skewness), 4 (kurtosis) and 5 as a func-
tion of smoothing scale. Squares and triangles show measurements in high and low
resolution simulations, illustrating how diÆcult it is to make the measurement.
Solid lines show the predictions based on the NFW pro�le but with Press-Schechter
(lower) and Sheth-Tormen (upper) mass functions. Dashed line shows the HEPT
prediction. The �gure is from [236].

with those measured in the simulations. Agreement in the o�{diagonal ele-
ments is typically better than �0:1, even in the region where non-Gaussian
e�ects dominate, and the qualitative features such as the increase in correla-
tions across the non-linear scale are reproduced. The correlation coeÆcients
for two bands in the linear (0:031h Mpc�1) and non-linear (0:169h Mpc�1)
regimes are shown in Figure 15. Triangles and squares show the values mea-
sured in the simulations, and �lled circles and solid lines show the halo model
predictions. The halo model is in agreement with numericalmeasurements over
a wide range of scales, suggesting that it provides a reasonable way of estimat-
ing the covariance matrix associated with the dark matter power spectrum. In
contrast, perturbation theory can only be used to describe the covariance and
correlations in the linear regime while in the non-linear regime, and although
the HEPT provides a reasonable description when ki � kj , it results in large
discrepancies when ki � kj [185,235,104].

A further test of the accuracy of the halo approach is to consider higher order
real-space moments such as the skewness and kurtosis. Figure 16 compares
measurements of higher order moments in numerical simulations with halo
model predictions: the halo model is in good agreement with the simulations.
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Fig. 17. Ratio of the single halo term contribution to the total power when the dis-
tribution of concentrations at �xed mass is lognormal with width �lnc, to that when
�ln c ! 0 for the power spectrum (a) and trispectrum (b). The small scale behavior,
particularly of the higher order statistics, is sensitive to the high concentration tails
of the p(cjm) distribution.

5.4 Can we trust the halo model?

The halo model provides a physically motivated means of estimating the two-
point and higher order statistics of the dark matter density �eld. However,
it has several limitations which should not be forgotten when interpreting
results. As currently formulated, the approach assumes all halos share a pa-
rameterized smooth spherically-symmetric pro�le which depends only on halo
mass. However, we know that halos of the same mass have a distribution of
concentration parameters, so that there is some variation in halo pro�le shape,
even at �xed mass. In addition, halos in simulations are rarely smooth, and
they are often not spherically symmetric.

59



Fig. 18. Dark matter power spectrum (top) and reduced bispectrum for equilateral
con�gurations (bottom) in numerical simulations (solid lines). Dashed lines show
result of replacing halos with smooth M99 pro�les and remaking the measurements.
The replacement agrees with the original measurements up to the resolution limit
of the simulation: k � 10h Mpc�1. Dotted curves are the linear and nonlinear
expectation, based on �tting functions, in the case of the power spectrum and the
linear perturbation theory result of 4=7 in the case of Qeq. The �gure is from [172].

It is straightforward to incorporate the distribution of halo concentrations into
the formalism [56,237]. In essence, a distribution p(cjm) leads to changes in
power at non-linear scales k & 1h Mpc�1. This is shown in Figure 17(a):
the power on large linear scales is una�ected by a distribution p(cjm), but
the large k power increases as the width of p(cjm) increases. Increasing �ln c

increases the power at small scales, because of the increased probabilty of
occurence of high concentrations from the tail of the distribution. (Recall that
simulations suggest �ln c � 0:25.) Higher order statistics depend even more
strongly on �ln c, because they weight the large c tails heavily. To illustrate,
Figure 17(b) shows how the trispectrum, with k1 = k2 = k3 = k4, changes as
�ln c increases.

Substructure is expected to contribute about 15% of the total dark matter
mass of a halo (e.g., [280,92]), and it will a�ect the power spectrum and
higher order correlations on small scales. Measurements of P (k) and B(k) for
equilateral triangles in which the actual clumpy nonspherical halo pro�les in
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numerical simulations were replaced by smooth NFW or M99 halo pro�les
suggest that for k � 10knonlin or so, substructure and asphericities are not
important (see Figure 18). A detailed discussion of how to account for this
substructure is in [251].

No models to date account for departures from spherical symmetry, but this is
mainly because until recently [139], there was no convenient parametrization
of pro�le shapes which were not spherically symmetric. There is no conceptual
reason which prevents one from including ellipsoidal halos in the model. Until
this is done, note that spherically averaged pro�les are adequate for modelling
the power spectrum and other statistics which average over con�gurations,
such as the Sn parameters. The bispectrum is the lowest order statistic which
is sensitive to the detailed shape of the halos. The dependence of bispectrum
con�guration on the spherical assumption was shown in some detail by [236];
they found that the spherical assumption may be the cause of discrepancies
at the � 20 � 30% level between the halo model predictions and con�gura-
tion dependence of the bispectrum in the mildly non-linear regime measured
in simulations. Uncertainties in the theoretical mass function also produce
variations at the 20% to 30% level (see, [135]).

Improvements to the halo model that one should consider include:
(1) Introduction of the asphericity of dark matter halos through a randomly
inclined distribution of prolate and oblated ellipsoids. Recent work has shown
that simply modifying the spherically symmetric pro�le shape to have di�erent
scale lengths along the three principal axes provides a reasonable parametriza-
tion of the ellipsoidal pro�les of halos in numerical simulations, with the dis-
tribution of axis ratios depending on halo mass [139]. This makes it relatively
straightforward to include asphericity in the model. Since the same ellipsoidal
collapse model [257] which predicts the correct shape for the halo mass func-
tion (equation 59), can also be used to predict the distribution of halo axis
ratios, it would be interesting to see if this distribution matches that in sim-
ulations. At the present time, shape information from X-ray observations of
galaxy clusters is limited [49], although [?] argue that departures from spher-
ical symmetry are necessary to correctly interpret their data.
(2) Incorporation of the e�ects of halo substructure. See [251] for a �rst step in
this direction, which incorporates simple models of what is seen in numerical
simulations [92,28].
(3) Solution of the integral constraint problem at large scales discussed in x 4.4.

61



0.01 0.1 1 10
0.0001

0.001

0.01

0.1

1

10

0.01 0.1 1 10
0.0001

0.001

0.01

0.1

1

10

0.01 0.1 1 10
0.0001

0.001

0.01

0.1

1

10

0.01 0.1 1 10
0.0001

0.001

0.01

0.1

1

10

18<r<19

19<r<20

20<r<21

21<r<22

Fig. 19. The angular two-point correlation function of galaxies in the SDSS early
release data, for a number of bins in apparent r� band magnitude. In all cases, the
correlation function is quite well described by a power law: w(�) / ��0:7. The �gure
is from [46].

6 From Dark Matter to Galaxies

We have known since the late 1960's that the angular correlation function
of optically selected galaxies is a power law: w(�) / ��(
�1), with 
 � 1:8
[279]. Figure 19 shows a recent measurement of w(�) from the SDSS collab-
oration [46]: it is also well described by this power law. This suggests that
the three-dimensional correlation functions and power-spectra should also be
power laws. The symbols in Figure 28 show that the power-spectrum of galax-
ies in the PSCz survey as measured by [105] is accurately described by a
power-law over a range of scales which spans about three orders of magnitude.
More recently, the 2dFGRS [203] and SDSS [298] data show that, although
more luminous galaxies cluster more strongly, for a wide range of luminosi-
ties, the three-dimensional correlation function is indeed close to a power law.
Figure 21, from [298], shows that although the slope of the power-law is ap-
proximately independent of luminosity (left), it is a strong function of galaxy
color; on small scales, redder galaxies have steeper correlation functions.

In contrast, a generic prediction of CDM models is that, at the present time,
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Fig. 20. The PSCz galaxy power spectrum (symbols, from [105]) compared to the
dark matter power spectrum in a �CDM model (solid curve). We have �xed the
amplitude of the dark matter power spectrum so that it matches the data on large
scales. The discrepancy on smaller nonlinear scales suggests that the bias between
the galaxies and the dark matter must be scale dependent.

the two-point correlation function of the dark matter, and its Fourier trans-
form, the dark matter power spectrum, are not power laws (see, e.g., the solid
curve in Figure 28). Why is the clustering of galaxies so di�erent from that of
the dark matter?

6.1 The clustering of galaxies

In the approach outlined by White & Rees [292], baryonic gas can only cool
and form stars if it is in potential wells such as those formed by virialized dark
matter halos. As a result, all galaxies are expected to be embedded in dark
halos (see �gure 2). More massive halos may contain many galaxies, in which
case it is natural to associate the positions of galaxies with subclumps within
the massive halo; some, typically low mass, halos may contain no galaxies;
but there are no galaxies which are without halos. Within this framework, the
properties of the galaxy population are determined by how the gas cooling rate,
the star formation rate, and the e�ects of stellar evolution on the reservoir
of cooled gas, depend on the mass and angular momentum of the parent
halo. There are now a number of di�erent prescriptions for modeling these
`gastrophysical' e�ects [293,157,42].
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Fig. 21. Projected two-point correlation function of galaxies with absolute mag-
nitude and redshift ranges indicated (left) and for di�erent bins in color (right).
In panel on left, squares, circles and triangles show results for faint, intermediate
and luminous galaxies respectively. Although the more luminous galaxies are more
strongly clustered, the same power-law slope provides a reasonable �t at all lumi-
nosities. In constrast, the slope of the power-law is a strong function of color. Both
panels are from [298].

Within the context of the halo model, the gastrophysics determines how many
galaxies form within a halo, and how these galaxies are distributed around
the halo center. Thus, the halo model provides a simple framework for think-
ing about and modeling why galaxies cluster di�erently than dark matter
[137,244,212,236,253,240,11].

Suppose we assume that the number of dark matter particles in a halo follows
a Poisson distribution, with mean proportional to the halo mass such that
hNdmjmi / m, and hNdm(Ndm�1)jmi / m2. Note that these proportionalities
are the origin of the weighting by m and m2 in equation (88) for P 2h

dm(k) and
P 1h
dm(k). To model the power spectrum of galaxies, we, therefore, simplymodify

equation (88) to read

Pgal(k) =P
1h
gal(k) + P 2h

gal(k) ; where

P 1h
gal(k) =

Z
dmn(m)

hNgal(Ngal � 1)jmi
�n2gal

jugal(kjm)jp ;

P 2h
gal(k)�P lin(k)

"Z
dmn(m) b1(m)

hNgaljmi
�ngal

ugal(kjm)

#2
: (128)

Here,

�ngal =
Z
dmn(m) hNgaljmi (129)
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denotes the mean number density of galaxies. On large scales where the two-
halo term dominates and ugal(kjm)! 1, the galaxy power spectrum simpli�es
to

Pgal(k) � b2galP
lin(k); (130)

where

bgal =
Z
dmn(m) b1(m)

hNgaljmi
�ngal

(131)

denotes the mean bias factor of the galaxy population.

In addition to replacing the weighting by mass (i.e., the number of dark mat-
ter particles) with a weighting by number of galaxies, there are two changes
with respect to equation (88). First, ugal(kjm) denotes the Fourier transform
of the density run of galaxies rather than dark matter around the halo center.
Although a natural choice is to approximate this integral by using the sub-
clump distribution within a halo, we will show shortly that setting it to be the
same as that of the dark matter (equation 80) is a reasonable approximation
[258]. Second, in the single-halo term, the simplest model is to set p = 2 for
P 1h
dm(k). However, in halos which contain only a single galaxy, it is natural to

assume that the galaxy sits at the center of its halo. To model this, one would
set p = 2 when hNgal(Ngal � 1)i is greater than unity and p = 1 otherwise.

It is worth considering a little more carefully where these scalings in the one-
halo term come from. Suppose that in a halo which contains Ngal galaxies, one
galaxy sits at the halo centre. Each of the galaxies contributes a factor of ugal
to the power, except for the central galaxy which contributes a factor of unity.
Pairs which come from the same halo are of two types: those which include
the central galaxy, and those which do not. Since only the galaxies which are
not at the centre get factors of ugal, the weighting must be proportional to

X
Ngal>1

p(Ngaljm)

"
(Ngal � 1)ugal(kjm) +

(Ngal � 1)((Ngal � 2)

2
ugal(kjm)2

#
;

where p(Ngaljm) is the probability an m�halo contains Ngal galaxies, and the
sum is from Ngal > 1 because, to contribute pairs, there must be at least
two galaxies in the halo. The �rst term is the contribution from pairs which
include the central galaxy, and the second term is the contribution from the
other pairs. The sums over Ngal yield

h
hNgal � 1jmi+ p(0jm)

i h
ugal(kjm)� ugal(kjm)2

i
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+hNgal(Ngal � 1)=2jmiugal(kjm)2:

Evidently, to compute this term requires knowledge of p(0jm). However, if
we are in the limit where most halos contain no galaxies, then the leading
order contribution to the sum above is p(2jm)ugal(kjm). But, in this limit,
hNgal(Ngal � 1)jmi � P

Ngal(Ngal � 1) p(Ngaljm) � 2 p(2jm), so this leading
order term should be well approximated by hNgal(Ngal � 1)=2jmiugal(kjm).
In the opposite limit of a large number of galaxies per halo, it should be
accurate to set p(0jm) � 1. Then the expression above reduces to hNgal �
1jmi [ugal(kjm)�ugal(kjm)2]+hNgal(Ngal�1)=2iugal(kjm)2. For Poisson counts,
hn(n � 1)i = hni2. If this is indicative of other count models also, then this
shows that the dominant term is the one which comes from the second factorial
moment. Therefore, it should be reasonable to approximate the exact expres-
sion above by hNgal(Ngal � 1)jmiugal(kjm) when hNgal(Ngal � 1)jmi � 1, and
by hNgal(Ngal � 1)jmiugal(kjm)2 otherwise. Notice that the two limits di�er
only by one factor of ugal.

The expressions above show explicitly that if hNgaljmi and hNgal(Ngal� 1)jmi
are not proportional to m and m2 respectively, then the clustering of galaxies
will be di�erent from that of the dark matter, even if ugal(kjm) = udm(kjm).
Because the one- and two-halo terms are modi�ed (with respect to the dark
matter case) by two di�erent functions, it may be possible to adjust them
separately in such a way that they sum to give the observed power law.

Thus, the halo model shows that the distribution p(Ngaljm) determineswhether
or not Pgal(k) is a power law. Although the analysis above assumed that
p(Ngaljm) depends only on m, it is very likely that other properties of a halo,
than simply its mass, determine the number of galaxies in it. For example,
Ngal almost certainly depends on the halo's formation history. Since the con-
centration c of the halo density pro�le also depends on the formation history
[198,78,288], a convenient way to incorporate the e�ects of the formation his-
tory is to set p(Ngaljm; c), and then integrate over the lognormal scatter in halo
concentrations when computing the halo model predictions. In what follows,
we will ignore this subtlety.

Although the exact shape of p(Ngaljm) is determined by gastrophysics, there
are some generic properties of it which are worth describing. Since galaxies
form from baryons, a simple �rst approximation would be to assume that
the �rst moment, hNgaljmi, should be proportional to the mass in baryons,
which, in turn, is likely to be a �xed fraction of the mass in dark matter of the
parent halo. If we assume that hNgaljmi / m� (so � = 1 is the scaling of the
dark matter), then there are two reasons why we might expect � � 1. Firstly,
for the very massive halos, it is natural to associate galaxies with subclumps
within the halo. The total number of subclumps within a massive parent halo
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Fig. 22. The total luminosity in galaxies brighter than Mr� < �18 which are in
a halo, as a function of the total mass of the halo, from the semi-analytic galaxy
formation models of [157]. Dashed lines show lines of constant mass-to-light ratio:
the value of M=L18 at z = 0:5 shown is a factor of two smaller than at z = 0.

which are more massive than a typical galaxy scales as � � 0:9 [92]. Halo
substructure as a plausible model for the galaxy distribution is discussed by
[41,158]. If one identi�es all subclumps in CDM haloes which had velocity
dispersions larger than about 100 km/s (which is typical for a small galaxy
sized halo), then the correlation function of these objects is a power law of
about the same slope and amplitude as that of optically selected galaxies.
Remarkably, the slope and amplitude of this power law are approximately the
same whether one identi�es the subclumps at redshifts as high as 3 or as low
as 0 (see [3] for a clear discussion of why this happens, and Figure 24 below).

Secondly, galaxy formation depends on the ability of baryons to cool. Since
the velocity dispersion within a halo increases with halo mass, the eÆciency
of cooling decreases. This might lead to a reduction in the eÆciency of galaxy
formation at the high mass end relative to the low mass end. Such a mass
dependent eÆciency for galaxy formation has been used to explain the ob-
served excess of entropy in galaxy clusters relative to smaller groups [25]. At
the low mass end, one might imagine that there is a minimum dark halo mass
within which galaxies can be found. This is because the energy feedback from
supernovae which explode following an initial burst of star formation may be
suÆcient to expel the baryons from the shallower potential wells of low mass
halos. Also, during the epoch of reionization at z < 6, photoionization may
increase the gas temperature. The temperature of the reheated gas may exceed
the virial temperature of low mass halos, thus suppressing star formation in
them [156,30,10].

Detailed semi-analytic galaxy formation models allow one to quantify these
e�ects [157,9]. The symbols in Figure 23 show how hNgaljmi depends on galaxy
type and luminosity in the models of [157]. The lines show simple �ts (from
[253]):
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Fig. 23. The average number of galaxies as a function of dark matter halo mass in
the semi-analytic galaxy formation models of [157]. Curves show the �ts in equa-
tion (132).

hNBluejmi=0:7 if 1011M�h�1 � m �MBlue

=0:7 (m=MBlue)
�B if m > MBlue

hNRedjmi= (m=MRed)
�R m � 1011M�h�1

hNgaljmi= hNBluejmi+ hNRedjmi; (132)

where MBlue = 4 � 1012M�=h, �B = 0:8, MRed = 2:5 � 1012M�=h, and
�R = 0:9.

Figure 24 compares the distribution of subclumps in the numerical simula-
tions of [291] with the expected number counts of galaxies within halos (equa-
tion (132). The number of semianalytic galaxies per halo scales similarly to
the dark matter halo subclumps when the mass limit of subclumps are above
1011h�1 M�, suggesting that identifying halo subclumps with galaxies is a
reasonable model.

Another interesting feature of these models in shown in Figure 25. The top
and bottom panels show hNgaljmi and hNgal(Ngal�1)jmi from the GIF models,
but now we only show counts for galaxies which have absolute magnitudes in
the range �19 �Mr� � �20. The top panels show that there is a pronounced
peak in the number of galaxies per halo when hNgaljmi � 1; in this regime,
there is a relatively tight correlation between the luminosity of a galaxy and
the mass of its parent halo. In the more massive halos which contain many
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Fig. 24. The number of subclumps in a halo as a function of parent halo mass in
a simulation at z = 1 (left) and 3 (right). Top panel shows hNi (long dashed) andp
hN(N � 1)i (short dashed) as a function of mass for: all subclumps (upper lines)

and for subclumps with mass greater than 1010 (middle) and 1011h�1M� (lower),
respectively. The lower solid line shows equation (132). Middle panel is similar, but
with cuts on stellar mass: all subclumps (upper lines) and subclumps with stellar
mass greater than 109 (middle) and 1010h�1M� (lower). Bottom panel shows cuts
on star-formation rate: all subclumps (upper lines), and for subclumps with star
formation rates greater than 1 (middle) and 10 (lower) M�/yr.

galaxies, there is no correlation between luminosity and halo mass, and the
number of galaxies scales approximately linearly with halo mass. Figure 23 is
built up from a number of curves like those shown here.

The bottom panels in Figure 25 are also interesting. If p(Ngaljm) were Poisson,
then hNgal(Ngal � 1)jmi = hNgaljmi2. While the Poisson model is reasonably
accurate at large hNgaljmi, the scatter in Ngal at �xed m can be substantially
less than Poisson at the low mass end. This is largely a consequence of mass
conservation [252]: the Poisson model allows an arbitrarily large number of
galaxies to be formed from a limited amount of dark matter. For this rea-
son, [236] argued that a binomial distribution should provide a convenient
approximation to p(Ngaljm). A binomial is speci�ed by its mean and its sec-
ond moment. To match the semianalytic models, the mean must be given by
equation (132), and the second moment by

hNgal(Ngal � 1)i1=2 = �(m) hNgaljmi ; (133)

where �(m) = log
q
m=1011h�1M� for m < 1013h�1M� and �(m) = 1 there-

after. The Binomial assumption allows one to model higher order correlations,
since, by analogy with the two point correlation function, the halo model

69



Fig. 25. The mean, hNi, and second factorial moment, hN(N�1)i of the distribution
of the number of galaxies per halo as a function of the halo mass m. Symbols
show measurements in the semianalytic model of [157] and we have selected objects
which are predicted to have absolute magnitudes between �19 and �20 in the SDSS
r��band. Results for absolute magnitudes in the range �17 to �18, and �18 to
�19 are qualitatively similar, although the peak for the lower luminosity bins shifts
to lower masses.

for �n depends on the n�th moment of p(Ngaljm). For example, the bi- and
trispectra require knowledge of the third and fourth moments of p(Ngaljm).

Figure 26 shows the result of inserting theNgal�m relations shown in Figure 23
(equation (132) in the halo model, and changing nothing else (i.e., the red and
blue galaxies are both assumed to follow the same NFW pro�le as the dark
matter). The symbols show measurements in the GIF semianalytic models
which equation (132) describes, and the curves, which provide a good �t,
show the halo model prediction. On small scales, the redder galaxies have a
steeper correlation function than the blue galaxies, in qualitative agreement
with the SDSS measurements shown in Figure 21. The agreement between the
simulations and the halo model calculation suggests that almost the entire
di�erence between the clustering of red and blue galaxies is a consequence of
the Ngal�m relation. The smaller additional e�ect which comes from allowing
the red and blue galaxies to be distributed di�erently around the parent halo
centre (e.g., if the reds are more centrally concentrated), is studied in some
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Fig. 26. Correlation functions of di�erent tracers of the dark matter density �eld
in the GIF �CDM semianalytic galaxy formation model. Filled circles are for the
dark matter, crosses are for red galaxies,squares for galaxies which have low star
formation rates, triangles for galaxies with high star formation rates, and open
circles for blue galaxies. The two solid curves show the halo model predictions for
the red and blue galaxies, and the dashed curves show what happens if we use
the second factorial moment of the galaxy counts, rather than the second moment
when making the model predicition. For comparison, the dotted curve shows the
predicted dark matter correlation function. Bottom panel shows how the bias factor:p
�(r)=�dm(r) depends on scale. The �gure is from [260].

detail in [240].

The dependence of clustering on luminosity (Figure 21) is also straightforward
to understand. If luminous galaxies reside in the more massive halos (this is a
natural prediction of most semianalytic models), then, because the more mas-
sive halos are more strongly clustered (Figure 4), the more luminous galaxies
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should be more strongly clustered. The halo model also shows clearly that, in
magnitude limited surveys such as the SDSS, this sort of luminosity dependent
clustering must be taken into account when interpreting how the angular clus-
tering strength depends on the magnitude limit, and when inverting w(�) to
estimate P (k). If not, then the fact that the more strongly clustered luminous
galaxies which are seen out to larger distances, and hence contribute to the
largest scale power, will lead to erroneous conclusions about the true amount
of large scale power.

Whereas most implementations of the halo model have concentrated on the
p(Ngaljm) relation derived from semianalytic galaxy formation models (e.g.,
Figure 23), information about p(Ngaljm) is encoded in the luminosity functions
of galaxies and clusters. For example, [212] argue that observations of the mass-
to-light ratio in groups (e.g., plots like Figure 22, but made using data rather
than semianalytic models), the combined luminosity function of galaxies in
groups and clusters, and the galaxy luminosity function itself, can together be
used to determine the mean number of galaxies per halo mass. The idea is to
use the galaxy luminosity function to estimate a characteristic luminosity; use
it to estimate the number of galaxies in a group by matching to the luminosity
function of galaxies in groups and clusters; assign a mass to galaxy groups and
clusters by requiring the observed number density of groups from the halo mass
function agree with that obtained from the luminosity function. This leads to
a measured mean number of galaxies of the form hNgaljmi / m0:92 which is
close to that shown in, e.g., Figure 23. The SDSS galaxy cluster catalogs o�er
a promising opportunity to exploit this approach.

It is remarkable that this simple Ngal � m parametrization of the semiana-
lytic models is all that is required to understand how and why the clustering
depends on galaxy type. It is this fact which has revived interest in the halo
model.

6.2 Galaxy{dark matter cross power spectrum

The halo model also suggests a simple parameterization of the cross-correlation
between the galaxy and dark matter distributions [244,99]:

Pgal�dm(k)=P
1h
gal�dm(k) + P 2h

gal�dm(k) where

P 1h
gal�dm(k)=

Z
dm

mn(m)

��

hNgaljmi
�ngal

judm(kjm) j jugal(kjm)jp�1

P 2h
gal�dm(k)=P

lin(k)

"Z
dm

mn(m)

��
b1(m)u(kjm)

#
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�
"Z

dmn(m) b1(m)
hNgali
�ngal

ugal(kjm)

#
; (134)

and, as before, one sets p = 1 if hNgali < 1 and one is interested in requir-
ing that one galaxy always sits at the halo center. This expression is easily
generalized to the cross-correlation between two galaxy samples.

If one galaxy always sits at the halo centre, then these expressions must be
modi�ed. To see the e�ect of this on the two-halo term, we must average both
pieces of the two halo term over p(njm), with the requirement that n > 0.
This requires evaluation of sums of the form

X
n>0

[1 + (n� 1)u(kjm)] p(njm) = 1 � p(0jm) + hn� 1jmiu(kjm) + u(kjm) p(0jm)

which we could also have written as

Ne�(kjm) � [1� p(0jm)] [1� ugal(kjm)] + hnjmiugal(kjm):

Since both factors in the �rst term are positive, this shows clearly that there
is an enhancement in power which comes from always placing one galaxy at
the halo centre. Since u(kjm) decreases as k increases, the enhancement in
power is largest on small scales (large k). In suÆciently massive halos one
might expect to have many galaxies, and so p(0jm) � 1. In this limit, the
expression above becomes 1�u(kjm)+ hnjmiu(kjm) = 1+ hn� 1jmiu(kjm).
On the other hand, if most halos have no galaxies, then p(1jm) is probably
much larger than all other p(njm) with n � 2. Then the leading order term
in the sum above is p(1jm). Since hnjmi � P

np(njm) � p(1jm), we have
that Ne�(kjm) � hnjmi. In this limit, only a fraction hnjmi � 1 of the halos
contain a galaxy, and the galaxy sits at the halo centre, so there is no factor
of u.

The contribution of the galaxy counts to the one halo term of the galaxy{mass
correlation function is similar. Using the expressions above yields

P 1h
gm(k) =

Z
dmn(m)

m

��
ju(kjm)j Ne�(kjm)

�ngal

P 2h
gm(k)�Plin(k)

"Z
dmn(m)

m

��
b(m)u(kjm)

#

�
"Z

dmn(m) b(m)
Ne�(kjm)

�ngal

#
: (135)

If the run of galaxies around the halo centre is not the same as of the dark
matter, then one simply uses ugal instead of u in Ne�. If the two-halo term usu-
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ally does not dominate the power on small scales (this is almost always a good
approximation), it is reasonable to ignore the enhancement in power associ-
ated with the central galaxy, and to simply set Ne�(kjm) � hnjmiugal(kjm) �
hnjmi. The one-halo term requires knowledge of p(0jm). Since p(0jm) is usually
unknown, the approximation above interpolates between the two limits dis-
cussed earlier by setting Ne� = hnjmiu(kjm) if hnjmi � 1, and Ne� = hnjmi
if hnjmi < 1.

In what follows, it will be convenient to de�ne the cross-correlation coeÆcient:

r(k) � Pgal�dm(k)q
Pdm(k)Pgal(k)

: (136)

Note that r(k) may depend on scale k.

Because we cannot measure the clustering of dark matter directly, the galaxy{
dark matter cross-correlation is not observable. However, if one cross-correlates
the galaxy distribution with weak lensing shear measurements, then the re-
sulting signal is sensitive to this cross-correlation [244,99]. We discuss this
further in x 8.7.

6.3 Discussion

Figure 20 showed the galaxy power spectrum from the PCSZ survey [105]. The
nonlinear dark matter power spectrum, scaled with a constant (k�independent
bias factor) to match the linear regime cannot also match the power on small
scales: this shows that the bias between dark matter and galaxies must depend
on scale.

The top panel in Figure 27 shows the contributions to the dark matter power
spectrum as a function of halo mass. The halo model description of the galaxy
power spectrum shows clearly that the p(Ngaljm) distribution changes the
relative contributions of low and high{mass halos to the total power, and so
modi�es the shape of the power spectrum in a way which depends on k.

The main change to the amplitude of the small-scale contribution to the galaxy
power spectrum, the change which results in a power-law shape, comes from
the halos which contain at least one galaxy, or, e�ectively halos containing
what are called �eld or isolated galaxies. The assumption that these galaxies
are at the center of the halo they occupy results in a power-law at small scales
[212]. As discussed in [236], the contribution to the total power from such halos
is very sensitive to the low-mass cuto� in the galaxy-mass relation. Thus, the
small scale clustering of galaxies essentially allows one to constrain certain
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(a) Dark Matter

(b) Galaxy

Fig. 27. (a) Contributions by halo mass to the one-halo term in the halo model
description of the power spectrum. (b) The same, but for the dark matter-galaxy
cross-correlation power spectrum. At small scales, there is e�ectively no contribution
from the smallest mass halos for the galaxy power spectrum. This �gure is from
[244].

parameters related to the galaxy formation, such as the minimum mass in
which a galaxy can exist.

Also, as shown in �gure 27, at intermediate scales, the massive halos contribute
less to the galaxy-dark matter power spectrum than to the dark matter power
spectrum. This is because the Ngal �M0:8�0:9 weighting suppresses the contri-
bution from the high mass end of dark matter halos. Figure 28 compares the
associated galaxy power spectrum with that measured in the PCSZ survey.
Note the power law behavior of the galaxy power spectrum over three to four
decades in wavenumber.

In the halo model, galaxy power spectra and higher order correlations, when
studied as a function of galaxy type or environment, allow one to extract cer-
tain galaxy properties such as the mean Ngal�m relation, and the mean mass
of dark matter halos in which galaxies reside. This information may be helpful
for understanding the galaxy formation and evolution processes. In [236] and
[237], constraints on p(Ngaljm) were obtained by comparing halo model pre-
dictions with the measured variance and higher order correlations of galaxies
in the APM [176] and PSCZ surveys. The halo based contraints of galaxy for-
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Fig. 28. The PSCz galaxy power spectrum (symbols) and the result of tuning the
�rst two moments of p(Ngaljm) so as to produce the power law like behavior (solid
curve).

mation models are likely to increase with ongoing wide-�eld surveys such as
the Sloan Digital Sky Survey (SDSS) and the 2dFGRS. The halo approach to
galaxy clustering has already become helpful for interpreting the SDSS two-
point galaxy correlation function [69] and the lensing-mass correlation [99].

7 Velocities

One of the great strengths of the halo-based approach is that it provides a
clear prescription for identifying the scale on which perturbative approaches
will break down, and non-linear e�ects dominate. The separation of linear and
non-linear scales is an important tool when describing large scale velocities and
related statistics. We now present the halo model description of velocities by
extending [249,253].

7.1 Velocities of and within halos

In the model, all dark matter particles are assumed to be in approximately
spherical, virialized halos. The velocity of a dark matter particle is the sum of
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two terms,

v = vvir + vhalo : (137)

the �rst is due to the velocity of the particle about the center of mass of its
parent halo, and the second is due to the motion of the center of mass of
the parent. We will assume that each of these terms has a dispersion which
depends on both halo mass and on the local environment, so that

�2(m; Æ) = �2vir(m; Æ) + �2halo(m; Æ): (138)

The expression above assumes two things: the rms velocities depend on halo
mass and local density only, and that the rms virial velocity within a halo
is independent of the motion of the halo itself. Presumably both assumptions
break down if the dark matter is collisional and/or dissipative. For collisionless
matter, the assumption that the virial motions within a halo is independent
of the halo's environment is probably reasonably accurate. It is not clear that
the same is true for halo speeds. Indeed, it has been shown that halos in dense
regions move faster than those in underdense regions [42,253]. It will turn
out, however, that the fraction of regions in which �2halo(m; Æ) is signi�cantly
di�erent from �2halo(m; 0) is quite small. This means that neglecting the density
dependence of halo velocities should be a reasonable approximation.

Consider the �rst term, vvir. We will assume that virialized halos are isothermal
spheres, so that the distribution of velocities within them is Maxwellian. This
is in reasonable agreement with measurements of virial velocities within halos
in numerical simulations. If �vir denotes the rms speeds of particles within a
halo, then the virial theorem requires that

Gm

r
/ �2vir /

H(z)2

2
�1=3

vir (z)

 
3m

4��crit(z)

!2=3
(139)

where the �nal proportionality comes from the fact that all halos have the same
density whatever their mass: m=r3 / �vir �crit. This shows that �vir / m1=3:
the more massive halos are expected to be `hotter'. At �xed mass, the constant
of proportionality depends on time and cosmology, and on the exact shape of
the density pro�le of the halo. A convenient �tting formula is provided by [24]:

�vir(m; z) = 102:5 g� �
1=6
vir (z)

 
H(z)

H0

!1=3 
m

1013M�=h

!1=3
km

s
; (140)

where g� = 0:9, and

�vir = 18�2 + 60x� 32x2; with x = 
(z)� 1 (141)
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and 
(z) = [
m (1 + z)3] [H0=H(z)]2. This �tting formula for the average
density within a virialized object, �vir �crit, generalizes the value 18�2 given
previously for an Einstein de-Sitter universe in equation (52).

In [253], it was shown that this virial relation between mass and velocities is
independent of the local environment. In practice, however, �vir may depend
on position within the halo. Accounting for the fact that halos really have
more complicated density and velocity pro�les is a detail which complicates
the analysis, but not the logic of the argument. If the virialized halo is an
isothermal sphere, the density run around the halo center falls as the square
of the distance, then �vir is the same everywhere within the halo. In practice,
halos are not quite isothermal, but we will show later that the scaling above
is still both accurate and useful.

We now turn to the second term, vhalo. It will prove more convenient to �rst
study halo speeds after averaging over all environments, before considering
the speeds as a function of local density. This is similar to the order in which
we discussed the halo mass function and its dependence on density. We �rst
consider a halo of size r at the present time. Because the initial density 
uc-
tuations were small, the particles in this halo must have been drained from
a larger region R in the initial conditions: R=r � �

1=3
vir , where �vir � 200 or

so. This means, for example, that massive halos were assembled from larger
regions than less massive halos. Suppose we compute the rms value of the
initial velocities of all the particles which make up a given halo and extend
to include all halos of mass m, then we have e�ectively computed the rms
velocity in linear theory, smoothed on the scale R(m) / m1=3.

It is well known that the linear theory prediction for the evolution of velocities
is more accurate than the linear theory prediction for the evolution of the
density [216]. In what follows, we will assume that at the present time, the
velocities of halos are reasonably well described by extrapolating the velocities
of peaks and are smoothed on the relevant scale,R / m1=3, using linear theory.
For Gaussian initial conditions, this means that any given value of vhalo is
drawn from a Maxwellian with dispersion �2halo(m) given by:

�halo(m) = H0

0:6
m ��1

q
1� �40=�

2
1�

2
�1; (142)

where,

�2j (m) =
1

2�2

Z
dk k2+2j P lin(k)W 2[kR(m)];

andW (x) is the Fourier transform of the smoothing window. The factorH0

0:6
m

comes from a well-known approximation to the derivative of the growth func-
tion, with d logG=d log a � 
0:6

m when a is the scale factor. Notice that the
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Fig. 29. Dependence on halo mass of the non-linear (�vir) and linear theory (�halo)
terms in our model. Solid curves show the scaling we assume, and symbols show
the corresponding quantities measured in the z = 0 output time of the �CDM GIF
simulation. Error bars show the 90 percentile ranges in mass and velocity. Dashed
curve in panel on right shows the expected scaling after accounting for the �nite
size of the simulation box. Symbols and curves in the bottom of the panel on the
right show the predicted and actual velocities at z = 20.

predicted rms velocity depends both on cosmology and on the shape of the
power spectrum. The term under the square-root arises from the peak con-
straint [6]|it tends to unity as m decreases: the peak constraint becomes
irrelevant for the less massive, small R, objects.

In �gure 29, we compare the dependence on mass for the two velocity terms
in numerical simulations by the GIF collaboration [157] and the dependences
we have discussed above. The symbols with error bars show the median and
ninety percentile ranges in mass and velocity. Open squares, �lled squares,
open circles and �lled circles show halos which have 60 � 100, 100 � 103,
103 � 104 and 104 � 105 particles, respectively. There are two sets of symbols
in the panel on the right. For the time being, we are only interested in the
symbols in the upper half which show halo velocities at z = 0. The solid curves
in the two panels show the scalings we assume.

Although the scaling of the virial term with mass is quite accurate, it ap-
pears that the extrapolated linear theory velocities are slightly in excess of
the measurements in the simulations. This is almost entirely due to the �nite
size of the simulation box. The upper dashed curve shows the e�ect of using
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equation (142) to estimate the rms speeds of halos, after setting P (k) = 0 for
k < 2�=L, where L is the box-size: L = 141 Mpc/h. Thus, the two panels
show that our simple estimates of the two contributions to the variance of the
velocity distribution are reasonably accurate.

Notice that the two terms scale di�erently with halo mass; indeed, to a �rst
approximation, one might even argue that halo speeds are independent of halo
mass. Figure 29 shows that �halo(m) < �vir(m) for massive halos. Since massive
halos have larger dispersions than less massive halos, the large velocity tail of
f(v) is determined primarily by the non-linear virial motions within massive
halos, rather than by the peculiar motions of the halo centers of mass. For
this reason, the large velocity tail of f(v), at least, is unlikely to be sensitive
to inaccuracies in our treatment of halo velocities, or to our neglect of the
possibility that halo speeds may depend on the environment. Before moving
on, note that our �nding that massive halos are hotter, whereas the speeds
with which halos move is approximately independent of mass, suggests that if
massive halos occupy denser regions, then, we expect a temperature{density
relation such that denser regions should be hotter. We will return to this later.

7.2 The distribution of non-linear velocities

In an ideal gas, the distribution of particle velocities f(v) dv has the Maxwell-
Boltzmann form: each cartesian component of the velocity is drawn from an
independent Gaussian distribution. Because of the action of gravity, the dark
matter distribution at the present time is certainly not an ideal gas; numeri-
cal simulations show that f(v) dv is very di�erent from a Maxwell{Boltzmann
[231]; the distribution of each component of the velocity has an approximately
Gaussian core with exponential wings. The halo model decomposition of pecu-
liar velocities into linear and non-linear contributions (equation 137), provides
a simple explanation for why this is so [249,253].

Let p(vjm) dv denote the probability that a particle in a halo of mass m
has velocity in the range dv about v. Then the total distribution is given by
summing up the various p(vjm) distributions, weighting by the fraction of
particles which are in halos of mass m:

f(v) =

R
dmmn(m) p(vjm)R

dmmn(m)
=
Z
dm

mn(m)

��
p(vjm); (143)

where n(m) dm is the number density of halos that have mass in the range
dm about m. The weighting by m re
ects the fact that the number of dark
matter particles in a halo is supposed to be proportional to the halo mass.
This expression holds both for the size of the velocity vector itself, which we
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will often call the speed, as well as for the individual velocity components.

To proceed, we need a model for the actual shape of p(vjm). Since v is the
sum of two random variates (equation 137), we study each in turn. The virial
motions are assumed to be Maxwellian. Also, for Gaussian initial density 
uc-
tuations, the linear peaks theory model of the halo motions means that they
too are Maxwellian. Thus, in the model, each of the three cartesian compo-
nents of the velocity of a dark matter particle in a clump of mass m is given
by the sum of two Gaussian distributed random variates, one with dispersion
�2vir(m)=3 and the other with �2halo(m)=3. If we further assume that the motion
around the clump center is independent of the motion of the clump as a whole,
then these two Gaussian variates are independent and p(vjm) is a Maxwellian
with a dispersion which is the sum of the individual dispersions given by the
sum in quadrature of equations (140) and (142).

In practice, we are only likely to observe velocities along the line of sight. Thus,
we will eventually be interested in the distribution of f(v) projected along
the line of sight. Projection changes the Maxwellian p(vjm) distributions into
Gaussians:

p(vjm) =
e�[v=�(m)]2=2q
2��2(m)

where �2(m) =
�2vir(m)

3
+
�2halo(m)

3
; (144)

i.e., �2(m) is one third of the sum in quadrature of equations (140) and (142).

Now, �2vir(m)=�2v(m�) = (m=m�)2=3, whereas �2halo is independent of halo mass
(Figure 29). Therefore, the characteristic function of f(v) is

Z
dv eivtf(v)=

Z
dm mn(m)

Z
dv eivtp(vjm)

=
Z
dm mn(m) e�t

2�2vir(m)=6 e�t
2�2halo=6

=e�t
2�2halo=6

Z
d�

�

r
�

2�
e��=2 e�t

2�2vir(�)=6

=
exp(�t2�2halo=6)

[1 + t2�2vir(m�)=3]1=2
: (145)

The penultimate expression uses equation (57) for the halo mass function and
assumes that the initial spectrum of 
uctuations was scale free with P (k) /
k�1, which should be a reasonable approximation to the CDM spectrum on
cluster scales. The �nal expression is quite simple: it is the product of the
Fourier transforms of a Gaussian and a K0�Bessel function. Therefore, f(v) is
the convolution of a Gaussian with a K0�Bessel function. The Bessel function
has exponential wings. Because the dispersion of the Gaussian and the Bessel
function are similar, equation (145) shows that f(v) should have a Gaussian
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Fig. 30. The distribution of one-dimensional peculiar velocities for dark matter
particles in a �CDM cosmology. Histograms show the distribution of the three
cartesian components measured in GIF simulations. Dashed and dot-dashed curves
show Gaussian and exponential distributions which have the same dispersion. The
solid curve shows the distribution predicted by our model, after accounting for the
�nite size of the simulation box. The exponential wings are almost entirely due to
virial motions within halos.

core which comes from the linear theory halo motions, with exponential wings
which come from the non-linear motions within halos.

Figure 30 shows the one-dimensional f(v) distribution given by inserting equa-
tions (144) and (59) in equation (143) for the same cosmological model pre-
sented in Figure 29. The histograms show the distribution measured in GIF
simulations. For comparison, the dashed and dot-dashed curves in each panel
show Gaussians and exponential distributions which have the same dispersion.
The solid curves show the distribution predicted by the halo-based model: note
the exponential wings, and the small jvj core that is more Gaussian than expo-
nential. The exponential wings are almost entirely due to non-linear motions
within massive halos, so they are fairly insensitive to our assumptions about
how fast these halos move.

It is worth emphasizing that �(m) in equation (144) is set by the cosmological
model and the initial conditions. Thus, the second moment of the distribution
in Figure 30 is not a free parameter. This halo model for p(vjm) can be thought
of as a simple way in which contributions to the velocity distribution statistic
are split up into a part which is due to non-linear e�ects, given by the �rst term
in equation 137, and a part which follows from extrapolating linear theory to

82



a later time, denoted by the second term of that equation. The agreement
with simulations suggests that this simple treatment of non-linear and linear
contributions to the statistic are quite accurate.

Before moving on, note that the second moment of this distribution gives the
mass-weighted velocity dispersion:

�2vel =
Z
dm

mn(m)

��

h
�2vir(m) + �2halo(m)

i
: (146)

This quantity is a measure of the total kinetic energy in the Universe, and
hence is directly related to the Layzer-Irvine Cosmic Energy equation [258].
Observational estimates of this quantity are discussed by [65]. Because the
virial velocities within massive halos are substantially larger the motions of
the halos themselves (Figure 29), setting

�2halo(m)�H2f(
m)
2
Z

dk

2�2
P (kr)jW (kR(m)j2 (147)

(i.e., ignoring the peak constraint and simply assuming that halo velocities
trace the linear velocity �eld smoothed at the scale from which halos collapsed)
is a reasonable approximation. This expression for �vel will be useful in the
analyses of the CMB which follow.

7.3 Pairwise velocities

It is reasonable to expect that, as a result of their gravitational interaction,
pairs of particles will, on average, approach each other. The gravitational
attraction depends on separation, and it must �ght the Hubble expansion
which also depends on separation, so one might expect the mean velocity
of approach to depend on the separation scale r. In fact, pair conservation
provides a relation between the rate at which the correlation function on scale
r evolves, and the mean pairwise motion at that separation. In particular, pair
conservation requires the mean peculiar velocity between a pair of particles at
separation r to satisfy [216]

� v12(r)

Hr
=

1

3[1 + �(r)]

@(1 + ��)

@ ln a
; (148)

where ��(x) is the volume averaged correlation function on proper scale x,
��(x) = 3x�3

R x
0 dyy

2�(y). Since we have an accurate model for �(r), we can use
it to estimate v12(r). Before we do so, it is useful to see what linear theory
would predict.
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Fig. 31. The ratio of mean streaming velocity of dark matter particles at scales
separated by r, to the Hubble expansion at that scale. Triangles show the Virgo
simulation measurements, circles show the GIF �CDM simulation, and dot-dashed
curves show the Hubble expansion velocity. Crosses show the result of using the
[210] formulae for the correlation function in the �tting formula provided by [142].
Solid curves show the halo model described here which accounts for the fact that the
nonlinear evolution is di�erent from what linear theory predicts, and then weights
the linear and nonlinear scalings by the relative fractions of linear and nonlinear
pairs. Dashed curves show the two contributions to the streaming motion in the halo
model; the curves which peak at large r are for pairs in two di�erent halos. Dotted
curve shows the approximation of using the linear theory correlation function to
model this two-halo term.

In linear theory, @ ��=@ ln a � 2f(
m)��, where f(
m) comes from the usual ap-
proximation to the derivative of the growth function: f(
m) � @ lnG=@ ln a �
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0:6
m . Thus, in linear theory,

� v12(r)

Hr
=

2f(
m)��(r; a)

3[1 + �(r; a)]
: (149)

On large scales where linear theory analyses can still be applied, �(r; a)� 1.
If we can drop this term from the denominator then this expression for the
mean pairwise velocity is the same as that obtained directly from linear theory
[102,202,142]. This linear theory expression underestimates velocities on small
nonlinear scales by a factor of � 3/2.

If we use the halo model decomposition � = �1h + �2h, and then use the fact
that �2h scales like the linear theory correlation function, then equation (148)
becomes

� v12(r)

Hr
=

1

3[1 + �(r; a)]

"
2f(
m)��2h(r; a) +

@ ��1h
@ ln a

#
: (150)

The next step is to compute the derivative of the single halo term. Since �1h
depends on the halo mass function and density pro�les, the derivative can be
computed directly [173,258]:

@ ��1h
@lna

=
@lnm�

@lna

h
��1h(r; a)� �1h(r; a)

i

+
3

r3

rZ
0

dr0 r0
2
1Z
0

dm
n(m)

��

�(rjm)

��

@ ln�

@ lna
; (151)

where �(rjm) denotes the convolution of the density pro�le with itself:

�(rjm) = 2�
Z
dy y2 �(yjm)

1Z
�1

d� �(zjm)jz2=y2+r2�2yr� : (152)

Now, @ ln�=@ ln a � (@ ln�=@ ln c)(@ ln c=@ lna)m=m�
; since the time depen-

dence of c only comes from its dependence on m� and the derivative is taken
by keeping m� constant, this term is zero. The piece which remains depends
on @ lnm�=@ ln a. If P (k) / kn, then @ lnm�=@ ln a = f(
m)6=(3 + n) and
[258]

� v12
Hr

=
f(
)

3[1 + �(r; a)]

"
2��2h(r; a) +

6

3 + n�

h
��1h(r; a)� �1h(r; a)

i#
; (153)
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where n� = �1:53 is the slope of the power spectrum on scale m� for the
�CDM cosmology. Figure 31 compares the mean pairwise velocities from this
halo model calculation with measurements in numerical simulations.

Extending the approach to estimate how the mean pairwise velocity of halos or
of galaxies depends on scale requires modeling the halo or galaxy correlation
function. This in turn requires estimating how the halo-mass dependent bias
factors evolve. The evolution of the bias factors is straightforward to compute
[260]. The resulting 2-halo contribution to v12 is

v2i12(r)

Hr
� vdm12 (r)

Hr
bi

"
1 + �lindm(r)

1 + �i(r)

#
; (154)

where i represents a tracer of halo with a large scale bias bi with respect to the
linear density �eld. The 1-halo contribution to the pairwise peculiar velocities
follow similar to the relation for dark matter in equation (151), but with the
galaxy or halo correlation function substituted for the dark matter.

When combined with the BBGKY hierarchy, the halo model of the two- and
three-point correlation functions allows one to estimate how the pairwise ve-
locity dispersion depends on scale. Although this calculation can, in principle,
be done exactly, a considerably simpler but reasonably accurate approxima-
tion is sketched in [259]. A halo model calculation of the full distribution of
pairwise velocities on small scales is in [249]; when combined with results from
[253] and [259], it can be extended to larger scales, although this has yet to
be done.

7.4 Momentum and Velocity Power Spectra

We have already provided an estimate of the mass weighted velocity dispersion
(equation 146). Since mass times velocity de�nes a momentum, we will now
study the statistics of the momentum �eld. Speci�cally, de�ne the momentum
p � (1 + Æ)v. The divergence of the momentum is

ik � p(k)= ik � v(k) +
Z

d3k0

(2�)3
Æ(k� k0)ik � v(k0) : (155)

The �rst term involving the velocity �eld gives the contribution from the
velocity �eld in the linear scale limit, Æ � 1, while the non-linear aspects are
captured in the term involving the convolution of the Æv term. We can write
the power spectrum of the divergence of the momentum density �eld [174], as
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Fig. 32. Three dimensional power spectrum of the momentum density �eld parallel
(upper) and perpendicular (lower) to the wavevector k. The halo model estimate is
compared to the numerical simulations and calculations based on 2nd order pertur-
bation theory. Note that the parallel component contributes to the time-derivative
of the density �eld (x 9.3) through the continuity equation, whereas the perpen-
dicular component (involving the momentum density �eld of baryons, rather dark
matter) contributes to the kinetic Sunyaev-Zel'dovich e�ect (x 9.2). This �gure is
from [174].

k2Ppp(k) = k
2P lin

vv (k) + k2
Z

d3k0

(2�)3
�02PÆÆ(jk� k0j)Pvv(k0)

+ k2
Z

d3k0

(2�)3
(k � k0�0)�0

jk� k0j PÆv(jk� k0j)PÆv(k0) (156)

In the non-linear regime integrating over angles yields, with k� k0 � k,

k2Ppp(k) = k2P lin
vv (k) +

k2P (k)

3

Z
k02dk0

2�2
Pvv(k

0): (157)

This latter result is similar to the one proposed by [119] to calculate the
momentum density �eld associated with the baryon �eld. Here, one replaces
the density �eld power spectrum with the non-linear power spectrum, either
from the halo model or from perturbation theory. In �gure 32, we summarize
results from [174], which shows that the halo model calculation is in good
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agreement with the numerical measurements.

The halo model provides a simple description why the above approach works
[258]. In general, we can separate the contributions to 1- and 2-halo terms, so
that

Ppp(k) = P 1h
pp (k) + P 2h

pp (k) : (158)

Using equation (146), we can write the two terms by noting that

k2P 1h
pp (k)= k

2P 1h
vv (k) +

Z
dm

m2n(m)

��2
k2�2halo(m)

f2(
)H2

k3ju(krvirjm)j2
2�2

;

k2P 2h
pp (k)= k

2P 2h
vv (k) +

k2�2halo(m�)

f2(
)H2
P 2h
ÆÆ (k); (159)

where u(k) is the same density pro�le factor when computing the power in
the density �eld. The second factor in the two-halo term comes from using the
fact that �halo depends only weakly on m (see, �gure 29), so we approximate
it by setting it equal to its value at m�. Similarly, the 1 and 2-halo terms of
the velocity power spectra are

k2P 1h
vv (k)=

Z
dm

m2n(m)

��2 (�nl=
)

k2�2halo(m)

f2(
)H2

k3W 2(krvirjm)

2�2
and

k2P 2h
vv (k)=P

lin(k)

"Z
dm

mn(m)

��
W (kRjm)

#2
; (160)

where W (x) is the Fourier transform of a tophat window, (rvir=R)3 = 
=�nl,
with R(m) = (3m=4���)1=3.

In the halo model, the 1-halo contribution to the momentum density �eld is
similar to the approximation introduced by [119], where one sets Ppp(k) �
P (k)V 2

lin where V
2
lin =

R
dkP lin(k)=2�2. The single-halo contribution integrates

over the linear-theory velocity power spectrum that is smoothed with a �lter
at the scale of the initial size of the halo. Since the halo velocity is independent
of mass (panel on right of Figure 29), one obtains a reasonably accurate result
by simply setting �halo to the value at m�. In this approximation, Ppp(k)1h �
[�halo(m�)=fH]2P 1h(k) and at non-linear scales, P (k) � P 1h(k); thus, at non-
linear scales, the ratio of power in momentum to velocity is a constant.

Figure 33 compares this model with measurements in the GIF simulations. The
turnover in the measurements at k � 5h=Mpc in these �gures is not real; it is
due to the �nite grid on which the power spectra have been evaluated. On the
larger scales (smaller k) where the grid is not important, our model provides
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Fig. 33. Power spectrum of the momentum: k2�pp(k). Filled circles show the sum
of the power spectrum of the divergence (open circles) and the curl (crosses) of
the momentum �elds in the simulations. Dashed curves show the linear theory
prediction, and solid curves show our nonlinear theory prediction for the total power.
The solid curves are obtained by summing the dot-dashed curves, which represent
the contributions to the power from the single-halo and two-halo terms discussed
in the text. Bottom panel shows the fraction of the total power contributed by the
divergence (open circles) and the curl (crosses) components, and solid lines show
what our model predicts.

a good description of the power spectrum of the momentum. The halo model
predicts that the power spectrum of the curl should equal (2=3) k2P 1h

pp (k). In
addition, one must account for the curl which comes from the second term in
the two-halo contribution to the power. We have done this by assuming that
two thirds of this term is in the curl component. The bottom panels show
that this provides a good description of how the power is divided up between
the divergence and the curl on small scales, but the agreement is not good on
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large scales. Presumably this is because our assignment of 2/3 of the power
from the second term in P 2h

pp is an overestimate.

We can extend the discussion to also consider cross power spectra between
velocities, momentum and the density �elds. The 2-halo terms associated with
these correlations are simple given the fact that all these three �eld trace each
other:

P 2h
pv (k) =

q
P 2h
pp (k)P

2h
vv (k); (161)

and similarly for the other pairs. The single-halo terms are only slightly more
complicated:

P 1h
Æv (k)=

Z
dm

m2n(m)

��2
q
Dnl=


�halo(m)

f(
)H

k3ju(krvirjm)jjW (kRjm)j
2�2

;

P 1h
pv (k)=P

1h
vv (k) +

Z
dm

m2n(m)

��2
q
Dnl=


�2halo(m)

f2(
)H2

k3ju(krvirjm)jjW (kRjm)j
2�2

;

P 1h
pÆ (k)=P

1h
Æv (k) +

Z
dm

m2n(m)

��2
�halo(m)

f(
)H

k3ju(krvirjm)j2
2�2

: (162)

If one again ignores the weak mass dependence of �halo, P 1h
pÆ (k) � VrmsP

1h(k)
at large k, where Vrms = �halo(m�). This closely resembles the correspond-
ing approximation for the momentum spectrum: Ppp(k) � V 2

rmsP (k), and so
provides a simple way of using P (k) to estimate Ppv.

If we de�ne RpÆ � PpÆ=
q
PppPÆÆ and similarly for the other pairs, then the

expressions above show that R = 1 at small k. If we ignore the mass depen-
dence of �halo, then RpÆ � 1 at both small and large k, so it depends on scale
only over a limited range of scales. Fig. 34 shows our predictions for Ppv and
Rpv �t the simulations quite well; note that Rpv is always quite close to unity,
even at large k.

7.5 Redshift-Space Power Spectrum

Our description of virial velocities provide a mechanism to calculate the red-
shift space distortions in the non-linear regime of clustering. Following [145],
we can write the redshift space 
uctuation, Æzg, of galaxy density �eld as

Æzg(k) = Æg(k) + Æv�
2 ; (163)
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Fig. 34. Cross-spectrum of the momentum and the velocity. Filled circles show �pp,
triangles show �vv and stars show �pv. Dashed curves show the linear theory pre-
diction, and dotted curves show our nonlinear theory predictions for the momentum
and the velocity, and solid curves show our prediction for the cross spectrum. Bot-
tom panel shows the ratio of the cross spectrum to the square root of the product
of the individual spectra, and solid lines show what our model predicts.

where Æv is the velocity divergence and � = r̂ � k̂. At linear scales, one can
simplify the relation by noting that Æg(k) = bgÆ(k) and Æv = f(
m)Æ(k) to
obtain

Æzg(k) = Æg(k)[1 + ��2] ; ; (164)

where � = f(
m)=bg; this parameter is of traditional interest in cosmology as it
allows constraints to be placed on the density parameter 
m through clustering
in galaxy redshift surveys. We refer the reader to a review by Strauss & Willick
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Fig. 35. The ratio of power in redshift space compared to real space from the halo
model (solid line) and from N-body simulations (data point). This �gure is repro-
duced from [290].

[270]), with recent applications related to the 2dFGRS survey in [207,213]. At
linear scales, the distortions increase the power by a factor (1+2=3�+1=5�2),
which when bg = 1 is 1.41 for 
m = 0:35. At non-linear scales, virial velocities
within halos modify clustering properties. With the description of the one
dimensional virial motions, �, which can be described by a Gaussian, we write

Æzg(k) = Æge
�(k��)2=2 : (165)

This allows us to write the power spectrum in redshift space as [245]

P z
gal(k) =P

1h
gal(k) + P 2h

gal(k) where

P 1h
gal(k) =

Z
dmn(m)

hNgal(Ngal � 1)jmi
�n2gal

Rp(k�)jugal(kjm)jp ;

P 2h
gal(k)�

�
F 2
g +

2

3
FvFg +

1

5
F 2
v

�
P lin(k) (166)

with

Fg=
Z
dmn(m) b1(m)

hNgaljmi
�ngal

R1(k�)ugal(kjm)

Fv= f(
m)
Z
dmn(m) b1(m)R1(k�)u(kjm) ; (167)
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and

Rp(� = k�
q
p=2) =

p
�

2

erf(�)

�
; (168)

for p = 1; 2. In equation (166), �ngal denotes the mean number density of
galaxies (equation 129).

Even though peculiar velocities increase power at large scales, virial motions
within halos lead to a suppression of power. In �gure 35, we show the ratio
of power in redshift space to that of real space for dark matter alone. Note
the sharp reduction in power at scale corresponding to the 1-halo term of
the power spectrum. When compared to the real space 1-halo contribution to
the power spectrum, the redshift space 1-halo term is generally reduced. This
partly explains the reason why perturbation theory works better in redshift
space than in real space [290].

8 Weak Gravitational Lensing

8.1 Introduction

Weak gravitational lensing of faint galaxies probes the distribution of mat-
ter along the line of sight. Lensing by large-scale structure (LSS) induces
correlation in the galaxy ellipticities at the percent level (e.g., [27,188,146]
and recent reviews by [7,186]). Though challenging to measure, these corre-
lations provide important cosmological information that is complementary to
that supplied by the cosmic microwave background and potentially as precise
(e.g., [133,14,152,147,234,121,48,282]). Indeed several recent studies have pro-
vided the �rst clear evidence for weak lensing in so-called blank �elds (e.g.,
[283,2,295,294]), though more work is clearly needed to understand even the
statistical errors (e.g. [59]).

Given that weak gravitational lensing results from the projected mass distribu-
tion, the statistical properties of weak lensing convergence re
ect those of the
dark matter. Current measurements of weak lensing involve the shear, which
is directly measurable through galaxy ellipticities, and constructed through a
correction for the anisotropic point-spread function [150], or via a series of basis
functions, called "shapelets", that make use of information from higher order
multipoles, beyond the quadrupole, to represent the galaxy shape [225,226]. In
such galaxy shear data, statistical measurements include variance and shear-
shear correlation functions; as we will soon discuss, these measurements are
related to the power spectrum of convergence. Additionally, in shear data, the
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convergence can be constructed through approaches such as the aperture mass
[149,233]. Such a construction allows direct measurements of statistics related
to convergence such as its power spectrum and higher order correlations.

The halo approach to non-linear clustering considered in this review allows
one to study various statistical measurements related to weak lensing. Ad-
ditionally, one can use the halo model to investigate various statistical and
systematic e�ects in current and upcoming data. For example, weak lensing
surveys are currently limited to small �elds which may not be representative of
the universe as a whole owing to sample variance. In particular, rare massive
objects can contribute strongly to the mean power in the shear or convergence
but not be present in the observed �elds. The problem is compounded if one
chooses blank �elds subject to the condition that they do not contain known
clusters of galaxies. Through the halo mass function, we can quantify the ex-
tent to which massive halos dominate the cosmological weak lensing e�ect
and, thus, the required survey volume, or projected area on the sky, needed
to obtain a fair sample of the large scale structure [59].

Non-linearities in the mass distribution also induce non-Gaussianity in the
convergence distribution. These non-Gaussianities contribute to higher order
correlations in convergence, such as a measurable skewness, and also contribute
to the covariance of the power spectrum measurements. With growing obser-
vational and theoretical interest in weak lensing, statistics such as skewness
have been suggested as probes of cosmological parameters and the non-linear
evolution of large scale structure [14,134,128,196,282]. Similarly, we can also
consider the bispectrum of convergence, the Fourier analog of the three-point
correlation function. Since lensing probes non-linear scales, the bispectrum or
the skewness cannot be considered in perturbation theory alone as it is only
applicable in the large linear scales. In fact, it has been well known that predic-
tions based on perturbation theory underestimates the measured skewness in
numerical simulations of lensing convergence [289]. The halo model provides a
simple analytic technique to extend the calculations to the non-linear regime
and predictions based on the halo model are consistent with the numerical
simulations [54].

In terms of the power spectrum covariance, the non-Gaussian contribution
arise from the four-point correlation function or the trispectrum in Fourier
space. These non-Gaussian contributions are especially signi�cant if observa-
tions are limited to small �elds of view such that power spectrum measure-
ments are made with wide bins in multipole, or Fourier, space. Similar to
the PThalo approach that allowed measurements of the covariance related to
galaxy two-point correlation function [241], the halo approach provides an ana-
lytical scheme to estimate the covariance of binned power spectrum of shear or
convergence, based on the non-Gaussian contribution. The calculation related
to the convergence covariance requires detailed knowledge on the dark matter
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Fig. 36. Weak lensing convergence power spectrum under the halo description. Also
shown is the prediction from the PD non-linear power spectrum �tting function. We
have separated individual contributions under the halo approach. We have assumed
that all sources are at zs = 1.

density trispectrum, which can be obtained analytically through perturbation
theory (e.g., [14]) or numerically through simulations (e.g., [134,289]). Since
numerical simulations are limited by computational expense to a handful of
realizations of cosmological models with modest dynamical range, approaches
such as the halo model is useful for speedy calculations with accuracies at the
level of few tens of percent or better.

8.2 Convergence

Weak lensing probes the statistical properties of shear �eld and we can write
the deformation matrix that maps �x separation vector between source, s,
and image, i, planes, �xi

s = Aij�xj
i, as

Aij = Æij �  ij

=

0
B@ 1 � �� 
1 �
2 � !

�
2 + ! 1 � � + 
1

1
CA : (169)

Here � is the convergence, responsible for magni�cation and demagni�cation,
w is the net rotation of the image, and we have separated the components of
the shear, 
 � 
1 + i
2, which translates as a spin-2 �eld 
 = j
j e2i� and is a
pseudo vector �eld. The shear components are
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Fig. 37. Weak lensing convergence (a) bispectrum and (b) trispectrum under the
halo description. We have separated individual contributions under the halo ap-
proach to 3 halos in the case of bispectrum and 4 halos in the case of trispectrum.
We have assumed that all sources are at zs = 1.


1=
1

2
( 11 �  22)


2=
1

2
( 12 +  21) (170)

where,

 ij = 2

rsZ
0

dr
dA(rd)dA(rd � rs)

dA(rs)
@i@j� : (171)
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To the smallest order in potential 
uctuations, w � 0 and we can ignore
the asymmetry associated with the deformation matrix; thus, 
2 =  12 as
commonly known.

We can write the convergence using the trace of the deformation matrix with
� = 1

2( 11 +  22):

�(n̂) =

rsZ
0

drW lens(r)r2
?�(r; rn̂) ; (172)

where the lensing visibility function for a radial distribution of background
sources, ns(r), is

W lens(r) =

rsZ
r

dr0
dA(r)dA(r0 � r)

dA(r0)
ns(r

0) : (173)

Here, r is the comoving radial distance (equation 2) and dA is the angular
diameter distance (equation 3).

8.3 Power spectrum

We can write the angular power spectrum of convergence by taking the spher-
ical harmonics

�(n̂) =
X

�lmY
m
l (n̂) ; (174)

with spherical moments of the convergence �eld de�ned such that

�lm= il
Z
d3k

2�2
k2?�(k)

Z
drW (r)jl(kr)Y

m
l (k̂) ;

(175)

where W (k; r) is the visibility function associated with weak lensing de�ned
in equation (173). Here, we have simpli�ed using the Rayleigh expansion of a
plane wave

eik�n̂r = 4�
X
lm

iljl(kr)Y
m�
l (k̂)Y m

l (n̂) : (176)

In the small scale limit, only the modes perpendicular to the radial direc-
tion contribute to the integral in equation (175) while others are suppressed
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through near-perfect cancellation of positive and negative oscillations along
the line of sight. Thus, we can replace k? � k, which only makes an error of
order � � 10�5. Further, we can use the Poisson equation (equation 29) to
relate potential 
uctuations to those of density, k2�(k) = 4�G��a2Æ(k). These
allow us to construct the angular power spectrum of the convergence, de�ned
in terms of the multipole moments, �lm, as

h��lm�l0m0i = C�
l Æll0Æmm0 ; (177)

to obtain

Cl =
2

�

1Z
0

k2dkP (k)

r0Z
0

dr1

r0Z
0

dr2W
lens(r1)W

lens(r2)jl(kr1)jl(kr2) (178)

where

W lens(r) =
3

2

m

H2
0

c2

r0Z
r

dr0
dA(r)dA(r0 � r)

adA(r0)
ns(r

0) : (179)

When all background sources are at a distance of rs, ns(r0) = ÆD(r0 � r), the
weight function reduces to

W lens(r) =
3

2

m

H2
0

c2a

dA(r)dA(rs � r)

dA(rs)
: (180)

In the case of a non-
at geometry, one needs to introduce curvature correc-
tions to the Poisson equation (see, equation 29), and replace the radial Bessel
functions, jl, with hyperspherical Bessel functions. In the small scale limit, for
eÆcient calculational purposes, we can simplify further by using the Limber,
or small angle, approximation [168] where one can neglect the radial com-
ponent of the Fourier mode k compared to the transverse component. Here,
we employ a version based on the completeness relation of spherical Bessel
functions (see, [54,122] for details)Z

dkk2F (k)jl(kr)jl(kr
0) � �

2
d�2A ÆD(r � r0)F (k)jk= l

dA

; (181)

where the assumption is that F (k) is a slowly-varying function. Under this
assumption, the contributions to the power spectrum come only from corre-
lations at equal time surfaces. Finally, we can write the convergence power
spectrum as [146,147]:

C�
l =

Z
dr
W lens(r)2

d2A
P

 
l

dA
; r

!
: (182)
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8.4 Relation to Shear Correlations

We can consider the relation between convergence power spectrum and shear
correlation functions by considering the Fourier decomposition of the shear
�eld [126] to a gradient-like (E-modes) and curl-like (B-modes) components:


1(n̂)� i
2(n̂) =
Z

d2l

(2�)2
[�(l)� �(l)] e�2i�l eil�n̂ ; (183)

and consider the correlations between h
1
1i, h
1
2i and h
2
2i. We can write
these correlation functions as

h
1(n̂i)
1(n̂j)i=
Z

d2l

(2�)2

h
C��
l cos2 2�l + C��

l sin2 2�l �C��
l sin 4�l

i
eil�(n̂i�n̂j)

h
1(n̂i)
2(n̂j)i=
Z

d2l

(2�)2

"
C��
l

2
sin 4�l � C��

l

2
sin 4�l + C��

l cos 4�l

#
eil�(n̂i�n̂j)

h
2(n̂i)
2(n̂j)i=
Z

d2l

(2�)2

h
C��
l sin2 2�l + C��

l cos2 2�l + C��
l sin 4�l

i
eil�(n̂i�n̂j)

(184)

Using the expansion of eil�(n̂i�n̂j) =
P

m i
mJm(l�) eim(���l), in terms of the

magnitude � and orientation � of vector n̂i � n̂j , we write

h
1
1i�;�=
Z
ldl

4�

n
C��
l [J0(l�) + cos(4�)J4(l�)] + C��

l [J0(l�)� cos(4�)J4(l�)]

�2C��
l sin(4�)J4(l�)

o

h
1
2i�;�=
Z
ldl

4�

n
C��
l sin(4�)J4(l�)� C��

l sin(4�)J4(l�) + C��
l 2 cos(4�)J4(l�)

o

h
2
2i�;�=
Z
ldl

4�

n
C��
l [J0(l�)� cos(4�)J4(l�)] + C��

l [J0(l�) + cos(4�)J4(l�)]

+2C��
l sin(4�)J4(l�)

o
:

(185)

One can choose an appropriate coordinate system such that measured cor-
relation functions in the coordinate frame are independent of the choice of
coordinates; in the above derivation, this is equivalent to setting � = 0 (e.g,
[269]). To do this in practice, in analogy with CMB polarization (see, [151]),
shear can be measured parallel and perpendicular to the line joining the two
points, such that n̂i�n̂j k x̂. In such a coordinate system correlation functions
reduce to the well known result of [188,146]:
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h
1
1i� =
Z
ldl

4�

n
C��
l [J0(l�) + J4(l�)] + C��

l [J0(l�)� J4(l�)]
o

h
1
2i� =
Z
ldl

4�
2C��

l J4(l�)

h
2
2i� =
Z
ldl

4�

n
C��
l [J0(l�)� J4(l�)] + C��

l [J0(l�) + J4(l�)]
o
:

(186)

To the �rst order, contributions to the shear correlations primarily come from
perturbations involving scalars, or gradient-like modes, with C��

l = C�
l and

C��
l = C��

l = 0; even if C��
l contributions are non-zero, the latter C��

l is zero
due to parity invariance.

The curl-like modes in shear can be generated by tensor perturbations such as
gravity-waves. Since there is no appreciable source of primordial gravity-wave
perturbations at late times (see, [154] for a review), it is unlikely that there is
a signi�cant contribution to C��

l , except in two cases:

(1) The �rst order calculation of weak lensing distortion matrix and conver-
gence is that we have implicitly integrated over the unperturbed photon paths
(the use of so-called Born approximation, see [14,234]). Similarly, second-order
e�ects such as lens-lens coupling involving lenses at two-di�erent redshifts
can generate a curl-like contribution. With second-order corrections to Born
approximation and lens-lens coupling, we can write the deformation matrix
associated with weak lensing as

Aij = Æij �  
(1)
ij �  

(2)
ij (187)

with

 
(2)
ij =4

Z
d�0

dA(�0)dA(�� �0)

dA(�)

�
Z
d�00

dA(�00)dA(�0 � �00)

dA(�0)
@i@k�(�

0)@k@j�(�
00) ; (188)

due to lens-lens coupling and

 
(2)
ij =4

Z
d�0

dA(�0)dA(�� �0)

dA(�)

�
Z
d�00dA(�

0 � �00)@i@j@k�(�
0)@k�(�

00) ; (189)

due to a correction to Born approximation, respectively [234,14,57]. The result-
ing deformation matrix due to these second-order corrections is asymmetric
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Fig. 38. The power spectra of lensing convergence (solid) and C��
l (dashed) and

C��
l (dot-dashed) due to galaxy ellipticity correlations induced by tidal torques,

as a function of redshift. The tidal torques induce signi�cant correlations at low
redshifts, while these can be ignored for deep weak lensing surveys with background
sources at z � 1. The �gure is from [175].

and results in a contribution to C��
l , as well as a contribution to the net ro-

tation; the latter is equivalent to the Stokes-V contribution in a polarization
�eld or, equivalently, circular polarization.

The Born approximation and lens-lens coupling have been tested in numeri-
cal simulations by [134] where they evaluated contribution to the convergence
power spectrum resulting from second order e�ects. Here, the rotational con-
tribution to angular power spectrum, due to lens-lens coupling, is roughly 3
orders of magnitude smaller. In [57], it was shown that the corrections due to
the Born approximation is also smaller compared to the �rst order result that
C��
l = 0.

(2) The intrinsic correlations between individual background galaxy shapes,
due to long range correlations in the tidal gravitational �eld in which the halos
containing galaxies formed, can generate a contribution to C��

l [60,110,37,175].
The intrinsic correlations have a redshift dependence such that they are signif-
icant at low redshifts. In �gure 38, we show the resulting C��

l and C��
l power

spectra due to ellipticity alignments in background galaxies arising from tidal
torques and a comparison to convergence power spectrum associated with
ellipticity correlations due to lensing following [175]. In order to avoid the
confusion between lensing generated ellipticity correlations vs. tidal torques
induced correlations, the results from intrinsic alignment calculations gener-
ally indicate that deep surveys are preferred over shallow ones for cosmological
purposes. We will return to this issue again based on the non-Gaussian con-
tribution to convergence power spectrum covariance.
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Fig. 39. Moments of the convergence �eld as a function of top-hat smoothing scale �
with (a) Second moment broken into individual contributions and (b) Third moment
broken into individual contributions.

In addition to shear correlations, one can also measure the shear variance,
which can be related to the convergence power spectrum by

D

2(�)

E
�
D
�2(�)

E
=

1

4�

X
l

(2l + 1)C�
l W

2
l (�) ; (190)

where Wl are the multipole moments, or Fourier transform in a 
at-sky ap-
proximation, of the window. In �gure 39(a), we choose a window which is a
two-dimensional top hat in real space with a window function in multipole
space of Wl(�) = 2J1(x)=x with x = l�. As shown, at 50 to 900 angular scales,
most of the contribution to the second moment comes from the double halo
correlation term and is dominated by the linear power spectrum instead of the
non-linear evolution.

In �gure 36(a), we show the convergence power spectrum of the dark matter
halos compared with that predicted by the [210] �tting function for the non-
linear dark matter power spectrum. The lensing power spectrum due to halos
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has the same behavior as the dark matter power spectrum. At large angles,
l . 100, the correlations between halos dominate. The transition from linear
to non-linear is at l � 500 where halos of mass similar to M?(z) contribute.
The single halo contributions start dominating at l > 1000. When l & few
thousand, at small scales corresponding to deeply non-linear regime, the shot-
noise behavior of the background sources contribute to the convergence power
spectrum via a noise term

CSN
l =

h
2inti
�n

: (191)

Here, h
inti1=2 is the rms noise per component introduced by intrinsic ellip-
ticities, typically � 0:6 for best ground based surveys, and �n is the surface
number density of background source galaxies.

Note that the shot-noise term is e�ectively reduced by the number of indepen-
dent modes one measures at each multipole. Including the sample variance, the
total error expected for a measurement of the power spectrum, as a function
of multipole, is

�C�
l =

s
2

fsky(2l + 1)

h
C�
l + CSN

l

i
: (192)

Here, the �rst term represents the sample variance under the Gaussian ap-
proximation for the convergence �eld, �lm and is the dominant source of noise
at large angular scales. The factor fsky, fraction of the sky observed, accounts
for the reduction in the number of independent modes under the partial sky
coverage. In the absence of noise for an all-sky experiment, at a multipole of
� 100, the error on the power spectrum due to sample variance is � 10%
and is usually reduced with binned measurements of the power spectrum in
multipole space.

For surveys that reach a limiting magnitude in R � 25, the surface density
is consistent with �n � 6:9 � 108 sr�1 (� 56 gal arcmin�2) [263], such that
CSN
l � 2:3 � 10�10. This shot-noise contribution reaches the power due to

convergence at multipoles of � 2000 and dominates the cosmological weak
lensing signal at multipoles thereafter. It is clear that the convergence power
spectrum at multipoles of few thousand probe the small scale behavior of the
dark matter power spectrum. The presence of signi�cant shot-noise, however,
complicate studies that can potentially test assumptions related to large scale
structure, such as the stable clustering hypothesis, or the halo model, such as
the use of smooth pro�les in the presence of substructure seen in numerical
simulations.
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Fig. 40. The bispectrum con�guration dependence Rl3
l1l2

as a function of l1 and l2
with l3 = 1000. Due to triangular conditions associated with l's, only the upper
triangular region in l1-l2 space contribute to the bispectrum.

8.5 Bispectrum

Using the spherical harmonic moments of convergence de�ned in equation (174),
the angular bispectrum of the convergence is de�ned following [54,265] as

h�l1m1�l2m2�l3m3i =
0
B@ l1 l2 l3

m1 m2 m3

1
CAB�

l1l2l3
: (193)

Here, the quantity in parentheses is the Wigner 3j symbol. Its orthonormality
relation implies

B�
l1l2l3

=
X

m1m2m3

0
B@ l1 l2 l3

m1 m2 m3

1
CA h�l1m1�l2m2�l3m3i : (194)

The angular bispectrum, B�
l1l2l3

, contains all the information available in the
three-point correlation function, For example, the third moment or the skew-
ness, the collapsed three-point expression of [113] and the equilateral con-
�guration statistic of [81] can all be expressed as linear combinations of the
bispectrum terms (see, [90] for explicit expressions).

Similar to our discussion related to the convergence power spectrum, we can
write spherical moments of the convergence �eld de�ned with respect to the
density �eld as

104



�lm = il
Z d3k

2�2
Æ(k)I lensl (k)Y m

l (k̂) and I lensl (k) =
Z
drW lens(k; r)jl(kr) ;

(195)

where W (k; r) is the source function associated with weak lensing (see equa-
tion 179).

The bispectrum can be constructed through

h�l1m1�l2m2�l3m3i = il1+l2+l3
Z d3k1

2�2

Z d3k2
2�2

Z d3k3
2�2

hÆ(k1)Æ(k2)Æ(k3)i
�I lensl (k1)I

lens
l (k2)I

lens
l (k3)Y

m1
l1

(k̂1)Y
m2
l2

(k̂2)Y
m3
l3

(k̂3) ; (196)

and can be simpli�ed further by using the bispectrum of density 
uctuations
to write the convergence bispectrum as

B�
l1l2l3

=
X

m1m2m3

0
B@ l1 l2 l3

m1 m2 m3

1
CA h�l1m1�l2m2�l3m3i

=

sQ3
i=1(2li + 1)

4�

0
B@ l1 l2 l3
0 0 0

1
CA bl1;l2;l3 ; (197)

with

bl1;l2;l3 =
23

�3

Z
k21dk1

Z
k22dk2

Z
k23dk3B(k1; k2; k3)

� I lensl1
(k1)I

lens
l2

(k2)I
lens
l3

(k3)
Z
x2dxjl1(k1x)jl2(k2x)jl3(k3x) :

(198)

In general, the calculation of bl1;l2;l3 involves seven integrals involving the mode
coupling integral and three integrals involving distances and Fourier modes,
respectively. We can simplify further by employing the Limber approximation
similar to our derivation of the power spectrum. Applying equation (181) to
the integrals involving k1, k2 and k3 allows us to write the angular bispectrum
of lensing convergence as

B�
l1l2l3

=

sQ3
i=1(2li + 1)

4�

0
B@ l1 l2 l3
0 0 0

1
CA Z dr

[W lens(r)]3

d4A
B

 
l1
dA
;
l2
dA
;
l3
dA

; r

!
:

(199)
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Through angular momentum selection rules, the Wigner-3j symbol restricts li
to form a triangle such that li � jlj � lkj. Additional properties of the Wigner
3j symbol can be found in the Appendix of [54].

The more familiar 
at-sky bispectrum is [55,120]:

B�(l1; l2; l3) =
Z
dr
[W lens(r)]3

d4A
B

 
l1

dA
;
l2

dA
;
l3

dA
; r

!
; (200)

where li are now two-dimensional vectors. In the case of the 
at-sky bis-
pectrum, the Wigner 3j symbol in the all sky expression becomes a trian-
gle equality relating the two-dimensional vectors. The implication is that the
triplet (l1; l2; l3) can be considered to contribute to the triangle con�guration
of l1; l3; l3 = �(l1 + l2) where the multipole number is taken as the length of
the vector. The correspondence between the all-sky derivation, equation (199),
and the 
at-sky approximation, equation (200), can be noted by expanding
the delta function involved with l1 + l2 + l3 = 0 [120].

In the 
at-sky case, we can generalize our result for a any n-point Fourier
space correlation as

P �
N (l1; :::; lN) =

Z
dr
[W lens(r)]N

d
(2N�2)
A

PN

 
l1

dA
; :::;

lN

dA
; r

!
; (201)

where vectors l1 + :::+ lN = 0.

Similar to the density �eld bispectrum, we de�ne

�2
eql =

l2

2�

q
B�
lll ; (202)

involving equilateral triangles in l-space. In �gure 37(a), we show �2
eql. The

general behavior of the lensing bispectrum can be understood through the
individual contributions to the density �eld bispectrum: at small multipoles,
the triple halo correlation term dominates, while at high multipoles, the single
halo term dominates. The double halo term contributes at intermediate l's
corresponding to angular scales of a few tens of arcminutes. In �gure 40, we
plot the con�guration dependence

Rl3
l1l2

=
l1l2
2�

q
B�
l1l2l3

�2
eql

(203)

as a function of l1 and l2 when l3 = 1000. The surface, and associated contour
plot, shows the contribution to the bispectrum from triangular con�gurations
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in l-space relative to that from the equilateral con�guration. Because of the
triangular conditions associated with l's, only upper triangular region of l1-l2
space contribute to the bispectrum. The symmetry about the l1 = l2 line is
due to the intrinsic symmetry associated with the bispectrum. Although the
weak lensing bispectrum peaks for equilateral con�gurations, the con�guration
dependence is weak. In the case of dark matter bispectrum, it is now known
that the halo model somewhat overestimates the con�guration dependence
due to the spherical assumption for halos [236]. This overestimate should also
be present in the projected dark matter statistics such as lensing convergence
bispectrum.

As discussed in the case of the second moment, it is likely that the �rst mea-
surements of higher order correlations in lensing would be through real space
statistics. Thus, in addition to the bispectrum, we also consider skewness,
which is associated with the third moment of the smoothed map (c.f. equa-
tion. [190])

D
�3(�)

E
=

1

4�

X
l1l2l3

sQ3
i=1(2li + 1)

4�

0
B@ l1 l2 l3
0 0 0

1
CAB�

l1l2l3
Wl1(�)Wl2(�)Wl3(�) :

(204)

One can then construct the skewness as

S3(�) =
h�3(�)i
h�2(�)i2 ; (205)

where h�2(�)i2 is the second moment of the convergence �eld de�ned in equa-
tion (190).

In �gure 41, we plot the skewness based on the halo model. Here, we show
skewness as a function of maximummass, ranging from 1014 to 1016 M� (from
increasing values of skewness). The assumption is that certain surveys, either
by design in the case of so-called blank-�elds or by chance, will not contain mas-
sive halos in the universe. Thus, by arbitrarily cutting o� the maximummass
when integrating over the mass function, one can estimate how the statistics
are sensitive to the presence of the massive and rare objects in the universe.
Our total maximum skewness agrees with what is predicted by numerical par-
ticle mesh simulations [289] and yields a value of � 116 at 100. However, it
is lower than predicted by HEPT arguments and simulations of [134], which
suggest a skewness of � 140 at angular scales of 100 [128]. The HEPT predic-
tion generally overpredicts skewness as it is extended to the mildly non-linear
regime of clustering, where contributions to the skewness come from at ar-
cminute scales, from the deeply non-linear regime, corresponding to angular
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PT

HEPT

Fig. 41. The skewness, S3(�), as a function of angular scale. The �lled symbols
indicate the mean and variance computed from a set of � planes generated in parti-
cle-mesh (PM) simulations by [289]. Under the halo model, shown here is the skew-
ness with varying maximum mass used in the calculation (solid lines ranging from
1014 to 1016 M�). For comparison, we also show skewness values as predicted by
hyper-extended perturbation theory (HEPT) and second-order perturbation theory
(PT). Figure is reproduced based on [289] and [55].

scales of few arcseconds, where it is expected to be valid. The skewness based
on second-order PT [14] is lower than the maximum skewness predicted by
halo calculation, and by construction, agrees with the skewness in the linear
regime.

The e�ect of maximum mass on the skewness is interesting. When the max-
imum mass is decreased to 1015 M� from the maximum mass value where
skewness saturates (� 1016 M�), the skewness decreases from � 116 to 98 at
an angular scale of 100, though the convergence power spectrum only changes
by less than few percent when the same change on the maximum mass used
is made. When the maximum mass used in the calculation is 1014 M�, the
skewness at 100 is � 40, which is roughly a factor of 4 decrease in the skewness
from the total.

Thus, the absence of rare and massive halos in observed �elds will certainly
bias the skewness measurement from the cosmological mean, which has been
suggested as a probe of the cosmological matter density given that S3 /

�0:8
m [14]. One, therefore, needs to exercise caution in using the skewness

to constrain cosmological models [128]. Still, this does not mean that non-
Gaussianity measured in small �elds, where there is likely to be a signi�cant
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bias due to the lack of massive halos, will be useless. With the halo approach,
one can calculate the expected skewness given some information related to
the mass distribution of halos within the observed �elds. This knowledge may
come externally, such as through X-ray and Sunyaev-Zel'dovich measurements
or internally from lensing data themselves, independent of cosmology. Alter-
natively, if cosmology is assumed, one can also used non-Gaussian information
from weak lensing to constrain some aspect of the large scale structure halo
mass distribution, such as the high mass end of the mass function.

8.6 Weak Gravitational lensing Covariance

For the purpose of this calculation, we assume that upcoming weak lensing
convergence power spectrum will measure binned logarithmic band powers at
several li's in multipole space with bins of thickness Æli.

Ci =
Z
si

d2l

Asi

l2

2�
�(l)�(�l) ; (206)

where As(li) =
R
d2l is the area of the two-dimensional shell in multipole and

can be written as As(li) = 2�liÆli + �(Æli)2.

We can now write the signal covariance matrix as

Cij =
1

A

"
(2�)2

Asi
2C2i + T �

ij

#
; (207)

T �
ij =

Z
d2li
Asi

Z
d2lj
Asj

l2i l
2
j

(2�)2
T �(li;�li; lj;�lj) ; (208)

where A = 4�fsky is the area of the survey in steradian, when the fraction
of sky covered is fsky. Again the �rst term is the Gaussian contribution to
the sample variance and the second term is the non-Gaussian contribution. A
realistic survey will also have shot noise variance due to the �nite number of
source galaxies in the survey. Note that in the Gaussian limit with T �

ij = 0,
when Æli = 1, equation (208) reduces to (�C�

l )
2 given in equation (192).

Following equation (201), the convergence trispectrum is related to the density
trispectrum by the projection [235,56]

T �=
Z
dr
W (r)4

d6A
T

 
l1

dA
;
l2

dA
;
l3

dA
;
l4

dA
; r

!
; (209)

with the weight function de�ned in equation (179) and l4 = �(l1 + l2 + l3).
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Note that the con�gurations, in Fourier space, that contribute to the power
spectrum covariance has the form of parallelograms with l2 = �l1 and l4 =
�l3. Thus, it is useful to consider the behavior of the trispectrum for such
con�gurations. In �gure 37(b), we show the scaled trispectrum

��
sq(l) =

l2

2�
T �(l;�l; l?;�l?)1=3 : (210)

where l? = l and l � l? = 0. The projected lensing trispectrum again shows
the same behavior as the density �eld trispectrum with similar conditions on
ki's.

We can now use this trispectrum to study the contributions to the covariance,
which is what we are primarily concerned here. In �gure 42a, we show the
fractional error,

�Ci
Ci �

p
Cii

Ci ; (211)

for bands li given in Table 3 following the binning scheme used by [289] on
6Æ � 6Æ �elds.

The dashed line compares that with the Gaussian errors, involving the �rst
term in the covariance (equation 208). At multipoles of a few hundred and
greater, the non-Gaussian term begins to dominate the contributions. For
this reason, the errors are well approximated by simply taking the Gaussian
and single halo contributions. In �gure 42(b), we compare these results with
those of the [289] simulations. The decrease in errors from the simulations at
small l re
ects �nite box e�ects that convert variance to covariance as the
fundamental mode in the box becomes comparable to the bandwidth.

The correlation between the bands is given by

Ĉij � Cijq
CiiCjj

: (212)

In table 3, we compare the halo predictions to the simulations by [289]. The
upper triangle here is the correlations under the halo approach, while the
lower triangle shows the correlations found in numerical simulations. The cor-
relations along individual columns increase, as one goes to large l's or small
angular scales, consistent with simulations. In �gure 43, we show the corre-
lation coeÆcients with (a) and without (b) the Gaussian contribution to the
diagonal.

110



10
-1

10
0

∆C
κ l/C

κ l

Gaussian 
with nonGaussianities (total)
with nonGaussianities (1h term )

Shot
Noise

(a)

10
1

10
2

10
3

l

10
-2

10
-1

∆C
κ l/C

κ l

Full 
Gaussian

Analytical
(b)

10
4

N-body

Fig. 42. The fractional errors in the measurements of the convergence band powers.
In (a), we show the fractional errors under the Gaussian approximation, the full halo
description, the Gaussian plus single halo term, and the Gaussian plus shot noise
term (see equation 218). As shown, the additional variance can be modeled with the
single halo piece while shot noise generally becomes dominant before non-Gaussian
e�ects become large. In (b), we compare the halo model with simulations from [289]
(1999). The decrease in the variance at small l in the simulations is due to the
conversion of variance to covariance by the �nite box size of the simulations.

We show in �gure 43(a) the behavior of the correlation coeÆcient between a
�xed lj as a function of li. When li = lj the coeÆcient is 1 by de�nition. Due to
the presence of the dominant Gaussian contribution at li = lj, the coeÆcient
has an apparent discontinuity between li = lj and li = lj�1 that decreases as
lj increases and non-Gaussian e�ects dominate.
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Fig. 43. (a) The correlation coeÆcient, Ĉij as a function of the multipole li with
lj as shown in the �gure. We show the correlations calculated with the full halo
model and also with only the single halo term for lj = 77072. In (b), we show the
non-Gaussian correlation coeÆcient ĈNG

ij , which only involves the trispectrum (see,
equation 213). The transition to full correlation is due to the domination of the
single halo contribution.

To better understand this behavior it is useful to isolate the purely non-
Gaussian correlation coeÆcient

ĈNG
ij =

Tijq
TiiTij

: (213)

As shown in �gure 43(b), the coeÆcient remains constant for li � lj and
smoothly increases to unity across a transition scale that is related to where
the single halo terms starts to contribute. A comparison of �gure 43(b) and
37(b), shows that this transition happens around l of few hundred to 1000.
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Table 3

Weak Lensing Convergence Power Spectrum Correlations

`bin 97 138 194 271 378 529 739 1031 1440 2012

97 1.00 0.04 0.05 0.07 0.08 0.09 0.09 0.09 0.08 0.08

138 (0.26) 1.00 0.08 0.10 0.11 0.12 0.12 0.12 0.11 0.11

194 (0.12) (0.31) 1.00 0.14 0.17 0.18 0.18 0.17 0.16 0.15

271 (0.10) (0.21) (0.26) 1.00 0.24 0.25 0.25 0.24 0.22 0.21

378 (0.02) (0.09) (0.24) (0.38) 1.00 0.33 0.33 0.32 0.30 0.28

529 (0.10) (0.14) (0.28) (0.33) (0.45) 1.00 0.42 0.40 0.37 0.35

739 (0.12) (0.16) (0.17) (0.34) (0.38) (0.50) 1.00 0.48 0.45 0.42

1031 (0.15) (0.18) (0.15) (0.27) (0.33) (0.48) (0.54) 1.00 0.52 0.48

1440 (0.18) (0.15) (0.19) (0.19) (0.32) (0.36) (0.53) (0.57) 1.00 0.54

2012 (0.19) (0.22) (0.16) (0.32) (0.27) (0.46) (0.50) (0.61) (0.65) 1.00

NOTES.|Covariance of the binned power spectrum when sources are at a redshift
of 1. Upper triangle displays the covariance found under the halo model. Lower
triangle (parenthetical numbers) displays the covariance found in numerical simu-
lations by [289]. To be consistent with these simulations, we use the same binning
scheme as the one used there.

Once the power spectrum is dominated by correlations in single halos, the �xed
pro�le of the halos will correlate the power in all the modes. The multiple halo
terms on the other hand correlate linear and non-linear scales but at a level
that is generally negligible compared with the Gaussian variance.

Note that the behavior seen in the halo based covariance, however, is not
present when the covariance is calculated with hierarchical arguments for the
trispectrum (see, [235]). With hierarchical arguments, which are by construc-
tion only valid in the deeply non-linear regime, one predicts correlations which
are, in general, constant across all scales and shows no decrease in correlations
between very small and very large scales. Such hierarchical models also vio-
late the Schwarz inequality with correlations greater than 1 between large and
small scales (e.g., [235,104]). The halo model, however, shows a decrease in
correlations similar to numerical simulations suggesting that the halo model,
at least qualitatively, provides a better approach to studying non-Gaussian
correlations in the translinear regime.

8.6.1 Scaling Relations

To better understand how the non-Gaussian contribution scale with our as-
sumptions, we can consider the ratio of non-Gaussian variance to the Gaussian
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variance

Cii

CG
ii

= 1 +R ; (214)

with

R � AsiT
�
ii

(2�)22C2
i

: (215)

Under the assumption that contributions to lensing convergence can be written
through an e�ective distance r?, at half the angular diameter distance to
background sources, and a width �r for the lensing window function, the
ratio of lensing convergence trispectrum and power spectrum contribution to
the variance can be further simpli�ed to

R � Asi

(2�)2Ve�

�T (r?)

2 �P 2(r?)
: (216)

Since the lensing window function peaks at r?, we have replaced the integral
over the window function of the density �eld trispectrum and power spectrum
by its value at the peak. This ratio shows how the relative contribution from
non-Gaussianities scale with survey parameters: (a) increasing the bin size,
through Asi (/ Æl), leads to an increase in the non-Gaussian contribution
linearly, (b) increasing the source redshift, through the e�ective volume of
lenses in the survey (Ve� � r2?�r), decreases the non-Gaussian contribution,
while (c) the growth of the density �eld trispectrum and power spectrum,
through the ratio �T= �P 2, decreases the contribution as one moves to a higher
redshift. The volume factor quanti�es the number of foreground halos in the
survey that e�ectively act as gravitational lenses for background sources; as
the number of such halos is increased, the non-Gaussianities are reduced by
the central limit theorem.

In �gure 44, we summarize our results as a function of source redshift with
li � 102; 103 and 104 and setting the bin width such that As(li) � l2i , or
Æl � l. As shown, increasing the source redshift leads to a decrease in the non-
Gaussian contribution to the variance. The prediction based on the simpli�-
cations in equation (216) tend to overestimate the non-Gaussianity at lower
redshifts while underestimates it at higher redshifts, though the exact transi-
tion depends on the angular scale of interest; this behavior can be understood
due to the fact that we do not consider the full lensing window function but
only the contributions at an e�ective redshift, midway between the observer
and sources.
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In order to determine whether its the increase in volume or the decrease in
the growth of structures that lead to a decrease in the relative importance
of non-Gaussianities as one moves to a higher source redshift, we calculated
the non-Gaussian to Gaussian variance ratio under the halo model for several
source redshifts and survey volumes. Up to source redshifts � 1.5, the in-
crease in volume decreases the non-Gaussian contribution signi�cantly. When
surveys are sensitive to sources at redshifts beyond 1.5, the increase in volume
becomes less signi�cant and the decrease in the growth of structures begin to
be important in decreasing the non-Gaussian contribution. Since, in the deeply
non-linear regime, �T= �P 2 scales with redshift as the cube of the growth factor,
this behavior is consistent with the overall redshift scaling of the volume and
growth.

The importance of the non-Gaussianity to the variance also scales linearly
with bin width. As one increases the bin width the covariance induced by the
non-Gaussianity manifests itself as increased variance relative to the Gaus-
sian case. The normalization of R is therefore somewhat arbitrary in that it
depends on the binning scheme, i.e. R � 1 does not necessarily mean non-
Gaussianity can be entirely neglected when summing over all the bins. The
scaling with redshift and the overall scaling of the variance with the survey
area A is not. One way to get around the increased non-Gaussianity asso-
ciated with shallow surveys, is to have it sample a wide patch of sky since
Cii / (1 + R)=A. This relation tells us the trade o� between designing an
survey to go wide instead of deep. One should bear in mind though that not
only will shallow surveys have decreasing number densities of source galaxies
and hence increasing shot noise, they will also su�er more from the decreas-
ing amplitude of the signal itself and the increasing importance of systematic
e�ects, including the intrinsic correlations of galaxy shapes (e.g., [37,60,110]).
These problems tilt the balance more towards deep but narrow surveys than
the naive statistical scaling would suggest.

8.6.2 The e�ect of non-Gaussianities

With steady improvements in the observational front, it is likely that weak
lensing will eventually reach its full ability as a complimentary probe of cos-
mological parameters when compared to angular power spectrum of CMB
anisotropies (see, e.g., [121]). Thus, for a proper interpretation of observa-
tional measurements of lensing convergence power spectrum or shear correla-
tion functions, it will be essential to include the associated full covariance or
error matrix in upcoming analyses. In the absence of many �elds where the
covariance can be estimated directly from the data, the halo model provides a
useful, albeit model dependent, quanti�cation of the covariance. As a practical
approach one could imagine taking the variances estimated from the survey
under a Gaussian approximation, but which accounts for uneven sampling and
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Fig. 44. The ratio of non-Gaussian to Gaussian contributions, R, as a function of
source redshift (zs). The solid lines are through the exact calculation (equation 215)
while the dotted lines are using the approximation given in equation (216). Here,
we show the ratio R for three multipoles corresponding to large, medium and small
angular scales. The multipole binning is kept constant such that Æl � l. Decreasing
this bin size will linearly decrease the value of R.

edge e�ects [126], and scaling it up by the non-Gaussian to Gaussian variance
ratio of the halo model along with inclusion of the band power correlations.
Additionally, it is in principle possible to use the expected correlations from
the halo model to decorrelate individual band power measurements, similar
to studies involving CMB temperature anisotropy and galaxy power spectra
(e.g., [103,105]).

The resulting non-Gaussian e�ects on cosmological parameter estimation was
discussed in [56]. In [121], the potential of wide-�eld lensing surveys to measure
cosmological parameters was investigated using the Gaussian approximation
of a diagonal covariance and Fisher matrix techniques. The Fisher matrix is
simply a projection of the covariance matrix,C, onto the basis of cosmological
parameters pi

F�� =
X
ij

@Ci
@p�

(C�1
tot)ij

@Cj
@p�

; (217)
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where the total covariance includes both the signal and noise covariance. Under
the approximation of Gaussian shot noise, this reduces to replacing C�

l !
C�
l + CSN

l in the expressions leading up to the covariance equation (208).
In the case where non-Gaussian contribution to the covariance is ignored,
equation (217) reduces to [121,48]

F�� =
lmaxX
l=lmin

fsky(l + 1=2)

(C�
l + CSN

l )2
@C�

l

@p�

@C�
l

@p�
: (218)

Under the approximation that there are a suÆcient number of modes in the
band powers that the distribution of power spectrum estimates is approx-
imately Gaussian, the Fisher matrix quanti�es the best possible errors on
cosmological parameters that can be achieved by a given survey. In particular
F�1 is the optimal covariance matrix of the parameters and (F�1)1=2ii is the
optimal error on the ith parameter.

For a cosmological model involving a set of 5 parameters, 
�, normalization of
the power spectrum, 
K = 1�
m�
�, ns and 
mh

2, Cooray & Hu [55] found
that non-Gaussianities increase the uncertainties of each of the 5 parameters
determined from an all-sky experiment down to the 25th magnitude, and as-
suming all sources at a redshift of � 1, by about � 10 to 15%. In the case of
weak lensing, the shot-noise due to �nite number of background sources and
their intrinsic ellipticity becomes the dominant error before the non-Gaussian
e�ects dominate over the Gaussian noise. Thus, for the above assumed depth
and redshift, the non-Gaussian e�ect on cosmological parameters is some what
insigni�cant. For certain planned deeper surveys with better imaging, such as
planned surveys with Large-Aperture Synoptic Telescope (LSST; [281]), the
shot-noise term will be subdominant and the non-Gaussian contributions may
be more important for a precise determination of the cosmological parame-
ters. As discussed with scaling relations, x 8.6.1, the intrinsic non-Gaussian
contribution to the onset of non-linearity decreases with increasing survey
depth, and thus, deeper surveys are in fact preferred over shallow ones for the
purposes of cosmological lensing work.

8.7 The Galaxy-Mass Cross-Correlation

Our description for the galaxy power spectrum, see x 6, allows us to extend
the discussion to also consider the cross-correlation between galaxies and mass.
Such a cross-power spectrum can be probed through two independent meth-
ods: (1) the weak lensing tangential shear-galaxy correlation function and (2)
the foreground-background source correlation function. As we �nd later, these
two correlations probe di�erent scales in the galaxy-mass power spectrum.
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Fig. 45. The SDSS galaxy-mass cross-correlation using galaxy-shear correlation func-
tion. We show the halo model prediction with a solid line. The data are from [83].

8.8 Shear-Galaxy correlation

The shear-galaxy correlation function can be constructed by correlating tan-
gential shear of background galaxies surrounding foreground galaxies. The as-
sumption is that these foreground galaxies trace the mass distribution along
the line of sight to background sources. Here, observations involve the mean
tangential shear due to gravitational lensing which is related to convergence
through

h
t(�)i = �1

2

d��(�)

dln�
; (219)

where ��(�) is the mean convergence within a circular radius of � [148,267,99].

Since the shear, averaged over a circular aperture, is correlated with foreground
galaxy positions, one essentially probes the galaxy-mass correlation discussed
in x 8.7 such that

��(�) =
Z
drW lens(r)W gal(r)

Z
dkkPgal�DM(k)

2J1(kdA�)

kdA�
: (220)
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Following equation (219), we can write the mean tangential shear involved
with galaxy-galaxy lensing as

h
t(�)i =
Z
drW lens(r)W gal(r)

Z
dkkPgal�DM(k)J2(kdA�) : (221)

Here,W lens is the lensing window function introduced in equation (179), while
W gal is the normalized redshift distribution of foreground galaxies. Note that,
in general, W lens involves the redshift distribution of background sources be-
yond the simple single source redshift assumption we have considered in prior
calculations.

The highest signal-to-noise measurement yet of tangential lensing correlation
around foreground galaxies comes from the Sloan Digital Sky Survey [83]. We
compare these measurements with a prediction based on the halo model in
�gure 45. Here, for simplicity, we take the same description for galaxy num-
ber counts as introduced in x 6, and calculate the galaxy-dark matter correla-
tion function following equations (134). In calculating the expected correlation
function, we have used the expected redshift distributions for foreground and
background galaxies in the Sloan samples. The observed measurements shown
in �gure 45 comes from the Sloan survey for �eld galaxies; tangential shear
around a selected sample of 42 foreground galaxy clusters in Sloan data were
recently presented by [248]. Traditionally, the galaxy-galaxy lensing correlation
function, similar to the above, was interpreted by a mass and a size distribu-
tion for foreground galaxies with foreground galaxies generally assumed to be
distributed randomly. This, or similar approaches, allow constraints on certain
galaxy properties such as mass and size (see, [83] for details).

The halo model provides an alternative, and perhaps an improved, description
consistent with our basic ideas of large scale structure: since galaxies e�ectively
trace the dark matter halos and it is the dark matter that is mostly responsible
for the tangential lensing of background sources, the constraints on mass and
size e�ectively applies to halos that galaxies reside in. If �eld galaxies are
simply selected as foreground sources, then, the constraint on mass and size
applies to the dark matter halo of the sample, each of which contains a single
galaxy. If the foreground sample contains contributions from a wide variety
of dark matter halo mass scales, then more than one galaxy can reside in
dark matter halos at the high mass end and a simple interpretation may
not be possible. Additionally, since halos distribute the large scale structure,
one should account for the clustering component, i.e.,. the 2-halo term of the
dark matter-galaxy correlation function, when extracting statistical properties
related to individual halos that contribute along the line of sight. As shown
in �gure 45, the total halo model prediction, both due to individual halos and
their clustering, is consistent with observed measurements; the correlation at
largest angular scales is due to the intrinsic clustering of halos and cannot
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Fig. 46. The window functions involved with the projection of galaxy-mass power
spectrum in producing the tangential shear-galaxy correlation (J2) and the fore-
ground-background galaxy correlation (J0). Note that the tangential shear-galaxy
correlation probes smaller physical scales in the galaxy-mass power spectrum and
are, thus, more sensitive to the non-linear aspect of this correlation function, such
as the single-halo contribution.

be simply interpreted as a large extent for the dark matter halos. A more
thorough study of the weak lensing shear-galaxy cross-correlation, under the
halo model, is available in [99] and we refer the reader to this paper for further
details.

8.9 Foreground-background source correlation

The second observational probe of the galaxy-mass correlation function comes
from the clustering of background sources around foreground objects. One
can construct a power spectrum by simply counting the number of objects,
such as quasars or X-ray sources, surrounding a sample of foreground sources,
such as galaxies. The dependence on the correlation comes from the fact that
foreground sources trace the mass density �eld which can potentially a�ect
the number counts of background sources by the weak lensing e�ect.

To understand this correlation, we can consider a sample of background sources
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whose number counts can be written as

N(s) = N0s
�� (222)

where s is the 
ux and � is the slope of number counts 2 . Due to lensing, when
the ampli�cation involved is �, one probes to a lower 
ux limit s=� while the
total number of sources are reduced by another factor �; the latter results from
the decrease in volume such that the total surface brightness is conserved in
lensing. Thus, in the presence of lensing, number counts are changed to

N(s)=
N0

�

 
s

�

!��

=N0s
�����1 : (223)

In the limit of weak lensing, as more appropriate for the large scale structure,
� � (1 + 2�) where convergence � was de�ned in equation (172). This allows
us to write the 
uctuations in background number counts, Nb(n̂) = �Nb[1 +
ÆNb(n̂)], in the presence of foreground lensing as [191,192]

ÆNb(n̂) = 2(� � 1)�(n̂)

= 2(� � 1)

r0Z
0

drW lens(r)Æ(n̂; r) ; (224)

where the lensing weight function integrates over the background source pop-
ulation following equation (179).

The foreground sources are assumed to trace the density �eld and based on
the source clustering, one can write the 
uctuations in the foreground source
population, Nf (n̂) = �Nf [1 + ÆNf(n̂)], as

Nf (n̂) =

r0Z
0

drnf (r)Æg(n̂; r) (225)

where nf (r) is the radial distribution of foreground sources.

We can write the correlation between the foreground and background sources
as

2 Similarly, we can describe this calculation with counts based on magnitudes
instead of 
ux. In that case, one should replace � with 2:5�m where �m =
dlogN(m)=dm; the logarithmic slope of the magnitude counts
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wfb(�) = hNf (�)Nb(� + �)i

=2(� � 1)

r0Z
0

nf (r)W
lens(r)

1Z
0

kdk

2�
Pgal�DM (k)J0(kdA�) ; (226)

where we have simpli�ed using the Fourier expansion of equations (224) and
(225), and have introduced the galaxy-mass power spectrum.

In the case where foreground and background sources are not distinctively
separated in radial distance, note that there may be an additional correlation
resulting from the fact that background sources trace the same overlapping
density �eld traced by the foreground sources. This leads to a clustering term
where

woverlap
fb (�)= hNf (�)Nb(�+ �)i

=

r0Z
0

nf (r)nb(r)

1Z
0

kdk

2�
Pgal�source(k)J0(kdA�) ; (227)

where Pgal�source(k) is now the cross power spectrum between foreground
source sample, galaxies in this case, and the population of background sources,
such as quasars. This cross power spectrum can be modeled under the halo
approach by introducing a relationship between how background sources pop-
ulate dark matter halos similar to the description for galaxies. This clustering
component usually becomes a source of contamination for the detection of
background source-foreground galaxy correlation due to weak lensing alone.

Note that background-foreground source correlation, equation (226), and the
tangential shear-foreground galaxy correlation, equation (221), weigh the galaxy-
mass cross-power spectrum with two di�erent window functions involving a
J0 and a J2, respectively. For a given projected distance dA�, the two observa-
tional methods probe the galaxy-mass power spectrum at di�erent scales. As
shown in �gure 46, the tangential shear-foreground galaxy correlation func-
tion probes the non-linear scales of the galaxy-mass correlation and, thus, more
sensitive to the behavior of the single-halo contribution than the foreground-
background correlation function of sources. The dependence of the non-linear
scales in the shear-galaxy correlation suggests that it is more suitable to probe
the physical aspects of how foreground galaxies trace their dark matter ha-
los. On the other hand, the foreground-background source correlation function
probes the clustering aspects of foreground sources that trace the linear den-
sity �eld.

In �gure 47, we show the expected correlation between foreground galaxies
in the Sloan Digital Sky Survey and background quasars at redshifts greater
than 1. The expected errors suggest that the correlation will be measured
out to angular scales of several degrees. Since suÆcient statistics will soon
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Fig. 47. The expected foreground galaxy-background quasar correlation due to
lensing magni�cation under several descriptions of the galaxy-mass power spec-
trum. The expected error bars are for the whole Sloan catalog of galaxies with
21 < r0 < 22, as foreground sources, and Sloan quasars at redshifts greater than 1,
as background sources. The �gure is from R. Scranton (in preparation).

be available, the catalog can be divided in to redshift bins and be combined
with associated data on the shear-galaxy correlation for detailed studies on
galaxy-mass cross clustering.

9 Halo applications to CMB: Secondary e�ects

The angular power spectrum of cosmic microwave background (CMB) temper-
ature 
uctuations is now a well known probe of cosmology. The anisotropies
can be well described through linear physics involving Compton scattering
and linearized general relativity. The well known features in the power spec-
trum, the acoustic oscillations at large angular scales and the damping tail at
medium angular scales [214,273,261,124], allow the ability to constrain most,
or certain combinations of, parameters that de�ne the currently favored CDM
models with a cosmological constant [159,141,22,297,75]. This has led to a wide
number of experimental attempts with results so far suggesting the evidence
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for acoustic peaks as expected in models with adiabatic initial conditions and
a scale invariant power spectrum of 
uctuations [187,67,107,101].

The small angular scale temperature anisotropies contain a wide-variety of
information related to the growth and evolution of large scale structure in-
cluding non-linear aspects of clustering. Such a contribution from the low
redshifts is partly contrary to the general assumption that CMB 
uctua-
tions are solely described by linear physics at the last scattering at a redshift
� 1100. There are two methods by which large scale structure of the local
universe can modify CMB temperature: gravity and scattering. The gravita-
tional contributions arise from variations in the frequency of CMB photons
via gravitational redshifts and blueshifts [229,222,242,52,63,165] and via de-

ection [26,155,169,43,230,287,89,38,243,120] and time-delay [125] e�ects on
CMB photons due to gravitational lensing. In the reionized epoch, with a
population of free electrons, the CMB photons can also be Compton-scattered
[206,285,144,68,72,130,123].

The large scale structure contributions to CMB, either due to gravity or scat-
tering, can be modeled using the halo approach and their statistical properties
can be calculated in detail, similar to the application of the halo models to
galaxy and weak lensing statistics. Here, we will consider several such sec-
ondary contributions including the thermal and kinetic Sunyaev-Zel'dovich
(SZ; [274]) e�ects, the gravitational lensing modi�cation to CMB, and the
non-linear contribution to the integrated Sachs-Wolfe e�ect (ISW; [229]) at
small angular scales.

The anisotropy power spectrum at small angular scales has recently become
the focus of several theoretical and experimental studies. Though there are sev-
eral upper-limits and an initial detection of anisotropy power at small scales
[66,118,271,40], a wide-�eld CMB image is yet to be produced with resolution
necessary for studies related to secondary e�ects. To this end, several experi-
ments are now working towards obtaining such information either from direct
imaging or interferometric techniques. These experimental attempts include
the proposed 12 deg.2 survey by [33] at the combined and expanded BIMA
and OVRO arrays (CARMA), the Atacama Telescope (ACT; Lyman Page,
private communication), and the BOLOCAM array on the Caltech Submil-
limeter Observatory (Andrew Lange, private communication). In the longer
term, a few thousand sqr. degrees is proposed to be imaged in a few years
with a wide-�eld bolometer array at the South Pole Telescope (John Carl-
strom, private communication) and the Planck surveyor will allow detailed
studies of certain secondary e�ects and foreground via multi-frequency all-sky
maps.
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9.1 The Thermal SZ e�ect

The SZ thermal e�ect arises from the inverse-Compton scattering of CMB
photons by hot electrons along the line of sight. This e�ect has now been
directly imaged towards massive galaxy clusters (e.g., [33,140]), where tem-
perature of the scattering medium can reach as high as 10 keV producing
temperature changes in the CMB of order 1 mK at Rayleigh-Jeans wave-
lengths. The SZ e�ect is now well known for its main cosmological applica-
tion involving measurements of the Hubble constant. The basic idea follows
from the initial suggestions by Gunn [97] and Silk & White [262]: the SZ
temperature decrement, �T / Tenedl, towards a given cluster can be com-
bined with thermal Bremsstrahlung X-ray emission, Sx / T 1=2

e n2edl, towards
the same cluster to obtain an estimate of the line of sight distance through
the cluster: L / Sx=�T 2. This requires a measurement of Te(r) across the
cluster; the isothermal assumption Te(r) = T0 is generally employed due to
limitations on the observational front. A comparison of this distance to the
projected separation of the cluster across the sky determines the angular diam-
eter distance to the cluster, independent of cosmological distance ladder (see,
[181,182,208,94,221,127] for recent H0 measurements). Through a cosmolog-
ical model for the distance, one can extract parameters such as the Hubble
constant and with measurements over a wide range in redshift, values for the
matter density and the cosmological constant.

There are several limitations that prohibit a reliable measurement of the Hub-
ble constant from the combined SZ and X-ray data, at least in the case of a
single cluster. The usual spherical assumption for clusters are inconsistent
with observations and can bias the distance measurement at the level of 10%
to 20% [49,272,220]. The isothermal assumption for electron temperature has
been shown to be inconsistent with numerically simulated galaxy cluster gas
distributions, though, this assumption is yet to be tested with observations
of galaxy clusters. In the case of clusters with signi�cant cooling 
ows, it is
clear that a single temperature cannot be used to describe the electron tem-
perature; this again leads to biases at the few tens of percent level [228,177].
Additional contributions at the 10% level and less include, the presence of
contaminating radio point sources, either in the cluster [47] or background
sources gravitationally lensed by the cluster potential [170], 
uctuations in
the background anisotropies lensed through the cluster [39] and the peculiar
velocity contribution to the kinetic SZ e�ect. Though, in general, these ef-
fects limit the reliability of the Hubble constant measured towards a single
cluster, a signi�cant sample of clusters is expected to produce a measurement
that is within the few percent level. In the case of projection e�ects involving
ellipsoidal clusters, distributed following ellipticities observed for present-day
cluster samples, it can be shown that for a sample of at least 25 or more
clusters, the mean Hubble constant is consistent with the true value [49].
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Fig. 48. Frequency dependence of the SZ e�ect at a multipole of l � 5000. Here, we
show the absolute value of temperature relative to the thermal CMB spectrum. For
comparison, we also show the temperature 
uctuations due to point sources (both
radio at low frequencies and far-infrared sources at high frequencies; solid line),
galactic synchrotron (long dashed line), galactic free-free (dotted line) and galactic
dust (short dashed line). At small angular scales, frequencies around 50 to 100 GHz
is ideal for a SZ experiment.

In the future when wide-�eld SZ surveys are available, we are more interested
in the statistics of SZ e�ect, such as the SZ correlation function or power
spectrum in real space. Since on top of the SZ e�ect, one also gets a con-
tribution from the CMB anisotropy 
uctuations, it is clear that one requires
reliable ways to separate them and also contaminant foregrounds such as ra-
dio point sources and galactic dust. Due to the nature of inverse-Compton
scattering, where photons are upscattered from low to high frequencies, the
SZ e�ect, fortunately, bears a spectral signature that di�ers from other tem-
perature 
uctuations including the dominant CMB primary component (see,
�gure 48). In upcoming multifrequency CMB data, thus, the SZ contribution
can be separated using its frequency dependence. This allows statistics related
to the SZ e�ect be studied independently of, say, dominant CMB temperature

uctuations. As discussed in detail in [58], a multi-frequency approach can
easily be applied to Planck surveyor 3 missions (see, �gure 49).

3 http://astro.estec.esa.nl/Planck/; also, ESA D/SCI(6)3.
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Fig. 49. Recovery of the SZ signal with Planck multifrequency data: (a) A line
of sight integrated model SZ map with the assumption that pressure traces dark
matter with a scale independent bias at all scales, (b) The map smoothed at 200,
(c) this SZ signal+noise from primary anisotropies and foregrounds, and (d) �nal
recovered map with a SZ frequency spectrum. For Planck, the recovered spectrum
is consistent with the input spectrum and allows a determination of the SZ power
spectrum with a cumulative signal-to-noise greater than 100 [58].

9.1.1 SZ Power Spectrum

The temperature decrement along the line of sight due to SZ e�ect can be
written as the integral of pressure along the same line of sight

y � �T

TCMB
= g(x)

Z
dra(r)

kB�T
mec2

ne(r)Te(r) (228)
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where �T is the Thomson cross-section, kB is the Boltzmann's constant, ne is
the electron number density, r is the comoving distance, and g(x) = xcoth(x=2)�
4 with x = h�=kBTCMB is the spectral shape of the SZ e�ect. At Rayleigh-
Jeans (RJ) part of the CMB, g(x) = �2. For the rest of this paper, we assume
observations in the Rayleigh-Jeans regime of the spectrum, though, an exper-
iment such as Planck with sensitivity beyond the peak of the spectrum can
separate out these contributions based on the spectral signature, g(x) [58] (see
also, [277,115] for frequency separation of CMB from foregrounds).

The SZ power spectrum, bispectrum and trispectrum are de�ned in the 
at
sky approximation in the usual way

hy(l1)y(l2)i= (2�)2ÆD(l12)C
SZ
l ;

hy(l1)y(l2)y(l3)ic= (2�)2ÆD(l123)B
SZ(l1; l2; l3) ;

hy(l1) : : : y(l4)ic= (2�)2ÆD(l1234)T
SZ(l1; l2; l3; l4) : (229)

These can be written as a redshift projection of the pressure power spectrum,
bispectrum and trispectrum, respectively:

CSZ
l =

Z
dr
W SZ(r)2

d2A
P�

 
l

dA
; r

!
; (230)

BSZ=
Z
dr
W SZ(r)3

d4A
B�

 
l1

dA
;
l2

dA
;
l3

dA
; ; r

!
;

T SZ=
Z
dr
W SZ(r)4

d6A
T�

 
l1

dA
;
l2

dA
;
l3

dA
;
l4

dA
; ; r

!
: (231)

Here, dA is the angular diameter distance. At RJ part of the frequency spec-
trum, the SZ weight function is

W SZ(r) = �2 kB�T �ne
a(r)2mec2

(232)

where �ne is the mean electron density today. In deriving equation (231), we
have used the Limber approximation [168] by setting k = l=dA and 
at-sky ap-
proximation. Here, we have written the correlations in terms of the large scale
structure pressure, denoted by �, power spectrum, bispectrum and trispec-
trum.

The halo approach has been widely utilized to make analytical predictions on
the statistics related to SZ thermal e�ect from the large scale structure such as
the power spectrum (e.g., [44,162]). Other approaches include a biased descrip-
tion of the pressure power spectrum with respect to the dark matter density
�eld (e.g., [218,58]). These analytical calculations are now fully complemented
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Fig. 50. The dark matter (NFW) pro�le and the ones predicted by the hydro-
static equilibrium for gas, as a function of the b parameter (see equation 236) with
rs = 100. The relative normalization between individual parameters is set using
a gas fraction value of 0.1, though the NFW pro�le is arbitrarily normalized with
�s = 1; the gas pro�les scale with the same factor. For comparison, we also show a
typical example of the so-called � model (1 + r2=r2c)

�3�=2 which is generally used
as a �tting function for X-ray and SZ observations of clusters. We refer the reader
to [179] and [275] for a detailed comparison of � models and the NFW-gas pro�les.

by numerical simulations (e.g., [61,223,246,266]) which are now beginning to
test the assumptions related to the halo based calculations. So far, compar-
isons between numerical simulations and the halo approach suggest signi�cant
agreement better than comparisons involving dark matter alone [224]. We will
discuss reasons for this below.

First, we will describe the halo based approach to SZ statistics by introducing
the clustering of large scale structure pressure. This is similar to the dark
matter power spectrum and its projection along the line of sight that leads to
weak lensing convergence power spectrum: the line of sight projections of the
large scale structure pressure leads to the SZ e�ect.

9.1.2 Clustering Properties of Large Scale Structure Pressure

In order to describe the large scale structure pressure, we make use of the
hydrostatic equilibrium between the gas and the dark matter distributions
within halos. The hydrostatic assumption is supported by various observations
of galaxy clusters, where the existence of regularity relations, such as the
size-temperature relation [193], between physical properties of dark matter
and baryon distributions suggest simple physical relations between the two
properties.
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The hydrostatic equilibrium for gas with pressure P and density �g

��1g
dP

dr
= �GMÆ(r)

r2
(233)

can be simpli�ed in the limit gas is ideal, P = kBTe
�mp

�g, and isothermal to obtain

kBTe
�mp

d log �g
dr

= �GMÆ(r)

r2
; (234)

where � = 0:59, corresponding to a hydrogen mass fraction of 76%. Here, now
the MÆ(r) is the dark matter mass only out to a radius of r. Using a NFW
pro�le for dark matter distribution, we can analytically calculate the baryon
density pro�le �g(r)

�g(r) = �g0e
�b
�
1 +

r

rs

�brs=r
; (235)

where b is a constant, for a given mass [179,275]:

b =
4�G�mp�sr

2
s

kBTe
: (236)

The normalization, �go, can be set to obtain a constant gas mass fraction
for halos comparable with the universal baryon to dark matter ratio: fg �
Mg=MÆ = 
b=
m. The total gas mass present in a dark matter halo within
the virial radius, rv, is

Mg(rv) = 4��g0e
�br3s

cZ
0

dxx2(1 + x)b=x : (237)

The electron temperature can be calculated based on the virial theorem or
similar arguments as discussed in [50]. Using the virial theorem, we can write

kBTe =

G�mpMÆ

3rv
; (238)

with 
 = 3=2. Since rv /M
1=3
Æ (1+z)�1 in physical coordinates, Te /M2=3(1+

z). The average density weighted temperature is

hTeiÆ =
Z
dM

M

�b

dn

dM
(M;z)Te(M;z) : (239)
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Fig. 51. The variation in the density weighted temperature of electron as a function
of redshift. The solid line shows the redshift evolution of the temperature in hydro-
dynamical simulations while the halo models, with varying halo masses, are shown
in dotted and dashed lines. The �gure is from [224].

In �gure, we show the evolution of density weighted temperature from [224].
The results from numerical simulations are well reproduced with a Press-
Schechter mass distribution for halos. For the �CDM cosmology, the halo
model predicts a density weighted temperature for large scale structure elec-
trons of � 0.5 keV today; if halos out to a mass of 8�1014 M� only included,
this mean density weighted temperature decreases to 0.41 keV.

In �gure 50, we show the NFW pro�le for the dark matter and arbitrarily
normalized gas pro�les predicted by the hydrostatic equilibrium and virial
theorem for several values of b. As b is decreased, such that the temperature
is increased, the turn over radius of the gas distribution shifts to higher radii.
As an example, we also show the so-called � model that is commonly used to
describe X-ray and SZ observations of galaxy clusters and for the derivation
purpose of the Hubble constant by combined SZ/X-ray data. The � model
describes the underlying gas distribution predicted by the gas pro�le used here
in equilibrium with the NFW pro�le, though, we �nd di�erences especially
at the outer most radii of halos. This di�erence can be used as a way to
establish the hydrostatic equilibrium of clusters, though, any di�erence of gas
distribution at the outer radii should be accounted in the context of possible
substructure and mergers.
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A discussion on the comparison between the gas pro�le used here and the
� model is available in [179] and [275]. In addition, we refer the reader to
[50] for full detailed discussion on issues related to modeling of pressure power
spectrum using halo and associated systematic errors. Comparisons of the halo
model predictions with numerical simulations are available in [246] and [224].

As discussed in [161], one can make several improvements to the above gas
pro�le. One can constrain the gas distribution such that at outer most radii of
halos, gas distributions follows that of the dark matter. This can be done by
setting the slopes of dark matter and gas pro�les to be the same beyond some
radius. If gas is assumed to be in hydrostatic equilibrium, a gas pro�le that
traces dark matter produces a temperature pro�le that varies with redshift.
In general, one can obtain consistent solutions by assuming a polytropic form
for pressure, P / �gTe / �
g . As discussed in [161], predictions based on this
prescription for cluster gas are more consistent with observations than the
simple description involving an isothermal electron distribution

Given a description of the halo electron (or gas) pro�le and their temperature
distribution, we can write the power spectrum of large scale structure pressure
as

P�(k)=P
1h(k) + P 2h(k) ; (240)

P 1h(k)=M�
02(k; k) ; (241)

P 2h(k)=
h
M�

11(k)
i2
P lin(k) ; (242)

where the two terms represent contributions from two points in a single halo
(1h) and points in two di�erent halos (2h) respectively.

Here, we rede�ne the integral in equation (98) for dark matter to account for
pressure as

M�
ij (k1; : : : ; kj; z)�

Z
dm

 
M

��

!j ~dn

dm
(m; z)bi(m; z)T �

e(m; z)

�[u�(k1jm; z) : : : u�(kj jm; z)] ; (243)

with the three-dimensional Fourier transform of the gas pro�le substituted
in equation (80) to obtain u�(kjm; z). We de�ne the bias and correlation of
pressure, relative to dark matter, as

bias�(k) =

vuutP�(k)
PÆ(k)

; (244)
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Fig. 52. The (a) pressure and (b) pressure-dark matter cross power spectrum today
broken into individual contributions under the halo description. For comparison, we
also show the dark matter power spectrum under the halo model and in (a) pressure
bias and in (b) pressure-dark matter correlation.

and

rij(k) =
P��Æ(k)q
P�(k)PÆ(k)

; (245)

respectively. Here, PÆ is the dark matter power spectrum and P��Æ is the
pressure-dark matter cross power spectrum. As presented for dark matter,
we can similarly extend the derivation to calculate pressure bispectrum and
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Fig. 53. The baryon density (left) and temperature weighted density, or pressure
(right), in a time-slice of a hydrodynamical simulation by [246]. As shown, most of
the contribution to large scale structure pressure comes from massive halos while
the baryon density is distributed over a wide range of mass scales and trace the
�lamentarity structures de�ned by the dark matter distribution. The �gure is from
U. Seljak based on simulations by [246].

trispectrum.

In �gure 52(a), we show the logarithmic power spectrum of pressure and dark
matter such that �2(k) = k3P (k)=2�2 with contributions broken down to the
1h and 2h terms today. As shown, the pressure power spectrum depicts an
increase in power relative to the dark matter at scales out to few h Mpc�1,
and a decrease thereafter.

The decrease in power at small scales can be understood through the rela-
tive contribution to pressure as a function of the halo mass. In �gure 54, we
break the total dark matter power spectrum (a) and the total pressure power
spectrum (b), to a function of mass. As shown, contributions to both dark
matter and pressure comes from massive halos at large scales and by small
mass halos at small scales. The pressure power spectrum is such that through
temperature weighing, with Te /M2=3 dependence, the contribution from low
mass halos to pressure is suppressed relative to that from the high mass end.

In �gure 53, we show two images of a time slice through numerical simulations
by [246]. The gas, or baryon, density distributions is such that it is highly
�lamentary and traces the large scale dark matter distribution. The pressure,
however, is con�ned to virialized halos in the intersections between �laments.
These are the massive clusters in the simulation box: the density weighted
temperature, or pressure, of large scale structure is clearly dominant in massive
clusters. Thus, the pressure power spectrum, at all scales of interest, can be
easily described with halos of mass greater than 1014 M�. A comparison of
the dark matter and pressure power spectra, as a function of mass, in �gure 54
reveals that the turn over in the pressure power spectrum results in an e�ective
scale radius for halos with mass greater than 1014 M�. We refer the reader to
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Fig. 54. The mass dependence on the dark matter power spectrum (a) and pressure
power spectrum (b). Here, we show the total contribution broken in mass limits as
written on the �gure. As shown in (a), the large scale contribution to the dark matter
power comes from massive halos while small mass halos contribute at small scales.
For the pressure, in (b), only massive halos above a mass of 1014 Msun contribute
to the power.

[50] for further details on the pressure power spectrum and its properties.

We can now use the pressure power spectrum to calculate the SZ angular power
spectrum by projecting it along the line of sight following equation (231).
In �gure 55(a), we show the SZ power spectrum due to baryons present in
virialized halos. As shown, most of the contributions to SZ power spectrum
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comes from individual massive halos, while the halo-halo correlations only
contribute at a level of 10% at large angular scales. This is contrary to, say, the
lensing convergence power spectrum, where most of the power at large angular
scales is due to halo-halo correlations. The di�erence is e�ectively due to the
dependence of pressure on most massive halos in the large scale structure and
to a lesser, but somewhat related, reason that SZ weight function increases
towards low redshifts. Note that the lensing weight function selectively probes
the large scale dark matter density power spectrum at comoving distances half
to that of background sources (z � 0:2 to 0.5 when sources are at a redshift
of 1), but has no extra dependence on mass when compared to the SZ weight
function.

The predictions based on halo model are consistent with numerical simula-
tions. In �gure 56, we show the angular power spectrum of SZ e�ect as mea-
sured in numerical simulations by [224] and a comparison to the halo calcula-
tion following [50]. Note that simulations show a slight decrease in signal when
the total mass included in the calculation is 1016 h�1 M�. The measurements
are best described with a halo mass distribution out to a maximum mass of
8� 1014 h�1 M�, consistent with the expectation that highest mass halos are
rare and are not present in the simulated box.

As we discuss later, the kinetic SZ e�ect has no such dependence on the
massive halos and contributions to kinetic SZ e�ect comes from masses over
a wide range. In �gure 57, we show projected maps of the SZ thermal and SZ
kinetic e�ect produced in simulations by [266]. The maps clearly show that
the SZ thermal e�ect may be a useful way to map the massive structures in
the universe.

The fact that the SZ power spectrum results mainly from the single halo term
also results in a sharp reduction of power when the maximum mass used in
the calculation is varied. For example, as discussed in [50] and illustrated in
�gure 55(b), with the maximum mass decreased from 1016 to 1013 M�, the
SZ power spectrum reduced by a factor nearly two orders of magnitude in
large scales and an order of magnitude at l � 104. The same dependence also
suggests a signi�cant sample variance for the SZ e�ect as massive halos are
rare; as discussed in [51], the SZ statistics from small �elds are likely to be
heavily biased based on the mass distribution of halos. The same e�ect was
found in numerical simulations where the power spectrum was observed to
vary over a factor of � 2 from 4 deg.2 �eld to �eld over all scales probed [246].
For similar reasons, there is also a signi�cant non-Gaussian contribution to the
covariance of the SZ e�ect that may complicate the use of SZ power spectrum
as a probe of cosmology or galaxy cluster physics [51].

Following [296], one can calculate the number counts of SZ halos under the
approximation that gas traces dark matter and that the temperature of elec-
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trons can be related to velocity dispersion of the halo through virial arguments.
This allows one to simplify the expected temperature decrement due to the
SZ e�ect at RJ wavelengths

�T

TCMB
= �2

Z
dra(r)

kB�T
mec2

ne(r)Te(r) � �2�T
me


b


m

Z
dr
�2dm(r)

2c2
�dm(r) (246)

where the temperature of electrons has been approximated via line of sight
velocity dispersion of dark matter particles, �2dm.

The expected number of peaks due to the thermal SZ e�ect can be evaluated
by determining the expected SZ 
ux, integrated over the cluster, as a function
of mass and then integrating over the mass function:

N(SZ) =
Z
dmn(m)p(�T SZjm)d�T SZ ; (247)

where the probability distribution of temperature 
uctuations arises from the
lognormal scatter in the concentration-mass relation [296]. Figure 58 shows
that the counts predicted by this model are in good agreement with numerical
simulations. Note, however, that the simulations were of dark matter only,
so they also assumed that gas traces density. Hydrodynamical simulations
have been used to test the extent to which gas traces dark matter; they show
that gas pressure e�ects can be important at the low mass end. Therefore,
one expects modi�cations to Figure 58 at the low mass end; counts based on
hydrodynamical simulations can be found in e.g., [266,61].

9.2 The kinetic SZ e�ect

Extending our calculation on the contribution of large scale structure gas
distribution to CMB anisotropies through SZ e�ect, we can also study an
associated e�ect involving baryons associated with halos in the large scale
structure.

The bulk 
ow of electrons, that scatter CMB photons, lead to temperature

uctuations through the well known Doppler e�ect

T (n̂) =
Z
drg(r)n̂ � v(rn̂; r) ; (248)

where v is the baryon velocity. In �gure 55, we show the general Doppler e�ect
due to the velocity �eld. The power spectrum is such that it peaks around the
horizon at the scattering event projected on the sky today. On scales smaller
than the horizon at scattering, the contributions are signi�cantly canceled as
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photons scatter against the crests and troughs of the perturbation. As a result,
the Doppler e�ect is moderately sensitive to how rapidly the universe reionizes
since contributions from a sharp surface of reionization do not cancel [54]. Also
important are the double scattering events, which �rst scatter out of the line
of sight and the scatter back in, that do not necessarily cancel [144,54].

The cancellations can be avoided by modulating the velocity �eld with electron
number density 
uctuations. This is the so-called Ostriker-Vishniac [206,285]
e�ect. The OV e�ect has been described as the contribution to temperature
anisotropies due to baryon modulated Doppler e�ect in the linear regime of

uctuations. At non-linear scales, it is well known that the peculiar velocity
of galaxy clusters, along the line of sight, also lead to a contribution to tem-
perature anisotropies. This e�ect is commonly known as the kinetic Sunyaev-
Zel'dovich e�ect and arises from the halo modulation of the Doppler e�ect
associated with the velocity �eld [274]. The kinetic SZ e�ect can be consid-
ered as the OV e�ect extended to the non-linear regime of baryon 
uctuations
[119], however, it should be understood that the basic physical mechanism re-
sponsible for the two e�ects is the same and that there is no reason to describe
them as separate contributions.

9.2.1 Kinetic SZ power spectrum

The kinetic SZ temperature 
uctuations, denoted as kSZ, can be written as a
product of the line of sight velocity, under linear theory, and density 
uctua-
tions

T kSZ(n̂) =
Z
drg(r)n̂ � vg(r; n̂r)Æg(r; n̂r)

= �i
Z
drg _GG

Z
d3k

(2�)3

Z
d3k0

(2�)3
ÆlinÆ (k� k0)Æg(k

0)eik�n̂r
"
n̂ � k� k0

jk� k0j2
#
;

(249)

Here, we have used linear theory to write the large scale velocity �eld in
terms of the linear dark matter density �eld. The multiplication between the
velocity and density �elds in real space has been converted to a convolution
between the two �elds in Fourier space. We can now expand the temperature
perturbation due to the kinetic SZ e�ect, T kSZ, using spherical harmonics:

akSZlm =�i
Z
dn̂
Z
dr (g _GG)

Z
d3k1

(2�)3

Z
d3k2

(2�)3
ÆlinÆ (k1)Æg(k2)
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#
Y m�
l (n̂) ; (250)
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where we have symmetrized by using k1 and k2 to represent k � k0 and k0

respectively. Using

n̂ � k =
X
m0

4�

3
kY m0

1 (n̂)Y m0�
1 (k̂) ; (251)

and the Rayleigh expansion (equation 176), we can further simplify and rewrite
the multipole moments as

akSZlm = �i(4�)
3

3
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We can construct the angular power spectrum by considering hal1m1a
�
l2m2

i.
Under the assumption that the temperature �eld is statistically isotropic, the
correlation is independent of m, and we can write the angular power spectrum
as

ha�;kSZl1m1
akSZl2m2

i = ÆDl1l2Æ
D
m1m2

CkSZ
l1

: (253)

The correlation can be written using
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We can separate out the contributions such that the total is made of correla-
tions following hvgvgihÆgÆgi and hvgÆgihvgÆgi depending on whether we consider
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cumulants by combining k1 with k
0
1 or k

0
2 respectively. After some straightfor-

ward but tedious algebra, and noting that
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we can write
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(256)

Here, the �rst term represents the contribution from hvgvgihÆgÆgi while the
second term is the hvgÆgihvgÆgi contribution, respectively. In simplifying the
integrals involving spherical harmonics, we have made use of the properties
of Clebsh-Gordon coeÆcients, in particular, those involving l = 1. The inte-
gral involves two distances and two Fourier modes and is summed over the
Wigner-3j symbol to obtain the power spectrum. Since we are primary in-
terested in the contribution at small angular scales here, we can ignore the
contribution to the kSZ e�ect involving the correlation between linear den-
sity �eld and baryons and only consider the contribution that results from
baryon-baryon and density-density correlations. In fact, under the halo de-
scription provided here, there is no correlation of the baryon �eld within halos
and the velocity �eld traced by individual halos (see x 7). Thus, contribution
to the baryon-velocity correlation only comes from the 2-halo term of the den-
sity �eld-baryon correlation. This correlation is suppressed at small scales and
is not a signi�cant contributor to the kinetic SZ power spectrum [119].

Similar to the Limber approximation [168], in order to simplify the calculation
associated with hvgvgihÆgÆgi, we use an equation involving completeness of
spherical Bessel functions (equation 181) and apply it to the integral over k2
to obtain
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The alternative approach, which has been the calculational method in many
of the previous papers [285,72,130,68,119], is to use the 
at-sky approximation
with the kinetic SZ power spectrum written as

CkSZ
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8�2
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with the mode-coupling integral given by

Iv(k) =
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(259)

We refer the reader to [285] and [68] for details on this derivation. In above, � =

k̂�k̂1, y1 = k1=k and y2 = k2=k =
q
1 � 2�y1 + y21. This 
at-sky approximation

makes use of the Limber approximation [168] to further simplify the calculation
with the replacement of k = l=dA. The power spectra here represent the
baryon �eld power spectrum and the velocity �eld power spectrum; the former
assumed to trace the dark matter density �eld while the latter is generally
related to the linear dark matter density �eld through the use of linear theory
arguments.

The correspondence between the 
at-sky and all-sky formulation can be ob-
tained by noting that in the small scale limit contributions to the 
at-sky
e�ect comes when k2 = jk� k1j � k such that y1 � 1. In this limit, the 
at
sky Ostriker-Vishniac e�ect reduces to a simple form given by [119]
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: (260)

Here, v2
rms

is the rms of the uniform bulk velocity form large scales

v2
rms

=
Z
dk
PÆÆ(k)

2�2
: (261)
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The 1=3 arises from the fact that rms in each component is 1=3rd of the total
velocity. Similarly, one can reduce the all sky expression, equation (257), to
that of the 
at{sky, equation (260), in the small scale limit of l � l1 � l2,
with l1 probing the density �eld [51].

In �gure 55, we show our prediction for the SZ kinetic e�ect and a compari-
son with the SZ thermal contribution. As shown, the SZ kinetic contribution
is roughly an order of magnitude smaller than the thermal SZ contribution.
There is also a more fundamental di�erence between the two: the SZ thermal
e�ect, due to its dependence on highest temperature electrons is more depen-
dent on the most massive halos in the universe, while the SZ kinetic e�ect
arises more clearly due to large scale correlations of the halos that make the
large scale structure.

The di�erence between the two e�ects arises from that fact that kinetic SZ
e�ect is mainly due to the baryons and not the temperature weighted baryons
that trace the pressure responsible for the thermal e�ect. Contributions to the
SZ kinetic e�ect comes from baryons tracing all scales and down to small mass
halos. The di�erence associated with mass dependence between the two e�ects
suggests that a wide-�eld SZ thermal e�ect map and a wide-�eld SZ kinetic
e�ect map will be di�erent from each other in that massive halos, or clusters,
will be clearly visible in a SZ thermal map while the large scale structure
will be more evident in a SZ kinetic e�ect map. As shown with the thermal
and kinetic SZ maps in �gure 57 from [266], numerical simulations are in fact
consistent with this picture (see, also [62]).

As shown in �gure 55(b), the variations in maximum mass used in the cal-
culation does not lead to orders of magnitude changes in the total kinetic SZ
contribution, which is considerably less than the changes in the total ther-
mal SZ contribution as a function of maximummass. This again is consistent
with our basic result that most contributions come from the large scale linear
velocity modulated by baryons in halos. Consequently, while the thermal SZ
e�ect is dominated by shot-noise contributions, and is heavily a�ected by the
sample variance, the same is not true for the kinetic SZ e�ect.

In �gure 59, we show several additional predictions for the kinetic SZ e�ect,
following the discussion in [119]. Due to the density weighting, the kinetic
SZ e�ect peaks at small scales: arcminutes for �CDM. For a fully ionized
universe, contributions are moderately dependent on the optical depth � . Here,
we assume an optical depth to ionization of 0.05, consistent with current upper
limits on the reionization redshift from CMB [95] and other observational data
(see, e.g., [100] and references therein). In �gure 59, we have calculated the
kinetic SZ power spectrum under several assumptions, including the case when
gas is assumed to trace the non-linear density �eld and the linear density �eld.
We compare predictions based on such assumptions to those calculated using

142



the halo model. As shown, the halo model calculation shows slightly less power
than when using the non-linear dark matter density �eld to describe clustering
of baryons. This di�erence arises from the fact that baryons do not fully trace
the dark matter in halos. Due to small di�erences, one can safely use the
non-linear dark matter power spectrum to describe baryons. Using the linear
theory only, however, leads to an underestimate of power by a factor of 3 to 4
at scales corresponding to multipoles of l � 104 to 105 and may not provide
an accurate description of the total kinetic SZ e�ect.

In addition to the contribution due to the line of sight motion of halos, there
is an additional e�ect resulting from halo rotations as discussed by [53]. Here,
the resulting rotational contribution to kinetic SZ e�ect was evaluated under
the assumption that baryons in halos are corotating with dark matter; this
assumption is primarily due to the lack of knowledge on angular momentum
of gas in virialized halos from numerical simulations. In terms of the dark
matter, recent high resolution numerical simulations show that the spatial
distribution of angular momentum in dark matter halos has a universal pro�le
(see e.g. [31,286]). This pro�le is consistent with that of solid body rotation,
but saturates at large values for angular momentum. The spatial distribution
of angular momentum in most halos (80%) tend to be cylindrical and well-
aligned with the spin of a halo. Also, angular momentumis almost independent
with the mass of the halo and does not evolve with redshift except after major
mergers.

For an individual cluster at a redshift z with an angular diameter distance
dA, one can write the temperature 
uctuation as an integral of the electron
density, ne(r), weighted by the rotational velocity component, !r cos�, along
the line of sight. Introducing the fact the line of sight velocity due to rotation is
proportional to sine of the inclination angle of the rotational axis with respect
to the observer, i, we write

�T

T
(�; �) = �Te

���(�) cos� sin i (262)

where

�(�) =

RvirZ
dc�

2rdrq
r2 � d2c�

2
ne(r)!dc�: (263)

Here, � is the line of sight angle relative to the cluster center and � is an
azimuthal angle measured relative to an axis perpendicular to the spin axis
in the plane of the sky. In simplifying, we have introduced the fact that the
angle between the rotational velocity and line of sight, �, is such that � =
cos�1 dA�=r. In equation (263), Rvir is the cluster virial radius.
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To describe the halo rotations, we write the dimensionless spin parameter
�(= J

p
E=GM5=2) following [31] as

� =
J

2VcMvirRvir

q
cg(c)

f(c)
(264)

where the virial concentration for the NFW pro�le is c = Rvir=rs, J is the
total angular momentum, and V 2

c = GMvir=Rvir. In Ref. [31], the probability
distribution function for � was measured through numerical simulations and
was found to be well described by a log normal distribution with a mean, ��,
of 0:042 � 0:006 and a width, �� of 0:50 � 0:04.

To relate angular velocity, !, to spin, we �rst integrate the NFW pro�le over
a cluster to calculate J , and substitute in above to �nd

! =
3�Vcc2f2(c)

Rvirh(c)
q
cg(c)

: (265)

The functions f(c), g(c) and h(c), in terms of the concentration, follows as

f(c)= ln(1 + c) � c

1 + c

g(c)= 1 � 2 ln(1 + c)

1 + c
� 1

(1 + c)2

h(c)= 3 ln(1 + c) +
c(c2 � 3c� 6)

2(1 + c)
: (266)

In �gure 60, we show the temperature 
uctuation produced by the rotational
component for a typical cluster with mass 5 � 1014 M� at a redshift of 0.5.
The maximal e�ect, with the mean spin parameter measured by [31], is on the
order of � 2.5 �K. The sharp drop towards the center of the cluster is due to
the decrease in the rotational velocity. As shown, the e�ect leads to a distinct
temperature distribution with a dipole like pattern across clusters. Here, we
have taken the cluster rotational axis to be aligned perpendicular to the line
of sight; as it is clear, when the axis is aligned along the line of sight, there is
no resulting contribution to the SZ kinetic e�ect through scattering.

The order of magnitude of this rotational contribution can be understood by
estimating the rotational velocity where the e�ect peaks. In equation (265),
rotational velocity is ! � 3�Vc=Rvir with functions depending on the concen-
tration in the order of a few (� 2:4 when c = 5). Since the circular velocity
for typical cluster is of order � 1500 km s�1, with Rvir � Mpc and �� � 0:04,
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at typical inner radii of order � 1=5Rvir, we �nd velocities of order � 30 km
s�1. Since, on average, peculiar velocities for clusters are of order � 250 km
s�1, the rotational velocity is lower by a factor of � 8, when compared with
the peculiar velocity of the typical cluster. Furthermore, since the kinetic SZ
due to peculiar motion peaks in the center of the halo where the density is
highest, while the rotational e�ect peaks away from the center, the di�erence
between maximal peculiar kinetic SZ and rotational kinetic SZ temperature

uctuations is even greater. Note, however, each individual cluster has a dif-
ferent orientation and magnitude of peculiar velocity and rotation, thus the
velocity-to-rotation ratio could vary a lot. In favorable cases where the peculiar
velocity is aligned mostly across the line of sight, the rotational contribution
may be important.

In �gure 61, we show the kinetic SZ e�ect towards the same cluster due to the
peculiar motion and the contribution resulting from the lensed CMB towards
the same cluster. The latter contribution is sensitive to the gradient of the
dark matter potential of the cluster along the large scale CMB gradient. In
this illustration, we haven taken the CMB gradient to be the rms value with
13 �K arcmin�1 following [247]. Previously, it was suggested that the lensed
CMB contribution can be extracted based on its dipole like signature. Given
the fact that the rotational contribution also leads to a similar pattern, any
temperature distribution with a dipole pattern across a cluster cannot easily
be prescribed to the lensing e�ect. However, as evident from �gures 60 and 61,
the dipole signature associated with the rotational scattering is limited to the
inner region of the cluster while the lensing e�ect, due to its dependence on
the gradient of the dark halo potential, covers a much larger extent. Also, the
two dipoles need not lie in the same direction as the background gradient of
the primary CMB 
uctuations and the rotational axis of halos may be aligned
di�erently. Thus, to separate the lensed e�ect and the rotational contribution
from each other and from dominant kinetic SZ one can consider various �l-
tering schemes (see, discussion in [247]). In �gure 61, we have not included
the dominant thermal SZ contribution since it can be separated from other
contributions reliably if multifrequency data are available.

The interesting experimental possibility here is whether one can obtain a wide-
�eld map of the SZ kinetic e�ect. Since it is now well known that the unique
spectral dependence of the thermal SZ e�ect can be used to separate its con-
tribution [58], it is likely that after such a separation, the SZ kinetic e�ect will
be the dominant signal at small angular scales. To separate the SZ thermal
e�ect, observations, at multifrequencies, are needed to arcminute scales. Up-
coming interferometers and similar experiments will allow such studies to be
eventually carried out. A wide-�eld kinetic SZ map of the large scale structure
will allow an understating of the large scale velocity �eld of baryons, as the
density 
uctuations can be identi�ed through cross-correlation of such a map
with the thermal SZ map [51].
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9.3 Non-Linear Integrated Sachs-Wolfe E�ect

The integrated Sachs-Wolfe e�ect [229] results from the late time decay of
gravitational potential 
uctuations. The resulting temperature 
uctuations in
the CMB can be written as

T ISW(n̂) = �2
r0Z
0

dr _�(r; n̂r) ; (267)

where the overdot represent the derivative with respect to conformal distance
(or equivalently look-back time). Writing multipole moments of the tempera-
ture 
uctuation �eld T (n̂),

alm =
Z
dn̂T (n̂)Y m

l
�(n̂) ; (268)

we can formulate the angular power spectrum as

ha�l1m1
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D
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Cl1 : (269)

For the ISW e�ect, multipole moments are

aISWlm = il
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d3k

2�2

Z
dr _�(k)Il(k)Y

m
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(270)

with Il(k) =
R
drW ISW(k; r)jl(kr), and the window function for the ISW e�ect,

W ISW = �2. The angular power spectrum is then given by

C ISW
l =

2

�

Z
k2dkP _� _�(k) [Il(k)]

2 ; (271)

where the three-dimensional power spectrum of the time-evolving potential

uctuations are de�ned as

h _�(k1) _�(k2)i = (2�)3ÆD(k1 + k2)P _� _�(k1) : (272)

The above expression for the angular power spectrum can be evaluated ef-
�ciently under the Limber approximation [168] for suÆciently high l values,
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usually in the order of few tens, as

C ISW
l =
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dr

h
W ISW
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d2A
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dA
; r

#
: (273)

In order to calculate the power spectrum of time-derivative of potential 
uc-
tuations, we make use of the cosmological Poisson equation in equation (29)
and write the derivative of the potential through a derivative of the density
�eld and the scale factor a. Considering a 
at universe with 
K = 0, we can
write the full expression for the power spectrum of time-evolving potential

uctuations, as necessary for the ISW e�ect valid in all regimes of density

uctuations, as
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#
: (274)

To calculate the power spectrum involving the correlations between time
derivatives of density 
uctuations, P _Æ _Æ, and the cross-correlation term involv-
ing the density and time-derivative of the density �elds, PÆ _Æ, we make use of
the continuity equation in 19, which can be written in the form:

_Æ(x; r) = �r � [1 + Æ(x; r)]v(x; r) : (275)

In the linear regime of 
uctuations, when Æ(x; r) = G(r)Æ(x; 0) � 1, the
time derivative is simply _Ælin(x; r) = �r � v(x; r) leading to the well-known
result for linear theory velocity �eld (equation 27). Thus, in linear theory,
from equation (28), P _Æ _Æ � k2Pvv(k; r) = _G2P lin

ÆÆ (k; 0) and PÆ _Æ � kPÆv(k; r) =
G _GP lin

ÆÆ (k; 0).

These lead to the well-known results for the linear ISW e�ect, with a power
spectrum for _� as

P lin
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G(r) + _G

�2
P lin
ÆÆ (k; 0) : (276)

The term within the square bracket is _F 2 where F = G=a following derivation
for the linear ISW e�ect in [54]. Even though, we have replaced the divergence
of the velocity �eld with a time-derivative of the growth function, it should be
understood that the contributions to the ISW e�ect comes from the divergence
of the velocity �eld and not directly from the density �eld. Thus, to some
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extent, even the linear ISW e�ect re
ects statistical properties of the large
scale structure velocities.

In the mildly non-linear to fully non-linear regime of 
uctuations, the ap-
proximation in equation (19), involving Æ � 1, is no longer valid and a full
calculation of the time-derivative of density perturbations is required. This can
be achieved in the second order perturbation theory, though, such an approx-
imation need not be fully applicable as the second order perturbation theory
fails to describe even the weakly non-linear regime of 
uctuations exactly.
Motivated by applications of the halo approach to large scale structure and
results from numerical simulations [242,174,258], we consider a description for
the time-derivative of density 
uctuations and rewrite equation (19) as

_Æ(x; r) = �r � v(x; r)�r � Æ(x; r)v(x; r) ; (277)

where we have separated the momentum term involving p = (1 + Æ)v to a
velocity contribution and a density velocity product. In Fourier space, the
power spectrum is simply _Æ(k) = ik � p(k) and the power spectrum of _Æ can
be calculated following the halo model description of the momentum-density
�eld (x 7.4).

In addition to the power spectrum of density derivatives, in equation (274),
we also require the cross power spectrum between density derivatives and
density �eld itself PÆ _Æ. In x 7.4, using the halo approach as a description of
the momentum density �eld, we suggested that the cross-correlation between
the density �eld and the momentum �eld can be well described as

PpÆ(k) =
q
Ppp(k)PÆÆ(k) : (278)

This is equivalent to the statement that the density and momentum density
�elds are perfectly correlated with a cross-correlation coeÆcient of 1; this re-
lation is exact at mildly-linear scales while at deeply non-linear scales this
perfect cross-correlation requires mass independent peculiar velocity for in-
dividual halos [258]. Using this observation, we make the assumption that

PÆ _Æ �
q
PÆÆP _Æ _Æ, which is generally reproduced under the halo model descrip-

tion of the cross-correlation between density �eld and density �eld derivatives.
This cross-term leads to a 10% reduction of power at multipoles between 100
and 1000, when compared to the total when linear and non-linear contribu-
tions are simply added.

In �gure 62, we show the angular power spectrum of the ISW e�ect with
its non-linear extension (which we have labeled RS for Rees-Sciama e�ect
[222]). The curve labeled ISW e�ect is the simple linear theory calculation
with a power spectrum for potential derivatives given in equation (276). The
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curves labeled \lin" and \nl" shows the full non-linear calculation following
the description given in equation (274) and using the linear theory or full non-
linear power spectrum, in equation (157), for the density �eld, respectively.
For the non-linear density �eld power spectrum, we use the halo approach for
large scale structure clustering and calculate the power spectrum through a
distribution of dark matter halos. We use linear theory to describe the velocity
�eld in both linear and non-linear cases; since the velocity �eld only contributes
as an overall normalization, through vrms, its non-linear e�ects, usually at high
k values, are not important due to the shape of the velocity power spectrum.

As shown in �gure 62, the overall correction due to the non-linear ISW e�ect
leads roughly two orders of magnitude increase in power at l � 1000. The
di�erence between linear and non-linear theory density �eld power spectrum
in equation (157), only leads to at most an order of magnitude change in
power. Note that the curve labeled \lin" agrees with previous second order
perturbation theory calculations of the Rees-Sciama e�ect [242], while the
curve labeled \nl" is also consistent with previous estimates based on results
from numerical simulations.

10 Summary

We have presented the halo approach to large scale structure clustering where
we described the dark matter distribution of the local universe through a
collection of collapsed and virialized halos. The statistical properties of the
large scale structure can now be described through properties associated with
these halos, such as their spatial distribution and the distribution of dark mat-
ter within these halos. These halo properties are well studied either through
analytical models or numerical simulations and include such necessary infor-
mation as the halo mass function, halo bias relative to linear density �eld and
the halo dark matter pro�le.

The halo approach to clustering essentially allows one to bridge the linear
regime described by perturbation theories to the non-linear regime described
by clustering of dark matter within halos. The perturbation theories fail to
describe the weakly to strongly non-linear regime completely, while, the halo
model predictions are in better agreement with numerical results based on
simulations. Though statistically averaged measurements are well produced
by the halo based calculations, in detail, individual con�gurations of higher
order correlations are only produced at the 20% level. The uncertainties here
are mostly due to assumptions in the current halo model calculations, such as
the use of spherical halos or ignoring the substructure within halos.

Though such uncertainties limit the accuracy of halo based calculations, the
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approach has the advantage that it can be easily extened to describe a wide
variety of large scale structure properties. In this review, we have discussed
stastical aspects involving the galaxy distribution, velocities and pressure. In
order to calculation statistical aspects associated with these physical prop-
erties, we have introduced simple descriptions involving how they relate to
dark matter within halos; almost all of these relations are based on numerical
simulation results. Using these descriptions, we have discussed a wide number
of applications of the halo model for non-linear clustering including observa-
tions of the dark matter distribution via weak lensing, galaxy properties via
wide-�eld redshift and imaging surveys and applications to upcoming cosmic
microwave background anisotropy experiments. The halo model has already
become useful for several purposes, including (1) understand why the galaxy
clustering essentially produces a power-law correlation function or a power
spectrum, (2) estimate statistical biases in current and upcoming large scale
structure weak lensing surveys, and (3) calculate the full covariance matrix
associated with certain large scale structure observations, such as the angular
correlation function of galaxies in the Sloan Digital Sky Survey, among others.

Acknowledgments

We would like to acknowledge contributions from many of our collaborators,
especially, Antonaldo Diaferio, Wayne Hu, Roman Scoccimarro and Giuseppe
Tormen. We thank Joerg Colberg, Andrew Connolly, Antonaldo Diaferio,
Vincent Eke, Adrian Jenkins, Chung-Pei Ma, Julio Navarro, Alexandre Re-
fregier,Roman Scoccimarro, Ryan Scranton, Uros Seljak and Martin White
for use of their �gures. We thank all the participants of the \Workshop on
Structure Formation and Dark Matter Halos" at Fermilab in May, 2001 for
useful discussions and initial suggestions with regards to topics covered in this
review. We thank Marc Kamionkowski for inviting us to submit a review arti-
cle on the halo model and for his help during the writing and editorial process.
At the initial stages of this work RKS was supported by the DOE and NASA
grant NAG 5-7092 at Fermilab. AC is supported at Caltech by the Sherman
Fairchild foundation and by the DOE grant DE-FG03-92-ER40701. We ac-
knowledge extensive use of the abstract server at the NASA's Astrophysics
Data System and the astro-ph preprint server and its archive.

References

[1] Appel, L., Jones, B.J.T. 1990, MNRAS, 245, 522.

[2] Bacon, D., Refregier, A., Ellis R. 2000, MNRAS, 318, 625.

150



[3] Bagla, J. S., 1998, MNRAS, 297, 251

[4] Bardeen, J. M. 1980, PRD, 22 1882.

[5] Bardeen, J. M., Steinhardt, P. J., Turner, M. S. 1983, Phys. Rev. D., 28 679.

[6] Bardeen, J. M., Bond, J. R., Kaiser, N., Szalay, A. S. 1986, ApJ, 304, 15.

[7] Bartelmann, M., Schneider, P. 2001, Physics Reports, 340 291.

[8] Barkana, R. & Loeb, A. 2001, Physics Reports, 349, 125.

[9] Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M., Lacey, C. G. 2000, MNRAS,
311, 793

[10] Benson, A. J., Frenck, C. S., Baugh, C. M., Cole, S, Lacey, C. G. 2001, MNRAS,
327, 1041

[11] Berlind, A. A., Weinberg, D. H. 2001, ApJ in press (astro-ph/0109001).

[12] Bernardeau F., 1994, ApJ, 427, 51.

[13] Bernardeau F., 1994, A&A, 291, 697.

[14] Bernardeau, F., van Waerbeke, L., Mellier, Y. 1997, A&A, 322, 1.

[15] Bernardeau, F., Colombi, S., Gazta~nga, E., Scoccimarro, R. 2001, Physics
Reports (in press).

[16] Bertschinger, E. 1985, ApJS, 58, 1.

[17] Birkinshaw, M. 1999, Physics Reports, 310, 97.

[18] Blumenthal, G. R., Faber, S. M., Primack, J. R., Rees, M. J. 1984, Nature, 311,
517.

[19] Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440.

[20] Bond, J. R., Efstathiou, G. 1984, ApJ, 285, L45

[21] Bond J. R., Myers S., 1996, ApJS, 103, 1.

[22] Bond, J. R., Efstathiou, G., Tegmark, M., 1997, MNRAS, 291, L33.

[23] Bower, R. J. 1991, MNRAS, 248, 332.

[24] Bryan, G. L., Norman, M. 1998, ApJ, 495, 80.

[25] Bryan, G. 2000, ApJ, 544, 1.

[26] Blanchard, A., Schneider, J. 1987, A&A, 184, 1.

[27] Blandford, R. D., Saust, A. B., Brainerd, T. G., Villumsen, J. V. 1991, MNRAS
251, 60.

[28] Blasi, P., Sheth, R. K. 2000, Phys. Lett.B, 486, 233.

151

http://arXiv.org/abs/astro-ph/0109001


[29] Bouchet, F. R., Juszkiewicz, R., Colombi, S. Pellat, R. 1992, ApJ, 394, L5.

[30] Bullock, J. S., Kravtsov, A. V., Weinberg, D. H. 2000, ApJ, 539, 517

[31] Bullock, J. S., Dekel, A., Kolatt, T. S. et al., 2001, ApJ, 555, 240

[32] Bunn, E. F., White, M. 1997, ApJ, 480, 6.

[33] Carlstrom, J. E., Joy, M., Grego, L. 1996, ApJ, 456, L75.

[34] Carroll, S. M., Press, W. H., Turner, E. L. 1992, ARA&A, 30, 499.

[35] Casas-Miranda, R., Mo, H., Sheth, R. K., Boerner, G. 2001, MNRAS in press
(astro-ph/0105008).

[36] Catelan, P., Lucchin, F., Matarrese, S., Porciani, C. 1998, MNRAS, 297, 692

[37] Catelan, P., Kamionkowski, M., Blandford, R. D. 2001, MNRAS, 320, L7

[38] Cayon, L., Martinze-Gonzalez, E., Sanz, J. 1993, ApJ, 413, 10.

[39] Cen, R., 1998, ApJ, 498, L99.

[40] Church, S. E., Ganga, K. M., Ade, P. A. R. et al. 1997, ApJ, 484, 523.

[41] Colberg, J. M., White, S. D. M., Jenkins, A., Pearce, F. R. Yoshida 1999,
MNRAS 308, 593.

[42] Colberg, J. M., White, S. D. M., Yoshida, N. et al. 2000, MNRAS 319, 209.

[43] Cole, S., Efstathiou, G. 1989, MNRAS, 239, 195.

[44] Cole, S., Kaiser, N. 1988, MNRAS, 233, 637.

[45] Cole, S., Kaiser, N., 1989, MNRAS, 237, 1127.

[46] Connolly, A., Scranton, R., Johnstron, D. et al. 2001, ApJ submitted (astro-
ph/0107417).

[47] Cooray, A. R., Grego, L., Holzapfel, W. L., Joy, M., Carlstrom, J. E. 1998, AJ,
115, 1388.

[48] Cooray, A. R. 1999, A&A, 348, 31.

[49] Cooray, A. R. 2000, MNRAS, 313, 783

[50] Cooray, A. 2000, Phys. Rev. D., 62, 103506.

[51] Cooray, A. 2001, Phys. Rev. D., 64, 063514.

[52] Cooray, A. 2002, Phys. Rev. D., 65, 083518.

[53] Cooray, A., Chen, X. 2001, ApJ in press (astro-ph/0107544).

[54] Cooray, A., Hu, W. 2000, ApJ, 534, 533.

[55] Cooray, A., Hu, W. 2001, ApJ, 548, 7.

152

http://arXiv.org/abs/astro-ph/0105008
http://arXiv.org/abs/astro-ph/0107417
http://arXiv.org/abs/astro-ph/0107417
http://arXiv.org/abs/astro-ph/0107544


[56] Cooray, A., Hu, W. 2001, ApJ, 554, 56.

[57] Cooray, A., Hu, W. 2002, ApJ in press (astro-ph/0202411).

[58] Cooray, A., Hu, W., Tegmark, M. 2000, ApJ, 544, 1.

[59] Cooray, A., Hu, W., Miralda-Escud�e, J. 2000b, ApJ, 536, L9.

[60] Croft, R. A., & Metzler, C. 2000, 545, 561.

[61] da Silva, A. C., Barbosa, D., Liddle, A. R., Thomas, P. A. 1999, MNRAS, 317,
37.

[62] da Silva, A. C., Barbosa, D., Liddle, A. R., Thomas, P. A. 2001, MNRAS, 326,
155.

[63] Dabrowski, Y., Hall, M. J., Sawicki, I.L, Lasenby, A. N. 2000, MNRAS, 318,
393.

[64] Davis, M., Efstathiou, G., Frenk, C. S., White, S. D. M. 1992, Nature, 356,
489.

[65] Davis, M., Miller, A., White, S. D. M. 1997, ApJ, 490, 63

[66] Dawson, K. S., Holzapfel, W. L., Carlstrom, J. E., Joy, M., LaRoque, S. J., &
Reese, E. D. 2001, ApJ, 553, L1.

[67] de Bernardis, P., Ade, P. A. R., Bock, J. J. et al. 2000, Nature, 404, 955.

[68] Dodelson, S. Jubas, J. M. 1995, ApJ, 439, 503.

[69] Dodelson, S., Narayan, V. K., Tegmark, M. et al. 2001, AJ in press (astro-
ph/0107421).

[70] Dubinski, J., Carlberg, R. G. 1992, ApJ, 378, 496

[71] Epstein, R. 1983, MNRAS, 205, 207.

[72] Efstathiou, G. 1998, in Large Scale Motions in the Universe. A Vatican Study
Week, ed. V. C. Rubin & G. V. Coyne (Princeton: Princeton University Press),
299.

[73] Eisenstein, D. J., Hu, W. 1998, ApJ, 496, 605.

[74] Eisenstein, D.J. & Hu, W. 1999, ApJ, 511, 5.

[75] Eisenstein, D. J., Hu, W., Tegmark, M. 1999, ApJ, 518, 2.

[76] Eisenstein, D. J. & Zaldarriaga, M. 2001, 546, 2.

[77] Eke, V. R., Cole, S., Frenk, C. S. 1996, MNRAS, 282, 263

[78] Eke, V. R., Navarro, J. F., Steinmetz, M. 2001, ApJ, 554, 114.

[79] Engineer, S., Kanekar, N., Padmanabhan, T., 2000, MNRAS, 314, 279.

153

http://arXiv.org/abs/astro-ph/0202411
http://arXiv.org/abs/astro-ph/0107421
http://arXiv.org/abs/astro-ph/0107421


[80] Evrard, A. E., MacFarland, T. J., Couchman, H. M. P. et al. 2002, ApJ in press
(astro-ph/0110246)

[81] Ferreira, P.G., Magueijo, J. & Gorksi, K.M. 1998, ApJ, 503, 1.

[82] Fillmore, J., Goldreich, P. 1984, ApJ, 281, 9.

[83] Fischer, P., Mckay, T. A., Sheldon, E. et al. 2000, AJ, 120, 1198.

[84] Fosalba, P., Gazta~naga, E., 1998, MNRAS, 301, 535.

[85] Fry, J. N., Seldner, M. 1982, ApJ, 259, 474.

[86] Fry, J. N. 1984, ApJ, 279, 499.

[87] Fry, J. N. 1996, ApJ, 461, L65.

[88] Fry, J., Gazta~naga, E., 1993, ApJ, 413, 447

[89] Fukugita, M., Futumase, T., Kasai, M., Turner, E. L. 1992, ApJ, 393, 3.

[90] Gangui, A., Lucchin, F., Matarrese, S. & Mollerach, S. 1994, ApJ, 430, 447.

[91] Gazta~naga, E., Fosalba, P., 1998, MNRAS, 301, 524.

[92] Ghigna, S., Moore, B., Governato, F., Lake, G., Quinn, T., Stadel, J. 2000,
ApJ, 544, 616.

[93] Goro�, M. H., Grinstein, B., Rey, S.-J., Wise, M. 1986, ApJ, 311, 6.

[94] Grego, L., Carlstrom, J. E., Joy, M. K. et al. 2000, ApJ, 539, 39.

[95] GriÆths, L. M., Barbosa, D., Liddle, A. R. 1999, MNRAS, 308, 845.

[96] Gunn, J. E., Gott, J. R. III, 1972, ApJ, 176, 1.

[97] Gunn, J. E. 1978, In Observational Cosmology, I. eds. A. Maeder, L. Martinet,
G. Tammann. Sauverny: Geneva Observatory

[98] Guth, A. H., Pi, S.-Y. 1982, Phys. Rev. Lett., 49, 1110.

[99] Guzik, J. & Seljak, U. 2001, 321, 439.

[100] Haiman, Z., & Knox, L. 1999, in Microwave Foregrounds, ed. A. de Oliveira-
Costa & M. Tegmark (ASP: San Fransisco).

[101] Halverson, N. W., Leitch, E. M., Pryke, C. et al. 2002, ApJ. 568, 38.

[102] Hamilton, A. J. S., Kumar, P., Lu, E., Matthews, A. 1991, ApJ, 374, L1.

[103] Hamilton, A. J. S. 1997, MNRAS, 289, 285.

[104] Hamilton, A. J. S. 2000, MNRAS, 312, 257.

[105] Hamilton, A. J. S. & Tegmark, M. 2000, MNRAS, 312, 285.

[106] Hanami, H., 2001, MNRAS, 327, 721.

154

http://arXiv.org/abs/astro-ph/0110246


[107] Hanany, S., Ade, P., Balbi, A. et al. 2000, ApJ, 545, L5.

[108] Harrison, E. 1970, Phys. Rev. D., 1, 2726.

[109] Hawkings, S. W. 1982, Phys. Lett. B., 115, 295.

[110] Heavens, A., Refregier, A., Heymans, C. 2000, MNRAS, 319, 649.

[111] Hernquist, L., 1990, ApJ, 356, 359.

[112] Henry, J. P. 2000, ApJ, 534, 565.

[113] Hinshaw, G., Banday, A.J., Bennett, C.L., Gorski, K.M., & Kogut, A 1995,
ApJ, 446, 67.

[114] Hivon, E., Bouchet, F. R., Colombi, S., Juszkiewicz, R., 1995 A&A, 298, 643.

[115] Hobson, M. P., Jones, A. W., Lasenby, A. N., Bouchet, F. R. 1998, MNRAS,
299, 895.

[116] Ho�man, Y., Shaham, J. 1985, ApJ, 297, 16.

[117] Holtzman, J. A. 1989, ApJS, 71, 1.

[118] Holzapfel, W. L., Carlstrom, J. E., Grego, L., Joy, M., Reese, E.D. 2000, ApJ,
539, 57.

[119] Hu, W. 2000a, ApJ, 529, 12.

[120] Hu, W. 2000b, Phys. Rev. D., 62, 043007.

[121] Hu W., Tegmark M. 1999, ApJ, 514, L65.

[122] Hu, W. & White M. 1996, A&A, 315, 33.

[123] Hu, W., Scott, D., Sugiyama, N., White, M. 1995, Phys. Rev. D., 52, 5498.

[124] Hu, W., Sugiyama, N., Silk, J. 1997, Nature, 386, 37.

[125] Hu, W., Cooray, A. 2001, Phys. Rev. D., 63, 023504.

[126] Hu W., White M. 2001, ApJ, 554, 67.

[127] Hughes, J. P., Birkinshaw, M. 1998, ApJ, 501, 1.

[128] Hui, L. 1999, ApJ, 519, L9.

[129] Icke V., 1973, A& A, 27, 1

[130] Ja�e, A. H., Kamionkowski, M. 1998, Phys. Rev. D., 58, 043001.

[131] Jain, B., Mo H.J., White, S.D.M. 1995, MNRAS, 276, 25.

[132] Jain, B., Bertschinger, E. 1996, ApJ, 456, 43.

[133] Jain B., Seljak U. 1997, ApJ, 484, 560

[134] Jain, B., Seljak, U. & White, S. D. M. 2000, ApJ, 530, 547.

155



[135] Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., Cole S., Evrard A.
E., Couchman H. M. P., Yoshida N., 2001, MNRAS, 321, 372.

[136] Jetzer, Ph., Koch, P., Pi�aretti, R., Puy, D., Schindler, S. 2002,astro-
ph/0201421

[137] Jing, Y. P., Mo, H. J., Boerner, G. 1998, ApJ, 494, 1.

[138] Jing, Y. P. 2000, ApJ, 535, 30.

[139] Jing, Y. P, & Suto, Y. 2002, ApJ, in press.

[140] Jones, M. Saunders, R., Alexander, P., et al. 1993, Nature, 365, 320.

[141] Jungman, G., Kamionkowski, M., Kosowsky, A., Spergel, D. N., 1995, Phys.
Rev. D., 54, 1332.

[142] Juszkiewicz, R., Springel, V., Durrer, R. 1999, ApJ, 518, L25.

[143] Kaiser, N. 1984, ApJ, 284, 9.

[144] Kaiser, N. 1984, ApJ, 282, 374.

[145] Kaiser, N. 1987, MNRAS, 227, 1.

[146] Kaiser, N. 1992, ApJ, 388, 286.

[147] Kaiser, N. 1998, ApJ, 498, 26.

[148] Kaiser, N. , Squires, G. 1993, ApJ, 404, 411.

[149] Kaiser, N. , Squires, G., Fahlman, G., Woods, D. 1994, in "Clusters of galaxies,
eds. F. Durret, A. Mazure & J. Tran Thanh Van, Editions Frontieres.

[150] Kaiser, N. , Squires, G., Broadhurst, T. 1995, ApJ, 449, 460.

[151] Kamionkowski, M., Kosowsky, A., Stebbins, A. 1997a, PRD, 55, 7368

[152] Kamionkowski, M., Babul, A., Cress, C. M., Refregier, A. 1998, MNRAS, 301,
1064.

[153] Kamionkowski, M., Buchalter, A. 1999, ApJ, 514, 7.

[154] Kamionkowski, M., Kosowsky, A., 1999, Ann.Rev.Nucl.Part.Sci., 49, 77.

[155] Kashlinsky, A. 1988, ApJ, 331, L1.

[156] Kau�mann, G., White, S. D. M., Guiderdoni, B. 1993, MNRAS, 264, 201.

[157] Kau�mann, G., Colberg, J. M., Diaferio, A., White, S. D. M. 1999, MNRAS,
303, 188

[158] Klypin, A., Gottl�ober, S., Kravtsov, A. V., Khokhlov, A. M. 1999, ApJ, 516,
530.

[159] Knox, L. 1995, Phys. Rev. D., 52, 4307.

156

http://arXiv.org/abs/astro-ph/0201421
http://arXiv.org/abs/astro-ph/0201421


[160] Kolb, E. W., Turner, M. S. 1990, The Early Universe (Addison-Wesley).

[161] Komatsu, E., Seljak, U. 2001, MNRAS, 327, 1353.

[162] Komatsu, E. Kitayama, T., 1999, ApJ, 526, L1.

[163] Lacey, C., Cole, S. 1993, MNRAS, 262, 627.

[164] Lahav, O., Lilje, P. B., Primack, J. R., Rees, M. J. 1991, MNRAS, 251, 128.

[165] Lasenby, A. N., Doran, C. J. L., Hobson, M. P., Dabrowski, Y., Challinor, A.
D. 1999, MNRAS, 302, L748.

[166] Lee J., Shandarin S., 1998, ApJ, 500, 14.

[167] Lightman, A. P., Schechter, P. L. 1990, ApJS, 74, 831.

[168] Limber, D. 1954, ApJ, 119, 655.

[169] Linder, E. V., 1988, A&A, 206, 1999.

[170] Loeb, A., Refregier, A. 1997, ApJ, 476, 59.

[171] Ma, C.-P., Caldwell, R. R., Bode, P. & Wang, L. 1999, ApJ, 521, L1.

[172] Ma, C.-P., Fry, J. N. 2000b, ApJ, 543, 503.

[173] Ma, C.-P., Fry, J. N. 2000c, ApJ, 538, L107.

[174] Ma, C.-P., Fry, J. N. 2002, PRL, 88, 211301.

[175] Mackey, J., White, M., Kamionkowski, M. 2002, MNRAS, 332, 788.

[176] Maddox, S. J., Efstathiou, G., Sutherland, W. J. Loveday, L. 1990, MNRAS,
242, 43.

[177] Majumdar, S., Nath, B. P. 2000, ApJ, 542, 597.

[178] Makino, N., Sasaki, S., Suto, Y. 1992, Phys. Rev. D., 46, 585.

[179] Makino, N., Sasaki, S., Suto, Y. 1998, ApJ, 497, 555.

[180] Manrique, A., Salvador-Sol�e, E., 1995, ApJ, 453, 6.

[181] Mason, B. S., Myers, S. T., Readhead, A. C. S. 2001, ApJ, 555, L11.

[182] Mauskopf, P. D., Ade, P. A. R., Allen, S. W., et al. 2000, ApJ, 538, 505.

[183] McClelland, J. & Silk, J. 1977b, ApJ, 217, 331.

[184] McClelland, J. & Silk, J. 1978, ApJS, 36, 389.

[185] Meiksin, A. & White, M. 1999, MNRAS, 308, 1179.

[186] Mellier, Y. 1999, Ann. Rev. Astro. Astrop. 37, 127.

[187] Miller, A. D., Caldwell, R., Devlin, M. J. et al. 1999, ApJ, 524, L1.

157



[188] Miralda-Escud�e J. 1991, ApJ, 380, 1.

[189] Mo, H. J., Jing, Y. P., White, S. D. M. 1997, MNRAS, 284, 189.

[190] Mo, H. J., White, S. D. M. 1996, MNRAS, 282, 347.

[191] Moessner, R., & Jain, B. 1998, MNRAS, 294, L18.

[192] Moessner, R., Jain, B., Villumsen, J. V. 1998, MNRAS, 294, 291.

[193] Mohr, J. J. Evrard, A. E. 1997, ApJ, 491, 38.

[194] Monaco, P. 1995, ApJ, 447, 23.

[195] Moore, B., Quinn, T., Governato, F., Stadel, J., & Lake, G. 1999, MNRAS,
310, 1147.

[196] Munshi, D. & Jain, B. 2000, MNRAS, 318, 109.

[197] Nakamura, T. T., Suto, Y. 1997, Prog. in Theor. Phys. 97, 49.

[198] Navarro, J., Frenk, C., White, S. D. M., 1996, ApJ, 462, 563.

[199] Neyman, J. & Scott, E. L. 1952, ApJ, 116, 144.

[200] Neyman, J., Scott, E. L. & Shane, C. D. 1953, ApJ, 117, 92.

[201] Neyman, J., Scott, E. L. & Shane, C. D. 1954, ApJS, 1, 269.

[202] Nityananda, R., Padmanabhan, T. 1994, MNRAS, 271, 976.

[203] Norberg, P., Baugh, C. M., Hawkins, E. et al. 2001, MNRAS, 328, 64.

[204] Nusser, A. & Dekel, A. 1993, ApJ, 405, 437.

[205] Nusser, A. & Sheth, R. K. 1999, MNRAS, 303, 685.

[206] Ostriker, J.P., & Vishniac, E.T. 1986, ApJ, 305, L51.

[207] Outram, P. J., Hoyle, F., Shanks, T., Boyle, B. J., Croom, S. M., Loaring, N.
S., Miller, L., Smith, R. J. 2001, MNRAS, 328, 174.

[208] Patel, S. K., Joy, M., Carlstrom, J. E. et al. 2000, ApJ, 541, 37.

[209] Peacock, J.A., Dodds, S.J. 1994, MNRAS, 267, 1020.

[210] Peacock, J.A., Dodds, S.J. 1996, MNRAS, 280, L19.

[211] Peacock, J. A., & Heavens, A. F., 1990, MNRAS, 243, 133.

[212] Peacock, J. A., Smith, R. E. 2000, MNRAS, 318, 1144.

[213] Peacock, J. A., Cole, S., Norberg, P., et al. 2001, Nature, 410, 169.

[214] Peebles, P. J. E., Yu, J. T., 1970, ApJ, 162, 815.

[215] Peebles, P. J. E. 1974, ApJ, 189, L51.

158



[216] Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe, (Princeton:
Princeton Univ. Press).

[217] Peebles, P. J. E. 1980, ApJ, 263, L1.

[218] Persi, F. M., Spergel, D. N., Cen, R., Ostriker, J. P. 1995, ApJ, 442, 1.

[219] Press, W. H., Schechter, P. 1974, ApJ, 187, 425.

[220] Puy, D., Grenacher, J., Jetzer, Ph., Signore, M. 2000, A&A, 363, 415.

[221] Reese, E. D., Mohr, J. J., Carlstrom, J. E. et al. 2000, ApJ, 533, 38.

[222] Rees, M. J. & Sciama, D. N. 1968, Nature, 519, 611.

[223] Refregier, A., Komatsu, E., Spergel, D. N., Pen, U.-L. 1999, Phys. Rev. D.,
61, 123001.

[224] Refregier, A., Teyssier, R. 2001, Phys. Rev. D. submitted, astro-ph/0012086.

[225] Refregier, A., 2001, MNRAS submitted, astro-ph/0105178.

[226] Refregier, A., Bacon, D. 2001, MNRAS submitted, astro-ph/0105179.

[227] Rice S. 0., 1954, in Selected papers on noise and stochastic processes, ed. Wax,
N., Dover, N.Y.

[228] Roettiger, K., Stone, J. M., Mushotzky, R. F. 1997, ApJ, 482, 588.

[229] Sachs, R. K., & Wolfe, A. M., 1967, ApJ, 147, 73.

[230] Sasaki, M., 1989, MNRAS, 240, 415.

[231] Saslaw, W. C., Chitrem S. M., Itoh, M., Inagaki, S. 1990, ApJ, 365, 419

[232] Scherrer, R.J., Bertschinger, E. 1991, ApJ, 381, 349.

[233] Schneider P. 1996, ApJ, MNRAS, 283, 837.

[234] Schneider P., van Waerbeke, L., Jain, B., Guido, K. 1998, MNRAS, 296, 873.

[235] Scoccimarro, R., Zaldarriaga, M. & Hui, L. 1999, ApJ, 527, 1.

[236] Scoccimarro, R., Sheth, R., Hui, L. & Jain, B. 2001, ApJ, 546, 20.

[237] Scoccimarro, R., Sheth, R. K. 2002, 329, 629.

[238] Scoccimarro, R. & Frieman, J. 1999, ApJ, 520, 35.

[239] Scoccimarro, R., Couchman, H. M. P. 2001, MNRAS, 325, 1312.

[240] Scranton, R. 2002, MNRAS, 332, 697.

[241] Scranton, R., Johnston, D., Dodelson, S. et al. 2001, AJ in press (astro-
ph/0107416).

[242] Seljak, U. 1996a, ApJ, 460, 549.

159

http://arXiv.org/abs/astro-ph/0012086
http://arXiv.org/abs/astro-ph/0105178
http://arXiv.org/abs/astro-ph/0105179
http://arXiv.org/abs/astro-ph/0107416
http://arXiv.org/abs/astro-ph/0107416


[243] Seljak, U. 1996b, ApJ, 463, 1.

[244] Seljak, U. 2000, MNRAS, 318, 203.

[245] Seljak, U. 2001, MNRAS, 325, 1359.

[246] Seljak, U, Burwell, J., Pen, U.-L. 2001, Phys. Rev. D., 63, 063001.

[247] Seljak, U., Zaldarriaga, M. 2000, ApJ, 538, 57.

[248] Sheldon, E., Annis, J., Bohringer, H. et al. 2001 ApJ, 554, 881.

[249] Sheth, R. K. 1996, MNRAS, 279, 1310.

[250] Sheth, R. K., & Jain, B. 1997, MNRAS, 285, 231.

[251] Sheth, R. K., & Jain, B. 2002, MNRAS, submitted

[252] Sheth, R. K., & Lemson, G. 1999, MNRAS, 304, 767.

[253] Sheth, R. K., Diaferio, A. 2001, MNRAS, 322, 901

[254] Sheth, R. K., & Tormen, G. 1999, MNRAS, 308, 119.

[255] Sheth, R. K., & Tormen, G. 2001, MNRAS, 323, 1.

[256] Sheth, R. K., & Tormen, G. 2002, MNRAS, 329, 61.

[257] Sheth, R. K., Mo, H., Tormen, G., 2001, MNRAS 323, 1

[258] Sheth, R. K., Diaferio, A., Zehavi, I. 2001, MNRAS submitted.

[259] Sheth, R. K., Hui, L., Diaferio, A., Scoccimarro, R. 2001, MNRAS, 325, 1288.

[260] Sheth, R. K., Diaferio, A., Hui, L., Scoccimarro, R. 2001, MNRAS, 326, 463.

[261] Silk, J. 1968, ApJ, 151, 459.

[262] Silk, J. and White, S. D. M. 1978, ApJ, 226, L103

[263] Smail, I., Hogg, S. W., Yan, L., & Cohen, J. G. 1995, ApJ, 449, L105.

[264] Somerville, R. S & Primack, J. R. 1999, MNRAS, 310, 1087.

[265] Spergel, D. N. & Goldberg, D. M. 1999, Phys. Rev. D., 59, 103001

[266] Springel, V., White, M., Hernquist, L. 2001, ApJ, 549, 681.

[267] Squires, G., & Kaiser, N. 1996, ApJ, 473, 65.

[268] Starobinsky, A. A. 1982, Phys. Lett. B., 117, 175.

[269] Stebbins, A. 1996, preprint (astro-ph/9609149).

[270] Strauss, M. A., Willick, J. A. 1995, Phys. Rep., 261, 271.

[271] Subrahmanyan, R., Kesteven, M.J., Ekers, R. D., Sinclair, M., Silk, J. 2000,
MNRAS, 315, 808.

160

http://arXiv.org/abs/astro-ph/9609149


[272] Sulkanen, M. E. 1999, ApJ, 522, 59.

[273] Sunyaev, R.A. & Zel'dovich, Ya. B. 1970, Astrop. Space Sci., 7, 3.

[274] Sunyaev, R.A. & Zel'dovich, Ya. B. 1980, MNRAS, 190, 413.

[275] Suto, Y., Sasaki, S., Makino, N. 1998, ApJ, 509, 544.

[276] Tegmark, M., Peebles, P. J. E. 1998, ApJ, 500, 79.

[277] Tegmark, M., Eisenstein, D.J., Hu, W., de Oliveira-Costa, A., 2000, ApJ, 530,
133.

[278] Thomas, P. A., Colberg, J. M., Couchman, H. M. P., et al. 1998, MNRAS,
296, 1061.

[279] Totsuji, H., Kihara, T. 1969, PASJ, 21, 221.

[280] Tormen, G., Diaferio, A. & Syer, D. 1998, MNRAS, 299, 728.

[281] Tyson, A., Angel, R. 2000, The Large-Aperture Synoptic Survey Telescope, in
\New Era of Wide-Field Astronomy", ASP Conference Series.

[282] Van Waerbeke, L., Bernardeau, F., Mellier, Y. 1999, A&A, 342, 15.

[283] Van Waerbeke, L., Mellier, Y., Erben, T. et al. 2000, A&A, 358, 30.

[284] Viana, P. T. P., Liddle, A. R. 1999, MNRAS, 303, 535.

[285] Vishniac, E.T. 1987, ApJ, 322, 597.

[286] Vitvitska, M., Klypin, A. A., Kravtsov, A. V. et al., 2001 preprint, astro-
ph/0105349

[287] Watanabe, K., Tomita, K. 1991, ApJ, 370, 481.

[288] Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., Dekel, A.
2002, ApJ, 568, 52.

[289] White, M., Hu, W. 1999, ApJ, 537, 1.

[290] White, M. 2001, MNRAS, 321, 1.

[291] White, M., Hernquist, L., Springel, V. 2001, ApJ, 550, L129.

[292] White, S. D. M., Rees, M. 1978, MNRAS, 183, 341.

[293] White, S. D. M., Frenk, C. S. 1991, ApJ, 379, 52.

[294] Wilson, G., Kaiser, N., Luppino, G.A., 2001, ApJ, 555, 572.

[295] Wittman, D. M., Tyson, J. A., Kirkman, D., Dell'Antonio, I., Bernstein, G.
2000, Nature, 405, 143.

[296] Yoshida, N., Sheth, R. K., Diaferio, A. 2001, MNRAS, 328, 669.

[297] Zaldarriaga, M., Spergel, D. N., Seljak, U. 1997, ApJ, 488, 1. 1830.

161

http://arXiv.org/abs/astro-ph/0105349
http://arXiv.org/abs/astro-ph/0105349


[298] Zehavi, I., Blanton, M. R., Frieman, J. A. et al. 2002, ApJ, 571, 172

[299] Zel'dovich, Ya.B., 1972, MNRAS, 16-, 1.

[300] Zhao, H., 1996, MNRAS, 278, 488.

162



Fig. 55. The angular power spectra of SZ thermal and kinetic e�ects. As shown
in (a), the thermal SZ e�ect is dominated by individual halos, and thus, by the
single halo term, while the kinetic e�ect is dominated by the large scale structure
correlations depicted by the 2-halo term. In (b), we show the mass dependence of
the SZ thermal and kinetic e�ects with a maximum mass of 1016 and 1013 M�. The
SZ thermal e�ect is strongly dependent on the maximum mass, while due to large
scale correlations, kinetic e�ect is not.
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Fig. 56. The SZ power spectrum based on numerical simulations and the analytical
calculations based on the halo model. The simulations are consistent with the mass
distribution of halos in the simulated box. The decrease in power at largest scales is
due to the lack of most massive halos, which are rare. The simulations are in good
agreement with the halo based calculations. The �gure is from [224].

Fig. 57. Line of sight projected maps of the thermal (left) and kinetic (right) SZ
e�ects. The maps are 1Æ on a side and cover the same �eld of view. Note that the
thermal SZ map picks out massive halos while contributions to kinetic SZ e�ect
comes from wide range of masses. Unlike thermal SZ, which produces a negative
decrement at Rayleigh-Jeans wavelengths, the kinetic SZ e�ect oscillates from neg-
ative and positive values depends on the direction of the velocity �eld. Here, struc-
tures in red are moving towards the observer while those in blue are moving away.
This �gure is from [266].
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Fig. 58. Distribution of peak heights or number counts of thermal SZ temperature
decrements in simulations (solid histograms) and in analytical calculations (solid
curves). Dashed lines show the contributions to the total from halos with mass
in the range 1013 � 1014, 1014 � 1015 and above 1015 from increasing temperature
decrement values. Here tSZ = �TSZ=TCMB. The �gure is from [296].
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Fig. 59. The temperature 
uctuation power (�T 2
l = l(l + 1)=(2�)ClT

2
CMB) for a

variety of methods to calculate the kinetic SZ e�ect. Here, we show the contribution
for a reionization redshift of � 8 and an optical depth to reionization of 0.05. The
contributions are calculated under the assumption that the baryon �eld traces the
non-linear dark matter (Pg(k) = PÆ(k) with PÆ(k) predicted by the halo model),
the linear density �eld (Pg(k) = P lin(k)), and the halo model for gas, with total
and the 2-halo contributions shown separately. For the most part, the kinetic SZ
e�ect can be described using linear theory, and the non-linearities only increase the
temperature 
uctuation power by a factor of a few at l � 105.
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Fig. 60. Contribution to temperature 
uctuations through halo rotation for a cluster
of mass 5 � 1014 M� at a redshift of 0.5. The temperature 
uctuations produce
a distinct bipolar-like pattern on the sky with a maximum of � 2.5 �K. Here,
rotational axis is perpendicular to the line of sight and x and y coordinates are in
terms of the scale radius of the cluster, based on the NFW pro�le.
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Fig. 61. Temperature 
uctuations due to galaxy clusters: (a) kinetic SZ e�ect in-
volving peculiar motion, (b) lensing of CMB primary temperature 
uctuations, and
(c) the total contribution from kinetic SZ, lensing and rotational velocity. The total
contribution leads asymmetric bipolar pattern with a sharp rise towards the center.
We have not included the thermal SZ e�ect as its contribution can be separated
from these e�ects, and primary temperature 
uctuations, based on its frequency
dependence. We use the same cluster as shown in �gure 60.
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Fig. 62. The angular power spectrum of the full ISW e�ect, including non-linear
contribution. The contribution called Rees-Sciama (RS) shows the non-linear ex-
tension, though for the total contribution, the cross term between the momentum
�eld and the density �eld leads to a slight suppression between l of 100 and 1000.
The curve labeled \nl" is the full non-linear contribution while the curve labeled
\lin" is the contribution resulting from the momentum �eld under the second order
perturbation theory.
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