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I. INTRODUCTION

NRQCD factorization is a systematic framework for calculating the inclusive cross sections
for producing heavy quarkonium [1]. The cross section for a charmonium state is expressed
as the sum over c�c channels of products of perturbative c�c cross section and nonperturbative
NRQCD matrix elements. The relative importance of the various terms in the factorization
formula is determined by the order in �s of the c�c cross section, kinematic factors in the
c�c cross section, and the scaling of the NRQCD matrix element with the relative velocity
v of the charm quark. Among those NRQCD matrix elements that scale with the minimal
power of v is the one associated with the color-singlet c�c channel whose angular momentum
quantum numbers match those of the charmonium state H. The old color-singlet model for
quarkonium production [2] can be de�ned by keeping this channel only.

If the charmonium is the only hadron in the initial or �nal state, the color-singlet model
should be accurate up to corrections that are higher order in v. The simplest examples of
such processes are electromagnetic annihilation decays, such as J= ! e+e� and �c ! 

,
and exclusive electromagnetic production processes, such as 

 ! �c. Another process
for which the color-singlet model should be accurate is e+e� annihilation into exactly two
charmonia. There are no hadrons in the initial state, and the absence of additional hadrons
in the �nal state can be guaranteed experimentally by the monoenergetic nature of a 2-body
�nal state. For many charmonia H, the NRQCD matrix element can be determined from
the electromagnetic annihilation decay rate of either H or of another state related to H
by spin symmetry. Cross sections for double-charmonium can therefore be predicted up to
corrections suppressed by powers of v2 without any unknown phenomenological factors.

One problem with e+e� annihilation into exclusive double charmonium is that the cross
sections are very small at energies large enough to have con�dence in the predictions of
perturbative QCD. A naive estimate of the cross section for J= + �c in units of the cross
section for �+�� is

R[J= + �c] � �2s

�
mcv

Ebeam

�6

: (1)

The 2 powers of �s are the fewest required to produce a c�c+ c�c �nal state. There is a factor
of (mcv)3 associated with the wavefunction at the origin for each charmonium. These factors
in the numerator are compensated by factors of the beam energy Ebeam in the denominator
to get a dimensionless ratio. As an example, consider e+e� annihilation with center-of-mass
energy 2Ebeam = 10:6 GeV. If we set v2 � 0:3, �s � 0:2, and mc � 1:4 GeV, we get
the naive estimate R[J= + �c] � 4 � 10�7. This should be compared to the total ratio
R[hadrons] � 3:6 for all hadronic �nal states [3]. The decay of the J= into the easily
detectable e+e� or �+�� modes suppresses the observable cross section by another order of
magnitude.

Fortunately, the era of high-luminosity B factories has made the measurement of such
small cross sections feasible. The BABAR and BELLE detectors have each collected more
than 107 continuum e+e� annihilation events and more than 108 events on the �(4S), 75%
of which are continuum e+e� annihilation events. The BELLE Collaboration has recently
measured the cross section for e+e� ! J= + �c [4]. They also saw evidence for J= + �c0
and J= + �c(2S) events.

In this paper, we calculate the cross sections for exclusive double-charmonium production
via e+e� annihilation into a virtual photon. This process produces only charmonium states
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with opposite charge conjugation. The cross sections for charmonium states with the same
charge conjugation, which proceed through e+e� annihilation into two virtual photons, will
be presented in subsequent papers [5]. We carry out the calculations in the color-singlet
model including not only the diagrams of order �2�2s but also the purely electromagnetic
diagrams of order �4, which are surprisingly large. Our result for the cross section for
J= + �c is about an order of magnitude smaller than the recent measurement by the
BELLE Collaboration, although part of the discrepancy can be attributed to large relativistic
corrections. The cross sections for S-wave + P -wave, P -wave + P -wave, and S-wave + D-
wave charmonium states are also calculated. The cross section for J= +�c2(1D) is predicted
to be about a factor of 10 smaller than for J= + �c, which may be large enough for the
D-wave state �c2(1D) to be discovered at the B factories.

II. COLOR-SINGLET MODEL CALCULATIONS

In this section, we use the color-singlet model to calculate the cross sections for e+e�

annihilation through a virtual photon into a double-charmonium �nal state H1+H2. Charge
conjugation symmetry requires one of the charmonia to be a C = � state and the other to
be a C = + state. The C = � states with narrow widths are the JPC = 1�� states J= and
 (2S), the 1+� state hc, and the yet-to-be-discovered 2�� state  2(1D). The C = + states
with narrow widths are the 0�+ states �c and �c(2S), the J++ states �cJ(1P ), J = 0; 1; 2,
and the yet-to-be-discovered 2�+ state �c2(1D). We express our results in terms of the ratio
R[H1 +H2] de�ned by

R[H1 +H2] =
�[e+e� ! H1 +H2]

�[e+e� ! �+��]
: (2)

In the text, we give only the results for R summed over helicity states. In the Appendix,
we give also the angular distribution dR=d cos � for each of the helicity states of H1 and
H2. These results may facilitate the use of partial wave analysis to resolve the experimental
double-charmonium signal into contributions from the various charmonium states.

A. Asymptotic behavior

When the e+e� beam energy Ebeam is much larger than the charm quark mass mc, the
relative sizes of the various double-charmonium cross sections are governed largely by the
number of kinematic suppression factors r2, where the variable r is de�ned by

r2 =
4m2

c

E2
beam

: (3)

If we set mc = 1:4 GeV and Ebeam = 5:3 GeV, the value of this small parameter is r2 = 0:28.
The asymptotic behavior of the ratio R[H1 +H2] as r ! 0 can be determined from the

helicity selection rules for exclusive processes in perturbative QCD [6, 7]. For each of the
c�c pairs in the �nal state, there is a suppression factor of r2 due to the large momentum
transfer required for the c and �c to emerge with small relative momentum. Thus, at any
order in �s, the ratio R[H1 + H2] must decrease at least as fast as r4 as r ! 0. However
it may decrease more rapidly depending on the helicity states of the two hadrons. There
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is of course a constraint on the possible helicities from angular momentum conservation:
j�1��2j = 0 or 1. The asymptotic behavior of the ratio R[H1(�1)+H2(�2)] depends on the
helicities �1 and �2. The helicity selection rules imply that the slowest asymptotic decrease
R � r4 can occur only if the sum of the helicities of the hadrons is conserved. Since there are
no hadrons in the initial state, hadron helicity conservation requires �1 + �2 = 0. The only
helicity state that satis�es both this constraint and the constraint of angular momentum
conservation is (�1; �2) = (0; 0). For every unit of helicity by which this rule is violated,
there is a further suppression factor of r2. The resulting estimate for the ratio R at leading
order in �s is

RQCD[H1(�1) +H2(�2)] � �2s(v
2)3+L1+L2(r2)2+j�1+�2j: (4)

The factor of v3+2L for a charmonium state with orbital angular momentumL comes from the
NRQCD factors. At leading order of �s, there may of course be further suppression factors
of r2 that arise from the simple structure of the leading-order diagrams for e+e� ! c�c1+ c�c1
in Fig. 1, but these suppression factors are unlikely to persist to higher orders in �s.

The QED diagrams for e+e� ! c�c1(3S1)+ c�c1 in Fig. 2 give contributions to R[J= +H2]
that scale in a di�erent way with r. As r ! 0, the contribution to the cross section from
these diagrams factors into the cross section for 
 +H2 and the fragmentation function for

 ! J= . This fragmentation process produces J= in a �J= = �1 helicity state. The
hard-scattering part of the process produces only one c�c pair with small relative momentum,
so there is one fewer factor of r2 relative to Eq. (4). The cross section for 
 + H1 is still
subject to the helicity selection rules of perturbative QCD, so the pure QED contribution
to the ratio R has the behavior

RQED[J= (�1) +H2(�2)] � �2(v2)3+L2(r2)1+j�2j: (5)

There may also be interference terms between the QCD and QED contributions whose
scaling behavior is intermediate between Eqs. (4) and (5).

B. Projections onto charmonium states

The 4 QCD diagrams for the color-singlet process 
� ! c�c1 + c�c1 are shown in Fig. 1.
We take the upper c�c pair in Fig. 1 to form a C = � charmonium H1 with momentum P1
and the lower c�c pair to form a C = + charmoniumH2 with momentum P2. There are also
QED diagrams for 
� ! c�c1 + c�c1 that can be obtained from the QCD diagrams in Fig. 1
by replacing the virtual gluons by virtual photons, but they are suppressed by a factor of
�=�s. However if one of the charmonia is a 1�� state like a J= , there are the additional
QED diagrams in Fig. 2. Although they are also suppressed by a factor of �=�s, they are
enhanced by a kinematical factor of 1=r2 and therefore can be more important than one
might expect.

To calculate the matrix element for e+e� ! H1(P1) +H2(P2), we start from the matrix
element for e+e� ! c(p1)�c(�p1) + c(p2)�c(�p2) with the charm quarks and antiquarks on their
mass shells: p2i = �p2i = m2

c. For each of the c�c pairs, we express the momenta in the form

p = 1
2P + q; (6a)

�p = 1
2
P � q; (6b)
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P1

P2(a) (b)

(c) (d)

FIG. 1: QCD diagrams that can contribute to the color-singlet process 
� ! c�c1 + c�c1.

P2

P1

(b)(a)

FIG. 2: QED diagrams that contribute to the color-singlet process 
� ! c�c1(3S1) + c�c1.

where P is the total momentum of the pair and q is a relative momentum that satis�es
q � P = 0. If the c�c pair is in a spin-singlet color-singlet state, the matrix product of the
Dirac and color spinors for the c and �c can be expressed as [9]

v(�p)�u(p) =
1

4
p
2E(E +mc)

(p= �mc) 
5 (P= + 2E) (p= + mc)

�

1p
Nc

1

�
; (7)

where E2 = P 2=4 = m2
c � q2, Nc = 3, and the last factor involves the unit color matrix 1.

If the c�c pair is in a spin-triplet color-singlet state, 
5 in Eq. (7) is replaced by �=�S , where �S
is a spin polarization vector satisfying �S � ��S = �1 and P � �S = 0.
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In the spin-singlet case, the expansion of the matrix element in powers of q has the form

M[c�c(S = 0)] = A+ B�q� + C�� q�q� + : : : : (8)

The matrix elements at leading order in v for the spin-singlet charmonium states �c, hc(1P ),
and �c2(1D) can be read o� from this expansion:

M[�c] =

� hO1i�c
2Ncmc

�1=2

A; (9a)

M[hc(�)] =

� hO1ihc
2Ncm3

c

�1=2

B���(�); (9b)

M[�c2(�)] =

�hO1i�c2
2Ncm5

c

�1=2

C��
�
1

2
(I��I�� + I��I��)� 1

3
I��I��

�
���(�); (9c)

where ��(�) in Eq. (9b) is a spin-1 polarization vector and ���(�) in Eq. (9c) is a spin-2
polarization tensor. The tensor I�� in Eq. (9c) is

I�� = �g�� + P �P �

4m2
c

; (10)

where P is the expansion of p + �p to leading order in q, so it now satis�es P 2 = 4m2
c . The

NRQCD matrix elements hO1i�c and hO1ihc in Eqs. (9a) and (9b) are the vacuum-saturated
analogs of the NRQCD matrix elements hO1(1S0)i�c and hO1(1P1)ihc for annihilation decays
de�ned in Ref. [1]. The NRQCD matrix element hO1i�c2 in Eq. (9c) is the vacuum-saturated
analog of an NRQCD matrix element hO1(1D2)i�c2 which in the notation of Ref. [1] is de�ned
by

hO1(
1D2)i�c2 = h�c2j y(� i

2
)2

$

D (i
$

D j)��y(� i
2
)2

$

D (i
$

D j) j�c2i: (11)

A projection onto the D-wave state that is equivalent to Eq. (9c) but expressed in terms of
wavefunctions at the origin is given in Ref. [10].

In the spin-triplet case, the expansion of the matrix element in powers of q has the form

M[c�c(S = 1)] = (A� + B��q� + C���q�q� + : : :) ��S: (12)

The matrix elements at leading order in v for the spin-triplet charmonium states J= ,
�cJ(1P ),  1(1D), and  2(1D) can be read o� from this expansion:

M[J= (�)] =

�hO1iJ= 
2Ncmc

�1=2

A��
�(�); (13a)

M[�c0] =

�hO1i�c0
2Ncm3

c

�1=2

B�� 1p
3
I��; (13b)

M[�c1(�)] =

�hO1i�c1
2Ncm3

c

�1=2

B�� i

2mc

p
2
�����P���(�); (13c)

M[�c2(�)] =

�hO1i�c2
2Ncm3

c

�1=2

B��
�
1

2
(I��I�� + I��I��)� 1

3
I��I��

�
���(�); (13d)

M[ 1(�)] =

� hO1i 2
2Ncm5

c

�1=2

C���
r
3

5

�
1

2
(I��I�� + I��I��)� 1

3
I��I��

�
��(�); (13e)

M[ 2(�)] =

� hO1i 2
2Ncm5

c

�1=2

C��� i

2mc

p
6

�
g������� + g�������

�
P����(�): (13f)
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The NRQCD matrix elements hO1iJ= and hO1i�cJ are the vacuum-saturated analogs of the
NRQCD matrix elements hO1(3S1)iJ= and hO1(3PJ )i�cJ for annihilation decays de�ned in
Ref. [1]. The NRQCD matrix elements hO1i 1 and hO1i 2 are the vacuum-saturated analog
of the NRQCD matrix elements hO1(3D1)i 1 and hO1(3D2)i 2 which are de�ned by

hO1(
3D1)i 1 =

3

5
h 1j y(� i

2
)2�i

$

D
(i
$

D
k)��y(� i

2
)2�j

$

D
(j

$

D
k) j 1i; (14a)

hO1(
3D2)i 2 =

2

3
�iab�icdh 2j y(� i

2
)2�a

$

D
(b

$

D
j)��y(� i

2
)2�c

$

D
(d

$

D
j) j 2i: (14b)

C. S-wave + S-wave

The matrix element for e+(k2)e�(k1)! J= + �c can be written as

M = �ece
2

s
�v(k2)


�u(k1) hJ= + �cjJ�(0)j;i; (15)

where ec = +2
3
is the electric charge of the charm quark and s = 4E2

beam is the square of the
center-of-mass energy. Upon simplifying the vacuum-to-J= + �c matrix element, it reduces
to the general form required by Lorentz covariance:

hJ= (P1; �) + �c(P2)jJ�(0)j;i = iA �����P
�
1 P

�
2 �

�; (16)

where the coeÆcient A is

A =
128��s
s2

�hO1iJ= hO1i�c
�1=2�N2

c � 1

2N2
c

+
e2c�

Nc�s
� 1

r2
e2c�

�s

�
: (17)

After squaring the amplitude and integrating over phase space, we obtain our �nal result
for the ratio R de�ned in Eq. (2):

R[J= + �c] =
2�2�2s
9

X2(r2 � Y )2r2(1� r2)3=2
hO1iJ= hO1i�c

m6
c

; (18)

where the coeÆcients X and Y are

X =
4

9

�
1 +

�

3�s

�
; (19a)

Y =
�

�s

�
1 +

�

3�s

��1

: (19b)

If we set �s = 0:21, their numerical values are X = 0:450 and Y = 0:0344. Note that the
ratio (18) depends on the charm quark mass mc explicitly and also through the variable r
de�ned in Eq. (3). The �2�2s term in the cross section for e+e� ! J= + �c was calculated
previously by Brodsky and Ji [8]. They presented their result in the form of a graph of R
versus 1=r2, but they did not give an analytic expression for the cross section.

The only helicity states that contribute to Eq. (18) at this order in �s are (�1; �2) =
(�1; 0), which violate hadron helicity conservation by 1 unit. The QCD contribution to R
scales like �2sv

6r6 in accord with Eq. (4). There is no reason to expect the amplitude for
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the hadron-helicity-conserving state (0; 0) to vanish at next-to-leading order in �s, so the
asymptotic behavior of the QCD contribution as r! 0 is probably R � �4sv

6r4.
The pure QED contribution from the diagrams in Fig. 2 scale like �2v6r2 in accord with

Eq. (5). The interference term is suppressed only by �=(�sr2), so the QED e�ects are larger
than one might expect. If we set

p
s = 10:6 GeV and mc = 1:4 GeV, the electromagnetic

correction decreases the cross section by 21%.
The factor of (1 � r2)3=2 in Eq. (18) is the nonrelativistic limit of (PCM=Ebeam)3, where

PCM is the momentum of either charmonium in the center-of-momentum frame. It can be
expressed as

PCM
Ebeam

=
�1=2(s;M2

H1
;M2

H2
)

s
; (20)

where �(x; y; z) = x2 + y2 + z2 � 2(xy + yz + zx). In (18), one factor of PCM=Ebeam comes
from the phase space for H1+H2, while the other two come from the square of the amplitude
(16).

D. S-wave + P -wave

The ratios R for J= + �cJ are

R[J= + �cJ ] =
�2�2s
432

X2FJ(r; Y )r
2(1� r2)1=2

hO1iJ= hO1i�cJ
m8
c

; (21)

where the functions FJ(r; Y ) are

F0(r; Y ) = 2[4Y � 6(Y + 3)r2 + 7r4]2 + r2[4 + 2(Y + 5)r2 � 3r4]2; (22a)

F1(r; Y ) = 3[8Y � 2Y r2 + r4]2 + 3r2[4Y + 2(Y + 2)r2 � 3r4]2

+ 3r4[2(3Y + 4)� 7r2]2; (22b)

F2(r; Y ) = [8Y � 6(Y + 2)r2 + 11r4]2 + 2r2[4 + 2(Y � 1)r2 � 3r4]2

+ 3r2[4Y � 2(Y + 2)r2 + 3r4]2 + 3r4[2(Y + 2)� 5r2]2 + 6r4[2Y � r2]2: (22c)

These expressions have been expressed as sums of squares of terms that correspond to the
helicity amplitudes. For �c0 and �c2, there are QCD contributions from all the helicity states
(�1; �2) compatible with angular momentum conservation, so the leading contribution scales
like �2sv

8r4. For �c1, there is no contribution from the hadron-helicity-conserving state (0; 0),
so the QCD contributions are suppressed by r2 relative to those for �c0 and �c2. The pure
QED contributions to �cJ scale like �2v8r2 for all J in accordance with Eq. (5). The QED
contribution is suppressed by a factor of �2=(�2sr

2) for J = 0 and 2 but only by �2=(�2sr
4)

for J = 1. If we set
p
s = 10:6 GeV and mc = 1:4 GeV, the QED corrections change the

cross sections by �0:3%, +15%, and �5% for J = 0, 1, and 2, respectively.
The cross section for �c + hc vanishes at this order in �s:

R[hc + �c] = 0: (23)

This seems to be a consequence of the simple structure of the leading-order amplitude. There
is no reason to expect this cross section to vanish at next-to-leading order in �s or v, so the
asymptotic behavior as r! 0 is probably R � �4sv

8r4 or R � �2sv
10r4.
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E. P -wave + P -wave

The ratios R for hc + �cJ are

R[hc + �cJ ] =
�2�2s
108

X2GJ (r)r
4(1 � r2)3=2

hO1ihchO1i�cJ
m10
c

; (24)

where the functions GJ (r) are

G0(r) = 2r2(6� r2)2; (25a)

G1(r) = 24 + 78r2(2 � r2)2; (25b)

G2(r) = 3r2(4� 5r2)2 + 7r6: (25c)

At this order in �s, there is no contribution to the cross sections for �c0 and �c2 from the
helicity state (0; 0), so the ratios R[hc+�cJ ] for �c0 and �c2 are suppressed relative to that for
�c1 by a factor of r2. The QED contribution increases the cross section by 2�=(3�s) � 2%.

F. S-wave + D-wave

The ratio R for J= + �c2 is

R[J= + �c2] =
4�2�2s
27

X2(Y � 2r2)2r2(1 � r2)7=2
hO1iJ= hO1i�c2

m10
c

: (26)

At this order in �s and �, the only helicity states that contribute are (�1; 0). Thus the
QCD contribution to the ratio R scales like �2sv

10r6 in accord with Eq. (4), while the pure
QED contribution scales like �2v10r2 in accord with Eq. (5). If we set

p
s = 10:6 GeV and

mc = 1:4 GeV, the QED correction decreases the cross section by about 10%.
The ratio R for  1 + �c is

R[ 1 + �c] =
�2�2s
4320

X2(26Y � 21r2 + 10r4)2r2(1� r2)3=2
hO1i 1hO1i�c

m10
c

: (27)

At this order in �s and �, the only helicity states that contribute are (�1; 0). Thus the QCD
contribution to the ratio R scales like �2sv

10r6 in accord with Eq. (4), while the pure QED
contribution scales like �2v10r2 in accord with Eq. (5). The QED contribution increases the
cross section by 3%.

The ratio R for  2 + �c is

R[ 2 + �c] =
�2�2s
54

X2[6 + r2(7� 4r2)2]r4(1� r2)3=2
hO1i 2hO1i�c

m10
c

: (28)

There is a contribution from the helicity state (0; 0) that satis�es hadron helicity conserva-
tion, so the ratio R scales like r4 in accord with Eq. (4). The QED contribution increases
the cross section by 2�=(3�s) � 2%.

III. NRQCD MATRIX ELEMENTS

The ratios R for exclusive double-charmonium production calculated in Section II depend
on the NRQCD matrix elements hO1iH . In this section, we describe the phenomenological
determination of these inputs. We also give estimates based on potential models.
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TABLE I: The NRQCD matrix elements hO1iH for the charmonium statesH in units of (GeV)2L+3

where L = 0; 1; 2 for S-wave, P -wave, and D-wave states. The �rst column is the estimate from

the Buchm�uller-Tye potential model as given in Ref. [11]. The second and third columns are the

phenomenological results from electromagnetic annihilation decays for mc = 1:4 GeV at leading

order (LO) and next-to-leading order (NLO) in �s. The errors are the statistical errors associated

with the experimental inputs only. The bold-faced values are used in the predictions for the

double-charmonium cross sections.

potential model phenomenology

H LO NLO

�c 0.387 0.222 � 0.024 0.297 � 0.032

J= 0.387 0.208 � 0.015 0.335 � 0.024

�c(2S) 0.253

 (2S) 0.253 0.087 � 0.006 0.139 � 0.010

�c0(1P ) 0.107 0.060 � 0.015 0.059 � 0.015

�c1(1P ), hc(1P ) 0.107

�c2(1P ) 0.107 0.033 � 0.006 0.053 � 0.009

 1(1D) 0.054 0.095 � 0.015

 2(1D), �c2(1D) 0.054

A. Potential models

We can obtain estimates for the NRQCD matrix elements from the behavior of the
wavefunctions near the origin in potential models. The expressions for the NRQCD matrix
elements for S-wave, P -wave, and D-wave states are

hO1iS � Nc

2�
jRS(0)j2; (29a)

hO1iP � 3Nc

2�
jR0

P (0)j2; (29b)

hO1iD � 15Nc

4�
jR00

D(0)j2: (29c)

The values and derivatives of the radial wavefunctions at the origin for four potential models
are given in Ref. [11]. Of these four potential models, the one that is most accurate at short
distances is the Buchm�uller-Tye potential [12]. The values of the NRQCD matrix elements
for this potential are given in the �rst column of Table I.

B. Phenomenology

We can obtain phenomenological values for the NRQCD matrix elements hO1iJ= and
hO1i�c from the electronic decay rate of the J= and from the photonic decay rate of the �c
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[1]. The results for these decay rates, including the �rst QCD perturbative correction, are

�[�c ! 

] = 2e4c��
2 hO1i�c

m2
c

�
1 � 20 � �2

6

�s
�

�2

; (30a)

�[J= ! e+e�] =
2e2c��

2

3

hO1iJ= 
m2
c

�
1� 8

3

�s
�

�2

: (30b)

We can obtain phenomenological values for the NRQCD matrix elements hO1i�c0 and hO1i�c2
from the photonic decay rates of the �c0 and �c2 [1]. The results for these decay rates,
including the �rst QCD perturbative correction, are

�[�c0 ! 

] = 6e4c��
2 hO1i�c0

m4
c

�
1 +

3�2 � 28

18

�s
�

�2

; (31a)

�[�c2 ! 

] =
8e4c��

2

5

hO1i�c2
m4
c

�
1 � 8

3

�s
�

�2

: (31b)

The perturbative corrections in Eqs. (30a){(31b) have been expressed as squares, because
they can be calculated as corrections to the amplitudes. We can obtain a phenomenologi-
cal value for the NRQCD matrix element hO1i 2(1D) from the electronic decay rate of the
 1(1D) =  (3770), which is in the same spin-symmetry multiplet as the  2(1D):

�[ 1(1D) ! e+e�] =
5e2c��

2

18

hO1i 1(1D)
m6
c

: (32)

The QCD perturbative correction has not been calculated.
We �rst determine the NRQCD matrix elements hO1iH while neglecting QCD pertur-

bative corrections. The experimental inputs are the electronic widths of the J= ,  (2S),
and  1(1D), the photonic width of the �c, and the widths and photonic branching fractions
of the �c0 and �c2 [13]. The only other input required is the charm quark mass mc. The
values of hO1iH corresponding to mc = 1:4 GeV are given in the column of Table I labelled
LO. The error bars are the statistical errors associated with the experimental inputs only.
To obtain hO1iH for other values of mc, we need to multiply the values in the Table by
(mc=1:4 GeV)2+2L.

We next determine the NRQCD matrix elements hO1iH including the e�ects of QCD per-
turbative corrections. We choose the QCD coupling constant to be �s = 0:25 corresponding
to a renormalization scale of 2mc. The resulting values of hO1iH for mc = 1:4 GeV are given
in the column of Table I labelled NLO. The error bars are the statistical errors associated
with the experimental inputs only. To obtain hO1iH for other values of mc, we need to mul-
tiply the values in the Table by (mc=1:4 GeV)2+2L. Taking into account QCD perturbative
corrections changes hO1iH by a factor that ranges from 0.99 for �c0 to 1.61 for J= and
�c2. The NLO values are in closer agreement with the estimates from the Buchm�uller-Tye
potential model than the LO values.

One complication in the determination of the NRQCD matrix element for  1(1D) is that
this state may have substantial mixings with the  (2S) and also with continuum D �D states.
If the mixing angle between  1(1D) and  (2S) is � and if mixing with continuumD �D states
is neglected, the expressions for the electronic decay rates of the  (2S) and  1(1D) are (30b)

11



and (32) with the substitutions

hO1i (2S) �!
�����cos� hO1i1=22S � sin�

p
15

6m2
c

hO1i1=21D

�����
2

; (33a)

hO1i 1(1D) �!
����cos� hO1i1=21D + sin�

6m2
cp
15
hO1i1=22S

����
2

: (33b)

A recent estimate of this e�ect suggests a mixing angle � = 12Æ [14]. The resulting values
of the NRQCD matrix elements are hO1i2S = 0:095 GeV3 and hO1i1D = 0:013 GeV7. This
value of hO1i1D is about a factor of 7 smaller than the value of hO1i 1(1D) in Table I. Thus,
if this mixing scenario is correct, the phenomenological estimate for hO1i 2(1D) in Table I
could overestimate cross sections for  2(1D) by about a factor of 7.

Within each spin-symmetry multiplet, the NRQCD matrix elements hO1iH should have
di�erences of order v2 which we expect to be about 30%. We choose to use the most
precise phenomenological value within each spin-symmetry multiplet for all members of
that multiplet. Speci�cally, we use the bold-faced values in the NLO column of Table I for
S-wave and P -wave states and we use the bold-faced value in the LO column for the D-wave
states �c2(1D),  1(1D), and  2(1D).

IV. RELATIVISTIC CORRECTIONS

In this section, we calculate the relativistic corrections to the cross sections for the S-wave
double charmonium. We also give a phenomenological determination of the NRQCD factors
hv2iH that appear in those relativistic corrections.

A. NRQCD factor

The leading relativistic correction to the CSM amplitudes for a charmonium H are con-
veniently expressed in terms of a quantity that is denoted by hv2iH in Ref. [1]. It can be
de�ned formally as a ratio of matrix elements in NRQCD. For example, in the case of �c, it
can be written as

hv2i�c =
h;j�y(� i

2D)
2 j�ci

m2
c h;j�y j�ci

: (34)

The naive interpretation of hv2iH is the average value of v2 for the charm quark in the
charmoniumH. In the Buchm�uller-Tye potential model, the average value of v2 weighted by
the probability density is 0.23 for the 1S states �c and J= and 0.29 for the 2S states �c(2S)
and  (2S) [12]. However the proper interpretation of the ratio of matrix elements in (34) is
the average value of v2 weighted by the wavefunction. Unfortunately this quantity has power
ultraviolet divergences and requires a subtraction. For example, the wavefunction for the
1S states in potential models can be approximated fairly accurately by a momentum space
wavefunction of the form  (p) = 1=(p2+m2

cv
2
1S)

2 where v1S is a phenomenological parameter.
The integral

R
d3p p2 (p) has a linear ultraviolet divergence. Minimal subtraction of this

linear divergence gives the negative value hv2iH = �3v21S. Thus the extraction of estimates
of hv2iH from potential models is not straightforward.
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There is a connection between the quantity hv2iH and the mass of the charmonium state
H that was �rst derived by Gremm and Kapustin [15]. The most convenient form of this
relation for relativistic applications is

M2
H = 4m2

c

�
1 + hv2iH + : : :

�
; (35)

where the corrections are of order m2
cv

4. The mass mc that appears in this relation is the
pole mass. The pole mass su�ers from renormalon ambiguities, but those ambiguities are
largely compensated by corresponding ambiguities in the matrix elements that de�ne hv2iH
[16, 17].

We can use the Gremm-Kapustin relation (35) to obtain a phenomenological determina-
tion of hv2iH using the mass MH of the charmonium state as input:

hv2iH � M2
H � 4m2

c

4m2
c

: (36)

where mc is the pole mass of the charm quark. The masses for the charmonium states �c,
J= , and  (2S) are well-measured. The �c(2S) was only recently discovered by the BELLE
Collaboration with a mass of M�c(2S) = 3654� 6� 8 MeV [18]. If we set mc = 1:4 GeV, the
values of hv2iH for the S-wave states are hv2i�c = 0:13, hv2iJ= = 0:22, hv2i�c(2S) = 0:70, and
hv2i (2S) = 0:73. The values of hv2iH for the 2S states are uncomfortably large, but those
large values are necessary to compensate for the fact that 2mc = 2:8 GeV is far from the
mass of the 2S states.

B. Relativistic correction factor

The relativistic correction to the cross section for the process J= + �c can be calculated
by replacing the amplitude factors (9a) and (13a) by

M[�c] =

�
M�chO1i�c

4Ncm2
c(1 + hv2i�c)

�1=2�
A+

m2
c

3
hv2i�c C�� I��

�
; (37)

M[J= (�)] =

�
MJ= hO1iJ= 

4Ncm2
c(1 + hv2iJ= )

�1=2�
A� +

m2
c

3
hv2iJ= C��� I��

�
��(�): (38)

The prefactors take into account the relativistic normalizations of c�c states and charmonium
states. Strictly speaking, the factor of (1 + hv2iH)�1=2 should be expanded out to �rst
order in hv2iH . However if we use phenomenological determinations of the NRQCD matrix
elements hO1iH , the prefactor in (37) or (38) cancels. We therefore choose not to expand
the prefactors.

There are relativistic corrections to the electromagnetic annihilation decay rates used to
determine the NRQCD matrix elements in Table I. For the decay rates of the �c and the
J= given in Eqs. (30a) and (30b), the leading relativistic correction can be expressed as a
multiplicative factor �

1� 1

6
hv2iH

�2

� MH

2mc(1 + hv2iH) �
2mc

MH

: (39)

The correction has been expressed as the product of three factors. The �rst factor, which
appears squared, comes from the expansion of the amplitude in powers of the relative velocity
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of the c�c pair. The second factor comes from the prefactor in Eq. (37) or (38). The last
factor comes from the relativistic normalization factor 1=(2MH ) in the standard expression
for the decay rate. Note that the factors of MH cancel in Eq. (39).

We have calculated the relativistic corrections to the cross section for J= + �c. The
leading correction to the ratio R in Eq. (18) can be expressed as the multiplicative factor

 
1 +

8Y + 3(Y + 4)r2 � 5r4

12(r2 � Y )
hv2iJ= + 2Y + (Y + 14)r2 � 5r4

12(r2 � Y )
hv2i�c

!2

� MJ= 

2mc(1 + hv2iJ= )
M�c

2mc(1 + hv2i�c)
�
"
1 � r2

2(1 � r2)

�hv2iJ= + hv2i�c�
#3=2

: (40)

The correction has been written as the product of three factors. The �rst factor, which
appears squared, comes from the expansion of the amplitude in powers of the relative velocity
of the c�c pair. The second factor comes from the prefactors in Eqs. (37) and (38). The last
factor is the nonrelativistic expansion of the term (PCM=Ebeam)3 divided by its value in the
nonrelativistic limit, where one power is from the phase space factor (20) and the other two
are from the square of the amplitude in Eq. (16).

Our �nal result for the relativistic correction can be expressed as a multiplicative factor
obtained by dividing (40) by a factor of (39) for each of the charmonium states. We express
it in the form: 

1 +
8Y + 3(Y + 4)r2 � 5r4

12(r2 � Y )
hv2iJ= + 2Y + (Y + 14)r2 � 5r4

12(r2 � Y )
hv2i�c

!2

�
�
1� 1

6
hv2iJ= 

��2�
1� 1

6
hv2i�c

��2

� MJ= M�c

4m2
c

�
�
PCM=Ebeam

(1� r2)1=2

�3

: (41)

V. PREDICTIONS FOR B FACTORIES

In this section, we calculate the cross sections for exclusive double-charmonium produc-
tion in e+e� annihilation at the B factories. We also give a careful analysis of the errors in
the predictions for J= + �c.

A. Cross sections

The results in Section II were expressed in terms of the ratio R de�ned in Eq. (2). The
corresponding cross sections are

�[H1 +H2] =
4��2

3s
R[H1 +H2]: (42)

The ratios R depend on a number of inputs: the coupling constants �s and �, the charm
quark mass mc, and the NRQCD matrix elements hO1iH .

The value of the QCD coupling constant �s depends on the choice of the scale �. In the
QCD diagrams of Fig. 1, the invariant mass of the gluon is

p
s=2. We therefore choose the

scale to be � = 5:3 GeV. The resulting value of the QCD coupling constant is �s(�) = 0:21.

14



TABLE II: Cross sections in fb for e+e� annihilation into double-charmonium states H1 + H2 at

Ebeam = 5:3 GeV without relativistic corrections. The errors are only those from variations in the

NLO pole mass mc = 1:4� 0:2 GeV.

H2 n H1 J=  (2S) hc(1P )  1(1D)  2(1D)

�c 2.31 � 1.09 0.96 � 0.45 0 0.052 � 0.021 1.04 � 0.23

�c(2S) 0.96 � 0.45 0.40 � 0.19 0 0.022 � 0.009 0.43 � 0.09

�c0(1P ) 2.28 � 1.03 0.95 � 0.43 0.053 � 0.019

�c1(1P ) 0.47 � 0.16 0.19 � 0.07 0.258 � 0.064

�c2(1P ) 0.59 � 0.13 0.25 � 0.05 0.017 � 0.002

�c2(1D) 0.27 � 0.05 0.11 � 0.02

The numerical value for the pole mass mc of the charm quark is unstable under perturba-
tive corrections, so it must be treated with care. Since the expressions for the electromagnetic
annihilation decay rates in Eqs. (30a){(31b) include the perturbative correction of order �s,
the appropriate choice for the charm quark mass mc in these expressions is the pole mass
with corrections of order �s included. It can be expressed as

mc = �mc( �mc)

�
1 +

4

3

�s
�

�
: (43)

Taking the running mass of the charm quark to be �mc( �mc) = 1:2� 0:2 GeV, the NLO pole
mass is mc = 1:4 � 0:2 GeV.

Our predictions for the double-charmonium cross sections without relativistic corrections
are given in Table II. The error bars are those associated with the uncertainty in the NLO
pole mass mc only.

Our predictions for the double-charmonium cross sections for the S-wave states including
the leading relativistic correction are obtained by multiplying the values in Table II by the
factor (41). We use the values of hv2iH obtained from Eq. (36), which follows from the
Gremm-Kapustin relation. The resulting cross sections are given in Table III. The error
bars are those associated with the uncertainty in the NLO pole massmc only. The relativistic
corrections increase the central values of the cross sections by about 2.4 for J= + �c, by
about 6 for J= + �c(2S) and  (2S) + �c, and by about 13 for  (2S) + �c(2S). Although
the total correction factor for J= + �c is signi�cantly larger than 1, it is the product of
several modest correction factors that all go in the same direction. The largest individual
factor is (1:41)2 coming from the expansion of the amplitude. The corresponding factors for
J= + �c(2S),  (2S) + �c, and  (2S)+ �c(2S) are (2:11)2, (1:98)2, and (2:68)2, respectively.
These large correction factors indicate that the relativistic corrections to the cross sections
involving 2S states are too large to be calculated reliably using the method we have chosen.

Note that our method for calculating the relativistic correction signi�cantly increases the
sensitivity to the charm quark mass. The errors from varying mc in Table II are about 50%
for the S-wave states, while the errors in Table III correspond to increasing or decreasing
the cross section by about a factor of 3. The strong sensitivity to mc is another indication
that our method for calculating the relativistic corrections is unreliable. We will therefore
take the values in Table II to be our predictions for the cross sections and use Table III as
an indication of the possible size of the relativistic corrections.
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TABLE III: Cross sections in fb for e+e� annihilation into S-wave double-charmonium states

H1 + H2 at Ebeam = 5:3 GeV including relativistic corrections. The errors are only those from

variations in the NLO pole mass mc = 1:4� 0:2 GeV.

H2 n H1 J=  (2S)

�c 5:5+10:6�3:5 5:4+10:5�3:3

�c(2S) 6:3+11:9�3:8 5:0+10:1�2:9

B. Perturbative corrections

The QCD perturbative corrections to the electromagnetic annihilation decay rates used
to determine the NRQCD matrix elements in Table I have already been taken into account.
The QCD perturbative corrections to the cross section for J= +�c have not yet been calcu-
lated. However parts of the perturbative corrections are related to perturbative corrections
that have been calculated and we can use these to estimate the order of magnitude of the
perturbative corrections.

Some of the perturbative corrections can be associated with the wavefunctions of the
�c and J= . For the QED diagrams in Fig. 2, the QCD perturbative corrections would be
very closely related to those in the electromagnetic annihilation decay rates (30a) and (30b).
However for the QCD diagrams in Fig. 1, the QCD perturbative corrections associated with
the wavefunction could be very di�erent. In the expressions for electromagnetic annihilation
decay rates in Eqs. (30a){(31b), we have 4 examples of perturbative corrections associated
with wavefunctions. The root-mean-square of the 4 coeÆcients of �s is 0.66. We will
therefore take (1� 0:66�s)2 as our estimate for the perturbative correction associated with
each charmonium wavefunction.

There are other perturbative corrections that can be associated with the electromagnetic
charm current �c
�c. As an estimate for the magnitude of these corrections, we can use the
perturbative correction to the inclusive charm cross section. The corresponding ratio R is
[19]

R[c�c+X] = 3e2c(1 + r2=8)(1 � r2=4)1=2
�
1 +

�
1 +

3r2

4
� r4

16
+ : : :

�
�s
�

�
: (44)

If we setmc = 1:4 GeV and Ebeam = 5:3 GEV, then r2 = 0:28 and the perturbative correction
gives a multiplicative factor (1 + 0:19�s)2.

There are also perturbative corrections that can be associated with the QCD coupling
constants. We can estimate the size of these perturbative corrections by varying the scale �
up or down by a factor of 2. The factor �2s in the cross section changes by a multiplicative
factor of (1 � 0:92�s)

2.
To obtain an estimate of the errors in the double charmonium cross section associated with

perturbative corrections, we will add in quadrature the coeÆcients of �s in the perturbative
correction factors associated with each wavefunction, the charm current, and the factors of
�s. The resulting correction is a multiplicative factor (1� 1:3�s)2. If we set �s = 0:21, this
factor ranges from about 0.53 to about 1.62. Thus we should not be surprised if the QCD
perturbative corrections changed the predictions by 60%.
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C. Color-octet contributions

According to the NRQCD factorization formalism [1], the inclusive double-charmonium
cross sections are obtained by replacing the decay NRQCD matrix elements in the color-
singlet model terms by production NRQCD matrix elements and by adding additional terms
involving color-octet matrix elements. The color-octet contributions at this order in �s can
be obtained from the results in Section II by replacing the NRQCD matrix elements by
appropriate color-octet matrix elements and by replacing the constants X and Y by the
constants X8 = 1=

p
72 and Y8 = �3.

As an illustration, we consider the inclusive production of J= + �c. The leading color-
octet contribution for J= + �c +X can be obtained from the color-singlet model result for

�cJ + hc in Eq. (24) by substituting hO1(
3PJ )i�cJ ! hOJ= 

8 (3PJ )i=(2J + 1), hO1(
1P1)ihc !

hO�c
8 (

1P1)i, X ! X8 and Y ! Y8. The ratio R for J= + �c +X at this order includes two
terms:

R[J= + �c +X] =
2�2�2s
9

X2(r2 � Y )2r2(1 � r2)3=2
hOJ= 

1 (3S1)i
3m3

c

hO�c
1 (

1S0)i
m3
c

+

2X
J=0

�2�2s
108

X2
8GJ (r)r

4(1� r2)3=2
hOJ= 

8 (3PJ )i
(2J + 1)m5

c

hO�c
8 (

1P1)i
3m5

c

: (45)

By the velocity-scaling rules of NRQCD [1], the color-octet term is suppressed by a power
of v8, but that is partly compensated by an enhancement factor of 1=r6. Omitting the
color-octet term and applying the vacuum-saturation approximation to the NRQCD matrix
elements in the color-singlet term, we recover the nonrelativistic limit of the ratio R in
Eq. (18) for the exclusive J= + �c �nal state.

Color-octet processes can also contribute to the exclusive cross section for J= + �c. The
2 gluons emitted by one color-octet c�c pair in the transition to a color-singlet state that
can form charmonium can be absorbed by the other color-octet c�c pair. The amplitude is
suppressed by v4 relative to the color-singlet amplitude. The leading contribution to the
cross section will come from the interference between these two amplitudes and so will be
suppressed only by v4. The interference terms cancel when summed over all possible �nal
states, so they do not appear in the inclusive cross section (45). The color-octet contributions
will also have suppression factors of r2 that guarantee consistency with the helicity selection
rules of perturbative QCD in the limit r! 0.

D. Phenomenology

The BELLE Collaboration has recently measured the cross section for J= + �c [4]. The
J= was detected through its decays into �+�� and e+e�, which have a combined branching
fraction of about 12%. The �c was observed as a peak in the momentum spectrum of the
J= corresponding to the 2-body process J= + �c. The measured cross section is

�[J= + �c]�B[� 4] =
�
33+7�6 � 9

�
fb; (46)

where B[� 4] is the branching fraction for the �c to decay into at least 4 charged particles.
Since B[� 4] < 1, the right side of Eq. (46) is a lower bound on the cross section for J= +�c.
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The lower bound provided by (46) is about an order of magnitude larger than the central
value 2.3 fb of the calculated cross section for J= + �c in Table II. The largest theoretical
errors are QCD perturbative corrections, which we estimate to give an uncertainty of roughly
60%, the value of mc, which we estimate to give an uncertainty of roughly 50%, and a
relativistic correction that we have not been able to quantify with con�dence. If we take
the calculations of the relativistic corrections in Table III seriously, the extreme upper end
of the prediction is marginally compatible with the BELLE measurement. In our further
discussion, we will ignore the large discrepancy between the predicted cross section for
J= + �c and the BELLE measurement. We will focus on predictions for the ratios of cross
sections from Table II under the assumption that many of the theoretical errors will cancel
in the ratio.

In addition to measuring the cross section for J= + �c, the BELLE Collaboration saw
evidence for J= + �c(2S) and J= + �c0(1P ) [4] events. A 3-peak �t to the momentum
spectrum of the J= gave approximately 67, 42, and 39 events for �c, �c(2S), and �c0(1P )
with 
uctuations of 12-15 events. The proportion of events 1:00 : 0:63 � 0:25 : 0:58 � 0:24
is only marginally consistent with the proportions 1:00 : 0:42 : 0:99 of the cross sections
in Table II. These proportions are insensitive to the choice of mc. The absence of peaks
corresponding to �c1(1P ) and �c2(1P ) is also consistent with Table II. The cross sections
for J= + �cJ(1P ) for J = 1 and 2 are predicted to be smaller than for J = 0 by factors of
about 0.21 and 0.26, respectively.

If the cross sections for the narrow D-wave states are large enough, they could be discov-
ered at the B factories. The state �c2(1D) could be observed as a peak in the momentum
spectrum of J= corresponding to the 2-body process J= + �c2(1D). The prediction in
Table II for the cross section for J= + �c2(1D) is smaller than that for J= + �c by about
a factor 0.12. It might also be possible to discover the D-wave state  2(1D) as a peak in
the momentum spectrum of �c corresponding to the 2-body process  2(1D) + �c. The �c
could be detected through its decay into KK�, whose branching fraction is about 6%. The
prediction in Table II for the cross section for  2(1D) + �c is smaller than that for J= + �c
only by about a factor 0.45. Our predictions for the cross sections for J= + �c2(1D) and
 2(1D) + �c are based on a phenomenological determination of the NRQCD matrix ele-
ments that ignored mixing between the  (2S) and the  1(1D). If there is signi�cant mixing
between these two states, the cross sections for S-wave + D-wave could be a factor of 7
smaller.

In summary, we have calculated the cross sections for e+e� annihilation into exclusive
double charmonium states with opposite charge conjugation. Many of the cross sections are
large enough to be observed at B factories. In particular, it may be possible to discover the
D-wave states �c2(1D) and  2(1D). The cross sections for double charmonium su�er from
fewer theoretical uncertainties than inclusive charmonium cross sections. The largest uncer-
tainty comes from relativistic corrections. Measurements of exclusive double charmonium
cross sections will provide strong motivation for developing reliable methods for calculating
the relativistic corrections to quarkonium cross sections.

Note added: Liu, He, and Chao have recently calculated the �2�2s terms in the cross
sections for e+e� annihilation into J= + H, H = �c, �c0, �c1, and �c2 [20]. Their results
are consistent with ours.
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APPENDIX A: ANGULAR DISTRIBUTIONS

In this appendix, we give the angular distributions dR=dx for e+e� ! H1(�1) +H2(�2)
for each of the helicity states that contribute at order �2�2s or �

4. The angular variable is
x = cos �, where � is the angle between e� and H1 in the e+e� center-of-mass frame. The
results for R in the text are obtained by summing over all the helicities and integrating over
�1 < x < +1.

1. S-wave + S-wave

The angular distribution for J= + �c is

dR

dx
[J= (�1) + �c] =

�2�2s
24

X2(r2 � Y )2r2(1� r2)3=2
hO1iJ= hO1i�c

m6
c

(1 + x2); (A1)

The cross section for the longitudinal helicity component �1 = 0 of the J= vanishes.

2. S-wave + P -wave

The angular distributions for J= + �cJ are

dR

dx
[J= (�1) + �cJ (�2)] =

�2�2s
432

X2r2(1� r2)1=2
hO1iJ= hO1i�cJ

m8
c

FJ(�1; �2; x): (A2)

The non-vanishing entries of FJ(�1; �2; x) are

F0(0; 0; x) =
3

4
r2[4 + 2(Y + 5)r2 � 3r4]2(1 � x2); (A3a)

F0(�1; 0; x) =
3

8
[4Y � 6(Y + 3)r2 + 7r4]2(1 + x2); (A3b)

F1(0;�1; x) =
9

16
r4[2(3Y + 4)� 7r2]2(1 + x2); (A3c)

F1(�1; 0; x) =
9

16
[8Y � 2Y r2 + r4]2(1 + x2); (A3d)

F1(�1;�1; x) =
9

8
r2[4Y + 2(Y + 2)r2 � 3r4]2(1� x2); (A3e)

F2(0; 0; x) =
3

2
r2[4 + 2(Y � 1)r2 � 3r4]2(1 � x2); (A3f)

F2(0;�1; x) =
9

16
r4[2(Y + 2) � 5r2]2(1 + x2); (A3g)

F2(�1; 0; x) =
3

16
[8Y � 6(Y + 2)r2 + 11r4]2(1 + x2); (A3h)

F2(�1;�1; x) =
9

8
r2[4Y � 2(Y + 2)r2 + 3r4]2(1� x2); (A3i)

F2(�1;�2; x) =
9

8
r4[2Y � r2]2(1 + x2): (A3j)
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3. P -wave + P -wave

The angular distributions for hc + �cJ are

dR

dx
[hc(�1) + �cJ (�2)] =

�2�2s
108

X2r4(1� r2)3=2
hO1ihchO1i�cJ

m10
c

GJ (�1; �2; x): (A4)

where non-vanishing entries of GJ (�1; �2; x) are given by

G0(�1; 0; x) =
3

8
r2(6� r2)2(1 + x2); (A5a)

G1(0; 0; x) = 18(1 � x2); (A5b)

G1(0;�1; x) =
225

16
r2(2 � r2)2(1 + x2); (A5c)

G1(�1; 0; x) =
9

16
r2(2� r2)2(1 + x2); (A5d)

G2(0;�1; x) =
9

16
r2(4� 5r2)2(1 + x2); (A5e)

G2(�1; 0; x) =
3

16
r6(1 + x2); (A5f)

G2(�1;�2; x) =
9

8
r6(1 + x2): (A5g)

Note that G2(�1; 0; x) is more suppressed than the prediction from the hadron helicity
conservation rule.

4. S-wave + D-wave

The angular distributions for J= + �c2 are

dR

dx
[J= (�1) + �c2(0)] =

�2�2s
36

X2(Y � 2r2)2r2(1 � r2)7=2
hO1iJ= hO1i�c2

m10
c

(1 + x2): (A6)

The cross sections for the longitudinal helicity component �1 = 0 of the J= and the helicity
components �2 = �1 and �2 of the �c2 vanish.

The angular distributions for  1 + �c are

dR

dx
[ 1(�1) + �c] =

�2�2s
23040

X2(26Y � 21r2 + 10r4)2r2(1� r2)3=2
hO1i 1hO1i�c

m10
c

(1 + x2):(A7)

The cross section for the longitudinal helicity component �1 = 0 of the  1 vanishes.
The angular distributions for  2 + �c are

dR

dx
[ 2(�1) + �c] =

�2�2s
54

X2r4(1 � r2)3=2
hO1i 2hO1i�c

m10
c

H(�1; x): (A8)

The non-vanishing entries of H(�1; x) are

H(0; x) =
9

2
(1 � x2); (A9a)

H(�1; x) =
3

16
r2(7� 4r2)2(1 + x2): (A9b)
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