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ABSTRACT

We derive the general resummed e�ective Lagrangian for Higgs-mediated 
avour-changing neutral-

current (FCNC) interactions in the Minimal Supersymmetric Standard Model (MSSM), without

resorting to particular assumptions that rely on the squark-mass or the quark-Yukawa structure

of the theory. In our derivation we also include the possibility of explicit CP violation through

the Cabibbo{Kobayashi{Maskawa mixing matrix and soft supersymmetry-breaking mass terms.

The advantages of our resummed FCNC e�ective Lagrangian are explicitly demonstrated within

the context of phenomenologically motivated scenarios. We obtain new testable predictions in

the large tan� regime of the theory for CP-conserving and CP-violating observables related to

the K- and B-meson systems, such as �MK;B, �K , �
0=�, B(Bd;s ! `+`�) and their associated

leptonic CP asymmetries. Finally, based on our resummed FCNC e�ective Lagrangian, we can

identify con�gurations in the soft supersymmetry-breaking parameter space, for which a kind

of a Glashow{Iliopoulos{Maiani-cancellation mechanism becomes operative and hence all Higgs-

mediated, tan �-enhanced e�ects on K- and B-meson FCNC observables vanish.
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1 Introduction

The appearance of too large 
avour-changing neutral-current (FCNC) interactions of Higgs

bosons to fermionic matter is a generic feature of SU(2)L�U(1)Y theories with two and

more Higgs doublets. Unless there is a symmetry to forbid these Higgs-mediated FCNC

interactions to occur in the bare Lagrangian of the model [1], their unsuppressed existence

will inevitably lead to predictions for rare processes in the kaon and B-meson systems

that violate experimental limits by several orders of magnitude [1, 2]. In the minimal

realization of softly-broken supersymmetry (SUSY), the Minimal Supersymmetric Standard

Model (MSSM), the holomorphicity of the superpotential prevents the occurrence of Higgs-

boson FCNCs by coupling the one Higgs-doublet super�eld, bH1, to the down-quark sector,

and the other one, bH2, to the up-quark sector. However, the above holomorphic property of

the superpotential is violated by �nite radiative (threshold) corrections due to soft SUSY-

breaking interactions [3, 4]. As a consequence, Higgs-mediated FCNCs reappear at the

one-loop level, but are naturally suppressed for low and intermediate values of tan� =

h bH2i=h bH1i, i.e. for tan � <
� 20. For larger values of tan �, e.g. tan� >

� 30, the FCNCs

partially overcome the loop suppression factor 1=(16�2) and become phenomenologically

relevant [5, 6], especially for the K- and B-meson systems.

Recently, the topic of Higgs-boson FCNCs in the large-tan� limit of the MSSM has

received much attention [5{16]. Several approaches have been devised to implement the

non-holomorphic �nite radiative corrections into the phenomenological analysis of FCNC

processes, such as K0 �K0 and B0 �B0 mixings, B ! Xs
 and Bs ! `+`�. In most cases,

however, the suggested approaches to threshold radiative e�ects involve certain explicit or

implicit assumptions pertinent to the squark-mass and the quark-Yukawa structures of the

theory, such as the dominance of the top quark in the FCNC transition amplitudes. We

term the latter assumption the t-quark dominance hypothesis. On the other hand, some

of the approaches neglect higher-order terms in the resummation of threshold corrections

to d-quark Yukawa couplings, which become important in the large-tan� regime of the

theory.

In this paper we derive the e�ective Lagrangian that properly takes into account the

resummation of higher-order threshold e�ects on Higgs-boson FCNC interactions to down

quarks. To accomplish this in Section 2, we avoid the imposition of particular assump-

tions on the structure of the soft squark masses and the quark-Yukawa couplings of the

theory. Moreover, we do not rely on speci�c kinematic approximations to the transition

amplitudes, such as the aforementioned t-quark dominance hypothesis in the FCNC matrix
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elements. In our derivation of the e�ective Lagrangian, we also consider the possibility of

CP violation through two sources: (i) the Cabibbo-Kobayashi-Maskawa (CKM) mixing

matrix [17] and (ii) the soft SUSY-violating mass terms. As we explicitly demonstrate

in Section 3, our resummed FCNC e�ective Lagrangian gives rise to new testable predic-

tions for CP-conserving as well as CP-violating observables related to the K- and B-meson

systems. In the same section, we qualitatively discuss the implications of tan �-enhanced

Higgs-mediated interactions for the direct CP-violation parameter �0=� in the kaon system.

Section 4 is devoted to our numerical analysis of a number of K- and B-meson observables,

such as �MK , �K, �MBd;s
, B(Bd;s ! `+`�) and their associated leptonic CP asymme-

tries. In particular, based on our resummed FCNC e�ective Lagrangian, we are able to

identify con�gurations in the soft SUSY-breaking parameter space, for which a kind of a

Glashow{Iliopoulos{Maiani-cancellation mechanism (GIM) [18] becomes operative in the

Higgs{d-quark sector. As a result, all Higgs-mediated, tan �-enhanced e�ects on K- and

B-meson FCNC observables vanish. Finally, Section 5 summarizes our conclusions.

2 Resummed FCNC e�ective Lagrangian

In this section, we derive the general form for the e�ective Lagrangian of Higgs-mediated

FCNC interactions in the CP-violating MSSM. For this purpose, we also consistently resum

the tan �-enhanced radiative e�ects on the d-quark Yukawa couplings [7]. First, we analyze

a simple soft SUSY-breaking model based on the assumption of minimal 
avour violation [6,

10,13,14], where the CKM matrix is the only source of 
avour and CP violations. We �nd

that even within this minimal framework, the usually neglected c-quark contribution to

Higgs-mediated FCNC interactions may be competitive to the t-quark one in certain regions

of the parameter space. After having gained some insight from the above considerations,

we then extend our resummed e�ective Lagrangian approach to more general cases that

include a non-universal or hierarchical squark sector as well as CP violation originating

from the CKM matrix and the soft SUSY-breaking parameters.

Before discussing the most general case, let us �rst consider the following simple form

for the e�ective Yukawa Lagrangian governing the Higgs-mediated FCNC interactions in

the quark sector [5, 6]:

�LY = �d0R hd

h
�0�
1 + �0�

2

�
Êg + Êu h

y
uhu

� i
d0L + �0

2 �u
0
R hu u

0
L + H:c: ; (2.1)

where �0
1;2 are the electrically neutral dynamical degrees of freedom of the two Higgs
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Figure 1: Non-holomorphic radiative e�ects on the d-quark Yukawa couplings induced by

(a) gluinos ~g and (b) charged Higgsinos ~h�1;2.

doublets1 and the superscript `0' on the d- and u-type quarks denotes �elds in the interaction

basis. In (2.1), hd and hu are 3 � 3-dimensional down- and up-quark Yukawa matrices,

and [4{6]

Êg = 1
2�s
3�

m�
~g�

� I(m2
~dL
; m2

~dR
; jm~gj2) ; (2.2)

Êu = 1
1

16�2
��A�U I(m

2
~uL
; m2

~uR
; j�j2) (2.3)

are �nite non-holomorphic radiative e�ects induced by the diagrams shown in Fig. 1. In

the above, the loop integral I(x; y; z) is given by

I(x; y; z) =
xy ln(x=y) + yz ln(y=z) + xz ln(z=x)

(x� y) (y� z) (x� z)
; (2.4)

with I(x; x; x) = 1=(2x). To keep things simple in the beginning, we assume that in (2.2)

and (2.3), the bilinear soft SUSY-breaking masses of the squarks, m2
~uL;R

, m2
~dL;R

, and the

trilinear soft Yukawa couplings AU = Au;d are 
avour-diagonal and universal at the soft

SUSY-breaking scale MSUSY. We also neglect the left-right mixing terms ~uL-~uR and ~dL- ~dR

in the squark mass matrices. The consequences of relaxing the above assumptions will be

discussed later on.

From (2.1), we can easily write down the e�ective Lagrangian relevant to the e�ective

d- and u-type quark masses:

�Lmass =
v1p
2
�d0R hd

h
1 + tan �

�
Êg + Êu h

y
uhu

� i
d0L +

v2p
2
�u0R hu u

0
L + H:c: (2.5)

Our next step is to rede�ne the quark �elds as follows:

u0L = UQL uL ; d0L = UQL V dL ; u0R = UuR uR ; d0R = UdR dR ; (2.6)
1Throughout the paper, we follow the notation and the CP-phase conventions of [19].
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where UQL , UuR, UdR and V are 3-by-3 unitary matrices that relate the weak to mass eigen-

states of quarks. Evidently, V is by construction the physical CKM matrix. Substitut-

ing (2.6) into (2.5) yields

�Lmass = v1p
2
�dR UdRyhdUQL

h
1 + tan�

�
Êg + Êujĥuj2

� i
V dL +

v2p
2
�uR ĥu uL + H:c:

= �dR M̂d dL + �uR M̂u uL + H:c: ; (2.7)

where M̂d and M̂u are the physical d- and u-quark mass matrices, respectively. Consistency

of (2.7) implies

M̂u =
v2p
2
ĥu ; (2.8)

UdR
y
hdUQL =

p
2

v1
M̂dV

y R̂�1 ; (2.9)

with

R̂ = 1 + Êg tan� + Êu tan� jĥuj2 : (2.10)

Notice that (2.9) plays the rôle of a re-de�ning (renormalization) condition for the d-quark

Yukawa couplings, in the process of resumming higher-order radiative corrections. Observe

also that the matrix R̂ cannot be zero, as this would result in massless d quarks.

With the help of (2.6) and (2.9), we can now express our original Yukawa Lagrangian

(2.1) in terms of the mass eigenstates dL;R and uL;R in a resummed form:

�LY =

p
2

v1
�dR M̂dV

yR̂�1
h
�0�
1 + �0�

2

�
Êg + Êujĥuj2

� i
V dL + �0

2 �uRĥuuL + H:c:

=

p
2

v2

�
tan� �0�

1 � �0�
2

�
�dR M̂dV

yR̂�1V dL +

p
2

v2
�0�
2
�dR M̂d dL

+ �0
2 �uRĥuuL + H:c: (2.11)

In deriving the last equality in (2.11), we have employed the relation: R̂�1(Êg+Êujĥuj2) =

(1� R̂�1)= tan�.

It is very illuminating to see how the FCNC part of (2.11) compares with the literature,

e.g. with that obtained in Ref. [6]. To this end, let us �rst assume that 1 + Êg tan� 6= 0

and decompose R̂�1 as follows:

R̂�1 =
1

1+ Êg tan �
+ �FC ; (2.12)
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where �FC is the diagonal matrix

�FC = � Êu jĥuj2 tan �
(1 + Êg tan�) R̂

: (2.13)

Making use of the above linear decomposition of R̂�1 and the unitarity of the CKM matrix

in (2.11), the FCNC part of our resummed e�ective Lagrangian reads

�LFCNC =

p
2

v2

�
tan� �0�

1 � �0�
2

�
�diRmdi

�
V �
ti�

(t)
FCVtj + V �

ci�
(c)
FCVcj + V �

ui�
(u)
FCVuj

�
djL ;

(2.14)

where �
(u;c;t)
FC are the diagonal entries of �FC and summation over i; j = d; s; b is understood.

The term proportional to �
(t)
FC gives the top quark contribution, which is the result of [6]

and subsequent articles [10, 13, 14]. However, we should remark here that the frequently-

used top-quark dominance approximation cannot be justi�ed from considerations based

only on minimal 
avour-violation models [6, 10, 13, 14]. In fact, the other terms in (2.14)

and especially the one proportional to �
(c)
FC due to the charm-quark contribution become

rather important in the limit 1 + Êg tan� ! 0. In this limit, the singularity in �
(t)
FC is

canceled against the singularities of �
(c)
FC and �

(u)
FC as a result of the unitarity of V. In this

context, we should note that the limit 1+ Êg tan� ! 0 is not attainable before the theory

itself reaches a non-perturbative regime. Requiring that all d-quark Yukawa couplings are

perturbative, we can estimate the lower bound, j1+ Êg tan �j >� 2:5�10�2, for tan � = 50.2

Although j1 + Êg tan �j must not vanish in perturbation theory, it can be suÆciently close

to zero, so that the c-quark contribution becomes competitive with the t-quark one.

So far, we have assumed that the radiatively-induced matrices Êg and Êu in the e�ective

Yukawa Lagrangian (2.1) are proportional to the unity matrix. However, this assumption

of 
avour universality is rather speci�c. It gets generally invalidated by the mixing of the

squark generations, the soft trilinear Yukawa couplings and renormalization-group (RG)

running of the soft SUSY-breaking parameters from the uni�cation to the low-energy scale.

In this respect, the minimal-
avour-violation hypothesis, although better motivated, should

also be viewed as a particular way from minimally departing from universality.

Nevertheless, given that threshold radiative e�ects on the up sector are negligible, espe-

cially for large values of tan�, it is straightforward to derive the general resummed form for

2To obtain this lower limit, we simply take the trace of the square of (2.9) and demand that

Trjĥdj2 < 3, or equivalently Tr[(R̂�1)yV jM̂dj2V y
R̂
�1] < 3v21=2. The latter implies that j1 + Êg tan�j >

�

(ms tan�)=(
p
3mt) = 5� 10�4 tan�. Finally, it is amusing to notice that if =mÊg = 0 and <eÊg < 0,

a perturbative upper bound on tan�, tan� <
� 1=jÊgj, may be derived beyond the tree level.
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the Higgs-mediated FCNC e�ective Lagrangian. Starting from general non-diagonal ma-

trices ~Eg and ~Eu in (2.1) and following steps very analogous to those from (2.1) to (2.11),

we arrive at the same form as in (2.11) for the resummed FCNC e�ective Lagrangian, but

with Êg, Êu and R̂ replaced by

Eg = UQL
y~EgUQL ; Eu = UQL

y~EuUQL ; (2.15)

R = 1 + tan�
�
Eg + Eu jĥuj2 + : : :

�
; (2.16)

where the ellipses in (2.16) denote additional (generically sub-dominant) threshold ef-

fects [20]. Notice that the unitary matrix UQL in (2.15), which is only constrained by

the relation jĥuj2 = UQL
y
hyuhuUQL , introduces additional non-trivial model dependence in

the matrices Eg, Eu and R. In other words, the presence of UQL re
ects the fact that the

3 � 3-dimensional matrices hyuhu, m
2
~uL

and m2
~dL

cannot be diagonalized simultaneously,

without generating FCNC couplings in other interactions in the MSSM Lagrangian, e.g.

in the ~W3-uL-~uL and ~W�-uL- ~dL couplings. Moreover, even in minimal 
avour-violating

scenarios, the 3 � 3-dimensional matrix R may generally contain additional radiative ef-

fects proportional to UQL
y
hydhdUQL induced by RG running of the squark masses from the

uni�cation to the soft SUSY-breaking scale MSUSY. These contributions can be resummed

individually by taking appropriately the hermitian square of the modi�ed (2.9) and solving

for UQL
y
hydhdUQL . This last step may involve the use of iterative or other numerical methods.

In the general case of a non-universal squark sector, the resummed FCNC couplings

of the Higgs bosons to down-type quarks can always be parameterized in terms of a well-

de�ned set of parameters at the electroweak scale. In the weak basis, in which UQL = 1,

the set of input parameters consists of: (i) the soft squark mass matrices m2
~uL;R

, m2
~dL;R

and

soft Yukawa-coupling matrices Au;d; (ii) the u- and d-quark masses; (iii) the CKM mixing

matrix V.

In our last step in deriving the resummed FCNC e�ective Lagrangian, we express the

Higgs �elds �0
1;2 in terms of their mass eigenstatesH1;2;3 and the neutral would-be Goldstone

boson G0 in the presence of CP violation [21]. Following the conventions of [19], we relate

the weak to mass eigenstates through the linear transformations:

�0
1 =

1p
2

h
O1iHi + i

�
cos � G0 � sin � O3iHi

� i
;

�0
2 =

1p
2

h
O2iHi + i

�
sin� G0 + cos � O3iHi

� i
; (2.17)

where Oij is a 3-by-3 orthogonal matrix that accounts for CP-violating Higgs-mixing ef-

fects [22]. If we substitute the weak Higgs �elds �0
1;2 by virtue of (2.17) into (2.11), we
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obtain the general resummed e�ective Lagrangian for the diagonal as well as o�-diagonal

Higgs interactions to d quarks,

LHi
�dd0 = � gw

2MW

3X
i=1

Hi
�d
�
M̂d g

L
Hi

�dd0 PL + gRHi
�dd0 M̂d0PR

�
d0 ; (2.18)

where PL (R) = [1� (+) 
5]=2 and

gLHi
�dd0 = VyR�1V

O1i

cos �
+
�
1 � VyR�1V

� O2i

sin�
� i

�
1 � 1

cos2 �
VyR�1V

� O3i

tan �
;

gRHi
�dd0 = ( gLHi

�dd0 )
y : (2.19)

The 3� 3-dimensional matrix R in (2.19), which resums all tan �-enhanced �nite radiative

e�ects, is given by (2.16). Equation (2.18), along with (2.19), constitutes the major result

of the present paper, which will be extensively used in our phenomenological discussions

in Section 3.

Finally, let us summarize the most important properties of the resummed e�ective

Lagrangian (2.18):

(i) The FCNC interactions in (2.18) are described by tan2 �-enhanced terms that are

proportional to O1i and O3i and to V
yR�1V in (2.19). These tan2 �-enhanced FCNC

terms properly take into account resummation,3 non-universality in the squark sector

and CP-violating e�ects.

(ii) The resummation matrix R controls the strength of the Higgs-mediated FCNC ef-

fects. For instance, if R is proportional to unity, then a kind of a GIM-cancellation

mechanism [18] becomes operative and the Higgs-boson contributions to all FCNC

observables vanish identically in this case. Furthermore, as well as the top quark, the

other two lighter up-type quarks can give signi�cant contributions to FCNC tran-

sition amplitudes, which are naturally included in (2.18) through the resummation

matrix R.

3In addition to the non-holomorphic contributions we have been considering here, there are in general

holomorphic radiative e�ects on the �0
1 coupling to d quarks which have an analogous matrix structure,

i.e. "g + "ujĥuj2. These additional holomorphic terms are generally small, typically of order 10�2, and

only slightly modify the form of the matrix R to: R = 1 + (1 + "g + "ujĥuj2)�1(Eg + Eujĥuj2) tan�.
Obviously, such a modi�cation does not alter the general form of the e�ective couplings in (2.19) and is

beyond the one-loop order of our resummation. Therefore, these additional small holomorphic terms can

be safely neglected.
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(iii) In the CP-invariant limit of the theory, the e�ective couplings gL;R
Hi

�dd0
are either pure

real or pure imaginary numbers. Moreover, in the limit V ! 1, the e�ective La-

grangian (2.18) of the diagonal Higgs-couplings to down quarks is in excellent agree-

ment with the one presented in [19].

(iv) IfMH+ �MH2;3 �MH1 , one can show that O11 � cos �, O21 � sin� and O31 � 0. In

this case, the H1-coupling to d quarks becomes SM like and so H1-mediated FCNC

e�ects are getting suppressed. Instead, the FCNC couplings of the heavy H2;3 bosons

to d-type quarks retain their tan �-enhanced strength in the above kinematic region.

(v) The one-loop resummed e�ective Lagrangian (2.18) captures the major bulk of the

one-loop radiative e�ects [23] for large values of tan �, e.g. for tan � >
� 40, and for a soft

SUSY-breaking scale MSUSY much higher than the electroweak scale [7]. In addition,

(2.18) is only valid in the limit in which the four-momentum of the d quarks and

Higgs bosons in the external legs is much smaller than MSUSY. This last condition is

automatically satis�ed in our computations of low-energy FCNC observables.

In the next section, we will study in detail the phenomenological consequences of the

tan �-enhanced FCNC e�ects mediated by Higgs bosons on rare processes and CP asym-

metries related to the K- and B-meson systems.

3 Applications to K- and B-meson systems

We shall now analyze the impact of our resummed e�ective Lagrangian (2.18) for Higgs-

mediated FCNC interactions on representative K- and B-meson observables. For compre-

hensive reviews on K- and B-meson physics, we refer the reader to [24{26].

3.1 �MK, �K and �0=�

Our starting point is the e�ective Hamiltonian for the �S = 2 interactions,

H�S=2
e� =

G2
F

16�2
M2

W

X
i

Ci(�)Qi(�) ; (3.1)

where GF = 1:16639�10�5 GeV�2 is the Fermi constant, and Ci(�) are the scale-dependent

Wilson coeÆcients associated to the �S = 2 quark-dependent operators Qi. Note that the
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CKMmatrix elements in (3.1) have been absorbed into the Wilson coeÆcients. The �S = 2

operators Qi may be summarized as follows:

QVLL
1 = (�s
�PLd)(�s


�PLd) ; QVRR
1 = (�s
�PRd)(�s


�PRd) ;

QLR
1 = (�s
�PLd)(�s


�PRd) ; QLR
2 = (�sPLd)(�sPRd) ;

QSLL
1 = (�sPLd)(�sPLd) ; QSRR

1 = (�sPRd)(�sPRd) ;

QSLL
2 = (�s���PLd)(�s�

��PLd) ; QSRR
2 = (�s���PRd)(�s�

��PRd) ; (3.2)

with ��� =
1
2
[
�; 
�]. Here, much of our discussion and notation follows Ref. [27].

It now proves convenient to decompose both the K0- �K0 mass di�erence �MK and the

known CP-violating mixing parameter �K into a SM and a SUSY contribution:

�MK = MKL
� MKS

= �MSM
K +�MSUSY

K ;

�K = �SMK + �SUSYK : (3.3)

To a good approximation, one has

�MSM; SUSY
K = 2<e h �K0jH�S=2

e� jK0iSM;SUSY ; (3.4)

�SM; SUSY
K =

exp(i�=4)p
2�MK

=m h �K0jH�S=2
e� jK0iSM;SUSY : (3.5)

The SUSY contribution to the matrix element h �K0jH�S=2
e� jK0iSUSY may be written down

as [27, 28]

h �K0jH�S=2
e� jK0iSUSY =

G2
F

12�2
M2

WmKF
2
K�2B̂K

h
�PVLL
1

�
CVLL
1 + CVRR

1

�
+ �P LR

1 CLR
1 + �P LR

2 CLR
2

+ �P SLL
1

�
CSLL
1 + CSRR

1

�
+ �P SLL

2

�
CSLL
2 + CSRR

2

� i
; (3.6)

where mK = 498 MeV, FK = 160 MeV and the �P 's are the next-to-leading order (NLO)

QCD factors that include the relevant hadronic matrix elements [27{31]. At the scale � = 2

GeV, they are given by [27]

�PVLL
1 = 0:25 ; �P LR

1 = �18:6 ; �P LR
2 = 30:6 ; �P SLL

1 = �9:3 ; �P SLL
2 = �16:6 : (3.7)

On obtaining (3.7), we have used the numerical values: �2 = 0:57 and B̂K = 0:85� 0:15.
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From studies in the CP-conserving MSSM with minimal 
avour violation [10,14,28], it is

known that for large values of tan � >
� 40, the dominant contribution to h �K0jH�S=2

e� jK0iSUSY
comes from Higgs-mediated two-loop double penguin (DP) diagrams proportional to CLR

2 .

Within the framework of our large-tan�-resummed FCNC e�ective Lagrangian (2.18) that

includes CP violation, the Wilson coeÆcients due to DP graphs are found to be

C
SLL (DP)
1 = � 16�2m2

sp
2GFM2

W

3X
i=1

gLHi�sd
gLHi�sd

M2
Hi

;

C
SRR (DP)
1 = � 16�2m2

dp
2GFM2

W

3X
i=1

gRHi�sd
gRHi�sd

M2
Hi

;

CLR (DP)
2 = � 32�2msmdp

2GFM2
W

3X
i=1

gLHi�sd
gRHi�sd

M2
Hi

; (3.8)

where the tan2 �-enhanced couplings gL;RHi�sd
may be evaluated from (2.19). Note that the

DP Wilson coeÆcients in (3.8) exhibit a tan4 �-dependence and, although being two-loop

suppressed, they become very signi�cant for large values of tan� >
� 40.

In addition to the aforementioned DP contributions due to Higgs-boson exchange

graphs, there exist relevant one-loop contributions to h �K0jH�S=2
e� jK0iSUSY at large tan �:

(i) the t-H� box contribution to CLR
2 of the two-Higgs-doublet-model (2HDM) type, and

(ii) the one-loop chargino-stop box diagram contributing to CSLL
1 . The �rst contribution (i)

becomes signi�cant, up to 10%, only in the kinematic region MH� � mt. In this case, to a

good approximation, CSLL
1 may be given by [10, 28]

C
LR(2HDM)
2 � � 2msmd

M2
W

(V �
tsVtd)

2 tan2 � : (3.9)

Note that the light-quark masses contained in (3.8) and (3.9) are running and are evalu-

ated at the top-quark mass scale, i.e. ms(mt) ' 61 MeV, md(mt) ' 4 MeV. The second

contribution (ii) becomes non-negligible only for small values of the �-parameter [10, 28],

i.e. for j�j <� 200 GeV.

In view of the above discussion, the kinematic parameter range of interest to us is:

MSUSY; � � mt ; tan � >
� 40 ; (3.10)

including the case MH� � mt, for which the Higgs-mediated DP e�ects can dominate

the K0- �K0 transition amplitude. Thus, taking also into account the sub-dominant 2HDM
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contribution (3.9), formula (3.6) simpli�es to

h �K0jH�S=2
e� jK0iSUSY = 4:6� 10�11 GeV

� FK
160 MeV

�2 � �2
0:57

�� B̂K

0:85

�
�
h
30:6

�
CLR (DP)
2 + CLR (2HDM)

2

�
� 9:3

�
CSLL (DP)
1 + CSRR (DP)

1

� i
: (3.11)

Observe that the Wilson coeÆcients C1 and C2 contribute with opposite signs to

h �K0jH�S=2
e� jK0iSUSY. Based on (3.11), we will give numerical estimates of �MK and

�K in Section 4.

We now turn our attention to the computation of the direct CP-violation parameter

�0=� in the kaon system, induced by CP-violating Higgs-mediated FCNC interactions. In

the SM, unlike the Z-penguin graphs, the Higgs-penguin contribution to K ! ��, which

is proportional to the operator

QH = (�sPLd)
X

q=u;d;s

(�qq) ; (3.12)

has a suppressed Wilson coeÆcient proportional to m2
q=M

2
H , where the SM Higgs-boson

mass MH is subject into the experimental bound: MH
>
� 114 GeV. One might even think

of the possibility that the operator QH in (3.12), which has enhanced Wilson coeÆcients

for q = c; b, mixes with the gluonic and electroweak penguins, as well as with the other

basis operators in (3.2). However, as was already pointed out in [32], this is not the case,

and so the SM-Higgs penguin e�ects remain negligible.

The situation changes drastically in the MSSM with explicit CP violation, since the

Higgs-boson FCNC couplings to down-type quarks are substantially enhanced by tan2 �-

dependent terms, for large values of tan �. Furthermore, besides the CKM phase, the

presence of complex soft SUSY-breaking masses with large CP-violating phases may further

increase the Higgs-boson FCNC e�ects on �0=�. In fact, we note that soft CP-odd phases

could even be the only source [3] to account for direct CP violation.

To reliably estimate the new SUSY e�ect on �0=� due to Higgs-boson FCNC interactions,

we normalize each individual contribution with respect to the dominant SM contribution

arising from the operator Q6 =
P

q=u;d;s(�sPRq)(�qPLd) [33, 34], with Wilson coeÆcient y6,

viz.

�0

�
=
��0
�

�
6

�

SM + 
SUSY + 
Higgs

SUSY

�
: (3.13)

In the MSSM with minimal 
avour violation, the non-Higgs SUSY contribution 
SUSY

is small [35]. Sizable contributions may be obtained if one relaxes the assumptions of

universality and CP conservation in the squark sector [36, 37].
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Here, we compute a novel contribution to �0=�, namely the quantity 
Higgs
SUSY in (3.13),

which entirely originates from Higgs-boson exchange diagrams in the CP-violating MSSM.

Based on our resummed FCNC e�ective Lagrangian (2.18), we obtain in the zero strong-

phase approximation


Higgs
SUSY = 2

3X
i=1

X
q=u;d;s

msmq

M2
Hi

�
� =m(gLHi�sd

) gSHi�qq

A2�5�

� h�+��j(�sPLd)(�qq)jK0i0
y6 h�+��jQ6jK0i0 � 1

j!j
h�+��j(�sPLd)(�qq)jK0i2

y6 h�+��jQ6jK0i0

�

+
<e(gLHi�sd

) gPHi�qq

A2�5�

� h�+��j(�sPLd)(�q
5q)jK0i0
y6 h�+��jQ6jK0i0 � 1

j!j
h�+��j(�sPLd)(�q
5q)jK0i2

y6 h�+��jQ6jK0i0

��

+2
3X
i=1

X
q=u;d;s

mdmq

M2
Hi

(3.14)

�
� =m(gRHi�sd

) gSHi�qq

A2�5�

� h�+��j(�sPRd)(�qq)jK0i0
y6 h�+��jQ6jK0i0 � 1

j!j
h�+��j(�sPRd)(�qq)jK0i2

y6 h�+��jQ6jK0i0

�

+
<e(gRHi�sd

) gPHi�qq

A2�5�

� h�+��j(�sPRd)(�q
5q)jK0i0
y6 h�+��jQ6jK0i0 � 1

j!j
h�+��j(�sPRd)(�q
5q)jK0i2

y6 h�+��jQ6jK0i0

��
;

where the subscripts 0, 2 adhered to the hadronic matrix elements denote the total isospin

I of the �nal states, and A2�5� is a CKM combination in the Wolfenstein parameterization,

which has the value A2�5� � 1:3 � 10�4 in the SM. Furthermore, for �QCD = 325 MeV

and ms = 150 MeV, the SM Wilson coeÆcient y6 and the matrix element of Q6 take

on the values [34]: y6 = �0:089 and h�+��jQ6jK0i0 = �0:35 GeV3, respectively. Also,

experimental analyses suggest the value j!j = 0:045, approximately yielding the SM con-

tribution 
SM � 1 to �0=� in (3.13). Finally, the parameters gS;P
Hi

�dd
and gS;PHi�uu

that occur

in (3.14) are the diagonal scalar and pseudoscalar couplings of the Hi bosons to u- and

d-type quarks [19], whose strengths are normalized to the SM Higgs-boson coupling. These

reduced Hi-couplings are given by

gSHi
�dd = 1

2
( gLHi

�dd + gRHi
�dd ) ; gPHi

�dd = i
2
( gLHi

�dd � gRHi
�dd ) ; (3.15)

gSHi�uu
= O2i= sin� ; gPHi�uu

= �O3i cot � ; (3.16)

where we have neglected the small radiative threshold e�ects in the up sector.

On the experimental side, the latest world average result for <e(�0=�) is [38]

<e
� �0
�

�
= (1:66� 0:16)� 10�3 ; (3.17)
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at the 1-� con�dence level (CL). In the light of the experimental result (3.17) and the

discussion given above, we may conservatively require that

j
Higgs
SUSYj <

� 1 : (3.18)

The biggest contribution in the sum over quarks in (3.14) comes from the d-quark and

exhibits the qualitative scaling behaviour


Higgs
SUSY ' 2msmd

M2
H

tan3 �

j!j � O(1) : (3.19)

For instance, for tan� = 50 and MH = 200 GeV, (3.19) gives 
Higgs
SUSY ' 0:1 � O(1).

Obviously, such a contribution is, in principle, non-negligible, but very sensitively depends

on the actual values of the new hadronic matrix elements:

(QL;R
S;P )I = h�+��j (�sPL;Rd) (�q(1; 
5)q) jK0iI ; (3.20)

with I = 0; 2. A detailed calculation of the hadronic matrix elements (QL;R
S;P )I in (3.20) will

be given elsewhere. In Section 4, however, we will present numerical estimates of �MK

and �K within the context of generic soft SUSY-breaking models.

3.2 �MBq
, Bq ! `+`� and associated CP asymmetries

We start our discussion of a set of observables in the B-meson system by �rst analyzing

the B0
q - �B

0
q mass di�erence, �MBq with q = s; d, in the CP-violating MSSM at large tan �.

In the applicable limit of equal B-meson lifetimes, �MBq may be written as the modulus

of a sum of a SM and a SUSY term:

�MBq = 2 jh �B0
q jH�B=2

e� jB0
q iSM + h �B0

q jH�B=2
e� jB0

q iSUSYj ; (3.21)

where the e�ective �B = 2 Hamiltonian H�B=2
e� may be obtained from the �S = 2

one stated in (3.1), after making the obvious replacements: s ! b and d ! q, with

q = d; s. Proceeding as in Section 3.1, we arrive at analogous closed expressions for the

SUSY contributions to the �B = 2 transition amplitudes:

h �B0
djH�B=2

e� jB0
diSUSY = 1711 ps�1

�
B̂
1=2
Bd

FBd

230 MeV

�2�
�B
0:55

�
�
h
0:88

�
C
LR (DP)
2 + C

LR (2HDM)
2

�
� 0:52

�
C
SLL (DP)
1 + C

SRR (DP)
1

� i
;
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h �B0
s jH�B=2

e� jB0
siSUSY = 2310 ps�1

�
B̂
1=2
Bs

FBs

265 MeV

�2�
�B
0:55

�
�
h
0:88

�
C
LR (DP)
2 + C

LR (2HDM)
2

�
� 0:52

�
C
SLL (DP)
1 + C

SRR (DP)
1

� i
: (3.22)

In deriving (3.22), we have also substituted the values determined in [27{31] for the NLO-

QCD factors, along with their hadronic matrix elements at the scale � = 4:2 GeV:

�P LR
1 = �0:58 ; �P LR

2 = 0:88 ; �P SLL
1 = �0:52 ; �P SLL

2 = �1:1 : (3.23)

Moreover, the corresponding Wilson coeÆcients appearing in (3.22) may be recovered from

those in (3.8) and (3.9), after performing the quark replacements mentioned above.

Another observable, which is enhanced at large tan �, is the pure leptonic decay of B

mesons [5,6,8{15], �B0
q ! `+`�, with ` = �, � . Neglecting contributions proportional to the

lighter quark massesmd;s, the relevant e�ective Hamiltonian for �B = 1 FCNC transitions,

such as b! q`+`� with q = d; s, is given by

H�B=1
e� = � 2

p
2GF VtbV

�
tq

�
CS OS + CP OP + C10O10

�
; (3.24)

where

OS =
e2

16�2
mb (�qPRb) (�̀̀ ) ;

OP =
e2

16�2
mb (�qPRb) (�̀
5`) ;

O10 =
e2

16�2
(�q
�PLb) (�̀
�
5`) : (3.25)

Employing our resummed FCNC e�ective Lagrangian (2.18), it is not diÆcult to compute

the Wilson coeÆcients CS and CP in the region of large values of tan �:4

CS =
2�m`

�em

1

VtbV �
tq

3X
i=1

gRHi�qb
gS
Hi

�̀̀

M2
Hi

;

CP = i
2�m`

�em

1

VtbV �
tq

3X
i=1

gRHi�qb
gP
Hi

�̀̀

M2
Hi

; (3.26)

4Our approach to Higgs-mediated FCNC e�ects presented here may be extended to consistently account

for charged-lepton 
avour violation in B-meson decays, such as Bs;d ! `+`0� [39], where the e�ective o�-

diagonal Higgs-lepton-lepton couplings gS;P
Hi

�̀̀ 0
can be derived by following a methodology very analogous

to the one described in Section 2.
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while C10 = �4:221 is the leading SM contribution. In analogy to (3.15), the reduced scalar

and pseudoscalar Higgs couplings to charged leptons gS;P
Hi

�̀̀ in (3.26) are given by

gSHi
�̀̀ =

O1i

cos �
; gPHi

�̀̀ = � tan� O3i ; (3.27)

where non-holomorphic vertex e�ects on the leptonic sector have been omitted as being

negligibly small.

With the approximations mentioned above, the branching ratio for the �B0
q meson decay

to `+`� acquires the simple form [9]

B( �B0
q ! `+`�) = (3.28)

G2
F�

2
em

16�3
MBq�Bq jVtbV �

tqj2
s
1� 4m2

`

M2
Bq

��
1� 4m2

`

M2
Bq

�
jF q

Sj2 + jF q
P + 2m`F

q
Aj2
�
;

where �Bq is the total lifetime of the Bq meson and

F q
S;P = � i

2
M2

Bq
FBq

mb

mb +mq
CS;P ; F q

A = � i

2
FBq C10 : (3.29)

In our numerical estimates, we ignore the contribution from C10, as being subdominant in

the region of large tan�, i.e. for tan� >
� 40, where all Higgs-particle masses are well below

the TeV scale. The SM predictions as well as the current experimental bounds pertinent

to B( �B0
d ! `+`�) can be read o� from Table 1 in [40].

In the CP-violating MSSM, an equally important class of observables related to

B( �B0
d;s ! `+`�) [16] is the one probing possible CP asymmetries that can take place in the

same leptonic B-meson decays. The leptonic CP asymmetries may shed even light on the

CP nature of possible new-physics e�ects, as the SM prediction for these observables turns

out to be dismally small of order 10�3 [41]. This SM result is a consequence of the fact that

the CP-violating phase in B0- �B0-mixing parameter q=p is opposite to the one entering the

ratio of the amplitudes �AL(R)( �B
0
d;s ! l+L(R)l

�
L(R))=AL(R)(B

0
d;s ! l+L(R)l

�
L(R)), such that the

net CP-violating e�ect on the observable parameter �L(R) = (q=p)( �AL(R)=AL(R)) almost

cancels out.

There are two possible time-dependent CP asymmetries associated with leptonic B-

meson decays that are physically allowed:

A(B0
q!l+L l

�

L )

CP =

R1
0
dt�(B0

q (t)! l+L l
�
L ) �

R1
0
dt�( �B0

q (t)! l+Rl
�
R)R1

0
dt�(B0

q (t)! l+L l
�
L ) +

R1
0
dt�( �B0

q (t)! l+Rl
�
R)

(3.30)

and A(B0
q!l+Rl

�

R)

CP , with L$ R. Under the assumption that q=p is a pure phase, one �nds [41]

A(B0
q!l+L l

�

L )

CP = � 2xq =m�q
(2 + x2q) + x2q j�qj2

; A(B0
q!l+Rl

�

R)

CP = � 2xq =m�q
(2 + x2q) j�qj2 + x2q

; (3.31)
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where xq = �MBq=�Bq and

�q =
M q�

12

jM q
12j
�
VtbV

�
tq

V �
tbVtq

�
�l CS + CP + 2mlC10=(mbMBq)

�l C�
S � C�

P � 2mlC10=(mbMBq)
: (3.32)

In (3.32), �l = (1� 4m2
l =M

2
Bq
)1=2, M q

12 is the dispersive part of the B
0
q - �B

0
q matrix element,

and CS;P are Wilson coeÆcients given in (3.26). The maximal value that the leptonic CP

asymmetries in (3.31) can reach is Amax
CP = 1=

p
2 + x2q and is obtained for =m�q = j�qj2.

From current experimental data [42], one may extract the values xd = 0:76 and xs >
� 19 at

the 95% CL, which leads to Amax
CP (Bs) � 5% and Amax

CP (Bd) � 62%.

Within the framework of our resummed FCNC e�ective Lagrangian, we also improve

earlier calculations [41] of the CP asymmetries by including B0
q - �B

0
q mixing e�ects through

M q�
12=jM q

12j in (3.32). According to our standard approach of splitting the amplitude into

a SM and a MSSM part, we obtain for the SM part

M
q� (SM)
12 =

G2
FM

2
W

12�2
MBq�BB̂BqF

2
Bq
(VtqV

�
tb)

2 Stt ; (3.33)

where Stt � 2:38 is the value of the dominant mt-dependent loop function for a top-pole

mass mt = 175 GeV. The SUSY contribution to M
q� (SUSY)
12 = h �B0

djH�B=2
e� jB0

diSUSY may be

obtained from (3.22).

In the next section, we will present numerical estimates for the K- and B-meson FCNC

observables, based on the analytic expressions derived above.

4 Numerical estimates

In this section, we shall numerically analyze the impact of the tan2 �-enhanced FCNC

interactions on a number of K- and B-meson observables which were discussed in detail

in Sections 3.1 and 3.2, such as �MK , �K , �MBd
, �MBs , Bd ! �+��, Bs ! �+�� and

their associated leptonic CP asymmetries. For our illustrations, we consider two generic

low-energy soft SUSY-breaking scenarios, (A) and (B).

In scenario (A), the squark masses are taken to be universal and Êg and Êu are pro-

portional to the unity matrix at the soft SUSY-breaking scale MSUSY. The CP-conserving

version of this scenario has frequently been discussed in the literature within the context

of minimal 
avour-violation models, see e.g. [6].

In scenario (B) we assume the existence of a mass hierarchy between the �rst two gener-

ations of squarks and the third generation, namely the �rst two generations are degenerate
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and can be much heavier than the third one. In addition, although not mandatory, we

assume for simplicity that the model-dependent unitary matrix UQL in (2.15) is such that

Eg and Eu become diagonal matrices in this scenario. Clearly, in the limit, in which all

squarks are degenerate, scenario (B) coincides with (A).

In Fig. 2 we give a schematic representation of the generic mass spectrum that will

be assumed in our numerical analysis. More explicitly, we �x the charged Higgs-boson

MH+ to the value 200 GeV. Since the e�ect of the gaugino-Higgsino mixing [15, 16] on

the resummation matrix R can be signi�cantly reduced for m ~W � �, we ignore this

contribution by considering the relatively low value m ~W � 2mt �MSUSY in our numerical

estimates, with mt = 175 GeV. As can be seen from Fig. 2, the third-generation soft squark

mass m~t, the �-parameter, the gluino mass m~g and the trilinear soft Yukawa coupling AU

are set, for simplicity reasons, to the common soft SUSY-breaking scale MSUSY, which is

typically taken to be 1 TeV.

The soft squark masses of the other two generations are assumed to be equal to m~q in

our generic framework. To account for a possible hierarchical di�erence between the mass

scales m~t and m~q, we introduce the so-called hierarchy factor �, such that m~q = �m~t =

�MSUSY. As has been mentioned above, models of minimal 
avour violation correspond to

scenario (A) with � = 1. As we will see in detail in Sections 4.1 and 4.2, the predictions

for the K- and B-meson FCNC observables crucially depend on the values of the hierarchy

factor �. Equally important modi�cations in the predictions are obtained for di�erent

values of the soft CP-violating phases �g = arg (m~g) and �AU
= arg (AU). In addition, the

K- and B-meson FCNC observables exhibit a non-trivial dependence on the CKM phase

ÆCKM, which is varied independently in our �gures.

Although we primarily use tan� = 50 and MH+ = 0:2 TeV as inputs in our numerical

analysis, approximate predictions for other values of the input parameters may be obtained

by rescaling the numerical estimates by a factor

xO =
� tan�

50

�n
�
� 0:2 TeV

MH+

�k
; (4.1)

where the integers n and k depend on the FCNC observableO under study. Such a rescaling

proves to be fairly accurate for tan� >
� 40 and MH+

>
� 150 GeV, which is the kinematic

region of our interest.

18



4.1 �MK and j�K j

The SM e�ects on �MK and j�Kj were extensively discussed in the literature [43], so we

will not dwell upon this issue here as well. Instead, we assume that the SM explains well

the experimental results for the above two observables [42]:

�M exp
K = (3:490� 0:006)� 10�12 MeV ; (4.2)

j�expK j = (2:282� 0:017)� 10�3 : (4.3)

Given the signi�cant uncertainties in the calculation of hadronic matrix elements, however,

our approach will be to constrain the soft SUSY-breaking parameters by conservatively

requiring that �MSUSY
K and j�SUSYK j do not exceed in size the SM predictions.5

To start with, we display in Fig. 3 numerical values for the Higgs-boson DP e�ects on

�MK and j�K j as functions of the gluino phase argm~g, where the hierarchy factor � and

the phase �AU
= arg (At;b) of the soft SUSY-breaking trilinear Yukawa couplings assume

the discrete values: (�; �AU
) = (1; 0Æ); (10; 0Æ); (1; 90Æ); (10; 90Æ); (1; 180Æ); (10; 180Æ).

According to our CP-phase conventions [19], � is always taken be positive, while the

CKM phase ÆCKM is chosen to its maximal value 90Æ. The subdominant one-loop 2HDM

contribution coming from W�-H� box graphs [cf. (3.9)] has also been indicated by an

arrow in Fig. 3. Predictions for MH+ and tan � values other than those shown in

Fig. 2 may be approximately obtained by multiplying the numerical estimates by a fac-

tor xO = (tan�=50)4 � (0:2 TeV=MH+)2. We observe in Fig. 3 that the resulting values

for �MSUSY
K can exceed the experimental error in (4.2) by one order of magnitude, for

� = 10 and j�AU
j; j�~gj >

� 90Æ. For the same inputs, j�SUSYK j takes on values comparable

to the experimentally measured one (4.3). Here, we should stress the fact that universal

squark-mass scenarios corresponding to � = 1 can still predict sizeable e�ects on �K . This

non-zero result should be contrasted with the one of the gluino-squark box contributions

to �MK and j�K j [44] which do vanish in the limit of strictly degenerate squarks due to a

SUSY-GIM-cancellation mechanism.

In our case of Higgs-mediated FCNC observables, however, the situation is slightly

di�erent. As we have discussed in Section 2, the size of the FCNC e�ects is encoded

in the 
avour structure of the 3-by-3 resummation matrix R. Since R is diagonal for the

5Both �MK and j�K j place important constraints on the �-� plane of the unitarity triangle. The so-

derived limits can be used to constrain new physics. In this case, a global �t of all the relevant FCNC

observables to the unitarity triangle might be more appropriate. We intend to address this issue in a

future work.
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scenarios (A) and (B) under consideration, we can expand the tan �-enhanced FCNC terms

(VyR�1V)dd0 in (2.18) as follows:

(VyR�1V)dd0 = V �
udR

�1
u Vud0 + V �

cdR
�1
c Vcd0 + V �

tdR
�1
t Vtd0 ; (4.4)

where d and d0 collectively denote all down-type quarks, with d 6= d0. For the parameters

adopted in Fig. 2, the quantities R�1u;c;t can be simpli�ed further to6

R�1u �
h
1 +

� �s
3��2

e�i�~g +
jhuj2
32�2�2

e�i�AU
�
tan�

i�1
;

R�1c �
h
1 +

� �s
3��2

e�i�~g +
jhcj2
32�2�2

e�i�AU
�
tan�

i�1
;

R�1t =
h
1 +

� �s
3�

e�i�~g +
jhtj2
32�2

e�i�AU
�
tan �

i�1
: (4.5)

Then, from (4.5), it is easy to see that the o�-diagonal elements of VyR�1V increase

if �AU
; �~g = �� and so the e�ective couplings gL;R

Hi
�dd0
, thereby giving rise to enhanced

predictions. This is a very generic feature which is re
ected in Fig. 3 and, as we will see in

Section 4.2, also holds true for our numerical estimates of B-meson FCNC observables.

Neglecting the small Yukawa couplings of the �rst two generations and making use of

the unitarity of V, we �nd for d 6= d0

(VyR�1V)dd0 / V �
td Vtd0

�
�s
3�

e�i�~g
�

1

�2
� 1

�
� jhtj2

32�2
e�i�AU

�
tan� : (4.6)

If � = 1, the dominant FCNC e�ect originates from the second term in the square brackets

of (4.6), provided j1+ �s
3�
e�i�~g tan �j � 5� 10�4 tan� (see also footnote 2). If �� 1, then

gluino corrections become dominant; they are larger by a factor as
3�
= 1
32�2

' 3:6. However,

between the low and high �-regime, there is an intermediate value of �, where (VyR�1V)dd0

does exactly vanish for d 6= d0, and so the e�ective couplings gL;R
Hi

�dd0
. In this case, one has

R�1u = R�1c = R�1t in (4.5), implying that R is proportional to the unity matrix. Then, it

is (VyR�1V)dd0 = 0, as a result of a GIM-cancellation mechanism due to the unitarity of

the CKM matrix. We call such a point in the parameter space GIM operative point. The

� value, for which the GIM-cancellation mechanism becomes fully operative, may easily be

determined from (4.6), i.e.

�2GIM =
�
1 +

3jhtj2
32��s

ei(�~g��AU )
��1

: (4.7)

6For � >
� 10, the �rst two equations in (4.5) may be better approximated by replacing �! �=

p
2.
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For the MSSM parameter space under study, there is always a GIM-operative value for

the hierarchy factor �, i� �AU
� �~g = 0 or ��. For �AU

� �~g = 0, we have �GIM < 1,

whereas it is �GIM > 1, for �AU
� �~g = �. In fact, the second case is realized in Fig. 4

for �GIM � 1:22, where �MSUSY
K and j�SUSYK j vanish independently of the value of the

CKM phase. Here, we should emphasize the fact that the value of �GIM does not depend

on the FCNC observable under consideration and is in excellent agreement with the one

determined by (4.7). Because of the above 
avour-universal property of �GIM, one may

even face the very unusual possibility of discovering SUSY at high-energy colliders, without

accompanying such a discovery with any new-physics signal in low-energy K- and B-meson

FCNC observables.

It is now instructive to gauge the relative size of the di�erent DP-induced Wilson

coeÆcients in (3.8). For simplicity, let us take � = 1. Then, each individual DP-induced

Wilson coeÆcient in (3.8) may be approximately given by

3X
i=1

(gLHi�sd
)2 � (�

(t)
FC)

2 (V �
tsVtd)

2

3X
i=1

O2
1i �O2

3i + 2 i O1iO3i

M2
Hi

;

3X
i=1

(gRHi�sd
)2 � (�

(t)�
FC )

2 (V �
tsVtd)

2
3X
i=1

O2
1i �O2

3i � 2 i O1iO3i

M2
Hi

;

3X
i=1

(gLHi�sd
gRHi�sd

) � j�(t)FCj2 (V �
tsVtd)

2
3X
i=1

O2
1i +O2

3i

M2
Hi

; (4.8)

where �
(t)
FC is the t-quark dependent entry of the diagonal matrix �FC de�ned in (2.13).

For MH+
>
� 180 GeV, CP-violation and Higgs-mixing e�ects start to decouple from the

lightest H1-sector [19]. Moreover, in the region tan� >
� 40, the �2-component in the H2-

and H3-boson mass-eigenstates is suppressed. As a consequence of the latter, we obtain

3X
i=1

O2
1i � O2

3i

M2
Hi

=
�
O2
11 � O2

31

�� 1

M2
H1

� 1

M2
H23

�
+ O

�
M2

H2
�M2

H3

M2
H23

�
; (4.9)

3X
i=1

O1iO3i

M2
Hi

= O11O31

�
1

M2
H1

� 1

M2
H23

�
+ O

�
M2

H2
�M2

H3

M2
H23

�
; (4.10)

whereM2
H23

= 1
2
(M2

H2
+M2

H3
) and the orthogonality of the O matrix has been used. Since it

is O11; O31 � 1 in the kinematic region of our interest, then on account of (4.9) and (4.10)

and for maximal CKM phase ÆCKM = 90Æ, the dominant contribution to �MSUSY
K and

�SUSYK comes from the last DP expression in (4.8), namely from the Wilson coeÆcient
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C
LR (DP)
2 in (3.8), despite the additional suppression factor md=ms � 1=10 with respect to

C
SLL (DP)
1 . If ÆCKM = 0, �MSUSY

K still receives its largest contribution from C
LR (DP)
2 , while

j�SUSYK j is dominated by the �rst DP expression in (4.8), i.e. from C
SLL (DP)
1 ; the second DP

expression in (4.8) is very suppressed with respect to the �rst one by two powers of the

ratio md=ms. From Fig. (3), we also see that in addition to the CKM phase ÆCKM, the soft

SUSY-breaking CP-phases, such as arg (m~g) and arg (AU), may also give rise by themselves

to enhancements of j�MSUSY
K j and j�SUSYK j even up to one order of magnitude. Analogous

remarks and observations also hold true for the B-meson FCNC observables which are to

be discussed in the next section.

Finally, we should comment on the fact that the 2HDM contribution by itself due

to C
LR (2HDM)
2 in (3.9) can only give rise to the undetectably small numerical values,

j�M2HDM
K j = 5� 10�17 MeV and j�2HDMK j = 5� 10�6 (indicated by an arrow in the Fig. 3),

for ÆCKM = 90Æ.

4.2 �MBq
, Bq ! `+`� and associated leptonic CP asymmetries

In this section, we will present numerical estimates for a number of B-meson FCNC ob-

servables, such as the mass di�erence �MBq , the branching ratio for Bq ! `+`� and the

CP asymmetries associated with the B-meson leptonic decays. The current experimental

status of these observables is as follows [42]:

�MBd
= 0:489 � 0:008 ps�1 ; (4.11)

�MBs > 13:1 ps�1 ; (4.12)

B(Bs ! �+��) < 2:0� 10�6 (4.13)

and [45]

B(Bd ! �+��) < 0:015 : (4.14)

Future experiments at an upgraded phase of the Tevatron collider may reach higher sensi-

tivity to B(Bs ! �+��) up to the 10�8-level [11, 12, 46].

Let us start our discussion by numerically analyzing the B-meson mass di�erences

�MBd
and �MBs . As in the case of the K-meson observables, we use the same input

values as those shown in Fig. 2, i.e. MSUSY = 1 TeV, MH+ = 0:2 TeV and tan � =

50. Then, Fig. 5 displays the combined, SM and Higgs-DP, contributions to �MBd
and

�MBs as functions of the gluino phase arg (m~g), for ÆCKM = 90Æ and di�erent choices

of hierarchy factor � and �AU
. Note that the SM contributions alone for ÆCKM = 90Æ
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are displayed by horizontal dashed lines. Even though the SM predictions for �MBd;s
may

adequately describe by themselves the experimental values in (4.11) and (4.12), they cannot

yet decisively exclude possible new-physics contributions due to the inherent uncertainties

in the calculation of hadronic matrix elements such as those induced by SUSY Higgs-

mediated FCNC interactions. In particular, we observe in Fig. 5 that SM and Higgs-DP

e�ects may add constructively or destructively to the mass di�erences �MBd;s
. Similar

features are found in Fig. 6, where the SM and SUSY Higgs-DP contributions to �MBd

and �MBs are plotted versus the hierarchy factor �, for discrete values of ÆCKM and �AU
.

In our SM CKM-phase convention [42], unlike the CKM matrix element Vts, the matrix

element Vtd is very sensitive to ÆCKM values. As a result, the SM predictions for �MBd

strongly depend on the selected value of ÆCKM, as can be seen from Fig. 6.

In Fig. 7, we exhibit numerical values for the branching ratios B( �B0
s ! �+��) and

B( �B0
d ! �+��) as functions for the gluino phase arg (m~g), for MSUSY = 1 TeV, MH+ =

0:2 TeV, tan � = 50, and ÆCKM = 90Æ, where � and �AU
are varied discretely. Since the

branching ratios are driven by Higgs-penguin e�ects in the region of large tan�, predictions

for other inputs of tan � andMH+ may be easily estimated by rescaling the numerical values

by a factor xO = (tan�=50)6 � (0:2 TeV=MH+)4, for tan � >
� 40. Thus, confronting the

predictions for B( �B0
s ! �+��) with experiment data in (4.13), combined bounds on the

tan �-MH+ plane may be obtained for a given set of soft SUSY-breaking parameters. As we

see in Fig. 7, these combined bounds become even more restrictive for large gluino phases,

argm~g
>
� 90Æ, in agreement with our discussions in Section 4.1.

However, there is an additional factor that may crucially a�ect our predictions for

the branching ratios of the decays �B0
s ! �+�� and �B0

d ! �+��, namely the hierarchy

parameter �. As we show in Fig. 8, even for the extreme choice of a gluino phase argm~g =

180Æ, B( �B0
d ! �+��) and B( �B0

s ! �+��) can get very suppressed for a speci�c value of

� in certain soft SUSY-breaking scenarios that can realize a GIM-operative point in their

parameter space. As we detailed in Section 4.1, this phenomenon occurs for the universal

value of � = �GIM = 1:22, when �AU
� �~g = 0 or �180Æ. As can be seen in Fig. 8, the

predicted values for �B0
s ! �+�� and �B0

d ! �+��, where �AU
= 0Æ, con�rm the above

observation.

As we have already mentioned, the observables �MBs and B( �B0
s ! �+��) exhibit a

di�erent scaling behaviour with respect to MH+ and tan�, through the scaling factor xO

in (4.1). Once the above two kinematic parameters are �xed to some input values, the two

observables �MBs and B( �B0
s ! �+��) are then rather correlated to each other, since their

dependences on the �-parameter and AU are very similar in the minimal 
avour-violating
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case � = 1 [14]. As one can see from Figs. 5{8, our numerical analysis agrees well with

the above result for � = 1. However, we also observe that the correlation is practically lost

for � > 1, e.g. close to the GIM-operative points, and/or by the inclusion of CP-violating

e�ects, as �MBs and B( �B0
s ! �+��) have di�erent dependences on the soft CP-odd phases.

Let us now investigate the size of the CP asymmetries in the leptonic Bd-meson decays

in the CP-violating MSSM; the corresponding CP asymmetries for the Bs meson are ex-

perimentally constrained to be rather small, less than 5% (see also discussion after (3.32)).

In Fig. 9, we display numerical values for the CP asymmetries A(B0
d!�+L�

�

L )

CP and A(B0
d!�+R�

�

R)

CP

as functions of the gluino phase arg (m~g), forMSUSY = 1 TeV, MH+ = 0:2 TeV, tan� = 50,

and ÆCKM = 90Æ. As usual, we independently vary the parameters � and �AU
to take on the

discrete values � = 1; 10 and �AU
= 0Æ; 90Æ and 180Æ. We �nd that if the B0

d-
�B0
d mixing

is consistently taken into account, the typical size of A(B0
d!�+L�

�

L )

CP and A(B0
d!�+R�

�

R)

CP does not

exceed 0.7% and 3%, respectively. If B0
d-
�B0
d mixing is not included, the CP asymmetries can

reach slightly higher values up to 1.2% and 6%, respectively. The apparent reason for the

smallness of the CP asymmetries is due to the occurrence of an approximate cancellation

in the sum CS + CP in (3.32) at large tan �, as the muon velocity is �� � 1.

Having gained some insight from the above exercise, one may seek alternative ways

to enhance the di-muon asymmetries A(B0
d!�+

L;(R)
��
L;(R)

)

CP . To this end, the �rst attempt

would be to suppress the e�ect of the B0
d � �B0

d mixing by considering smaller tan � values,

e.g. tan� <
� 10. In this intermediate region of tan�, the above cancellation in the sum

CS + CP does not occur due to non-trivial CP-violating Higgs-mixing e�ects and so the

CP asymmetries A(B0
d!�+

L;(R)
��
L;(R)

)

CP can be signi�cantly increased. To get an idea of the

magnitude of the CP asymmetries in this case, we consider the so-called CPX scenario

introduced in [47] to maximize CP-violating e�ects in the lightest Higgs sector of an e�ective

MSSM. In the CPX scenario, the �-parameter and the soft trilinear Yukawa coupling AU

are set by the relations: � = 4MSUSY and AU = 2MSUSY. Thus, for MH+ = 0:15 TeV,

MSUSY = 1 TeV, tan� = 7, � = 10, �AU
= 45Æ and �~g = 0Æ, we �nd that CP-violating

Higgs-penguin e�ects can give rise to the CP asymmetries:

A(B0
d!�+L�

�

L )

CP � �9 % ; A(B0
d!�+R�

�

R)

CP � �37 % (4.15)

where B(Bd ! �+��) = 3:6 � 10�10, which is an order of magnitude larger than the

SM prediction [40]. Another variant of the CPX scenario of equally phenomenological

importance utilizes the parameters: tan � = 10, � = 10, �AU
= 45Æ and �~g = 90Æ, with

MSUSY = 1 TeV. In this case, we obtain

A(B0
d!�+L�

�

L )

CP � 11 % ; A(B0
d!�+R�

�

R)

CP � 43 % (4.16)
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and B(Bd ! �+��) = 4:1 � 10�9, which is two orders of magnitude above the SM pre-

diction. The above scenario appears to pass all the experimental constraints, including

those deduced from LEP2 analyses of direct Higgs searches [47, 48]. Most interestingly,

a possible observation of a non-zero CP asymmetry in the leptonic di-muon channel will

constitute the harbinger for new physics at B factories. At this stage, it is important to

comment on the fact that the numerical values stated in (4.15) and (4.16) should be viewed

as crude estimates, since they are obtained entirely on the basis of our resummed FCNC

e�ective Lagrangian (2.18) at the intermediate tan � regime. However, in this region of

tan �, we expect additional one-loop e�ects to start getting relevant, such as supersymmet-

ric Z-penguin and box diagrams. Even though our initial estimates given above appear

to yield rather encouraging results, a complete study of the leptonic B-meson branching

ratios and the respective CP asymmetries for all values of tan� would be preferable.

In the case of � -lepton CP asymmetries, the velocities of the decayed � -leptons ��

is roughly 0.5, so one naturally gets an appreciably higher value for the expression

�� CS + CP � 0:5CP in (3.32). As a result, larger values for the � -lepton CP asymme-

tries are expected. Indeed, in Fig. 10, we display numerical predictions for A(B0
d!�+L ��L )

CP and

A(B0
d
!�+

R
��
R
)

CP versus the gluino phase arg (m~g), for the same values of the input parameters

as in Fig. 9. Then, the CP asymmetries A(B0
d!�+L �

�

L )

CP and A(B0
d!�+R �

�

R )

CP can be as high as 9%

and 36%, respectively.

We conclude this section with some general remarks. In addition to theK- and B-meson

observables we have been studying here, there is a large number of other FCNC observables

which have to be considered in a combined full-
edged analysis. For example, the decay

B ! Xs
 [49,50] plays a central rôle in such a global analysis, because it will enable us to

delineate more accurately the CP-conserving/CP-violating soft SYSY-breaking parameter

space favoured by low-energy FCNC observables. Finally, in our numerical analysis, we

have concentrated on scenarios that minimally depart from the minimal 
avour-violation

assumption through the presence of diagonal, but non-universal squark masses. In the most

general case, however, the squark mass matrices and consequently the resummation matrix

R of the radiative threshold e�ects may not be diagonal. Such low-energy realizations with

o�-diagonal soft squark-mass matrices can still be treated exactly within the context of

our resummed FCNC e�ective Lagrangian (2.18), by appropriately considering non-trivial

quark-squark CKM-like matrices, such as the 3-by-3 unitary matrix UQL in (2.9).
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5 Conclusions

We have derived the general form for the e�ective Lagrangian of Higgs-mediated FCNC

interactions to d-type quarks, where large-tan� radiative threshold e�ects have been re-

summed consistently (cf. (2.18) and (2.19)). Our resummed FCNC e�ective Lagrangian is

free from pathological singularities, which mainly emanate from the top-quark dominance

hypothesis frequently adopted in the literature, and has been appropriately generalized

to include e�ects of non-universality in the squark sector, as well as CP-violation e�ects

originating from the CKM-mixing matrix and the complex soft SUSY-breaking masses.

In particular, our resummed e�ective Lagrangian can be applied to study Higgs-mediated

FCNC e�ects in more general soft SUSY-breaking scenarios, beyond those that have already

been discussed within the restricted framework of models with minimal 
avour violation.

Also, an approach to resumming radiative threshold e�ects, very analogous to the one de-

veloped in Section 2, can straightforwardly be applied to see-saw SUSY models, so as to

properly describe Higgs-mediated lepton-
avour-violating interactions.

Within the context of generic soft SUSY-breaking scenarios, we have analyzed a number

of K- and B-meson observables, such as �MK;B, �K , �
0=�, B(Bs;d ! `+`�) and their associ-

ated leptonic asymmetries [51], which are enhanced by Higgs-boson FCNC interactions for

large values of tan�. We have found that the predictions crucially depend on the choice

of soft CP-violating phases in a given set of soft SUSY-breaking parameters. For example,

for certain values of the gluino and stop phases, the predictions can reach and even exceed

the current experimental limits, whereas for other values of the CP-odd phases the FCNC

e�ects can be reduced by one or even two orders of magnitude. Most remarkably, we have

been able to identify con�gurations in the soft SUSY-breaking parameter space, such as

�GIM, where a kind of a GIM-cancellation mechanism becomes fully operative [cf. (4.7)] and,

as a result of the latter, all Higgs-mediated, tan �-enhanced e�ects on K- and B-meson

FCNC observables are completely absent.

Based on our resummed e�ective Lagrangian, one may now carry over the present anal-

ysis to a vast number of other K- and B-meson observables. Evidently, further dedicated

studies need be performed in this direction. We expect the obtained predictions to a�ect

other low- and high-energy observables, such as measurements of electron and neutron

electric dipole moments and Higgs-boson searches, as well as studies on cosmological elec-

troweak baryogenesis and dark matter. It would be very interesting to determine to which

degree the emerging CP-violating MSSM framework with CP-mixed Higgs bosons medi-

ating tan�-enhanced interactions to matter could be potentially responsible for all the
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present and future CP-conserving/CP-violating FCNC e�ects observed in nature.
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Figure 2: Schematic representation of the SUSY mass spectrum considered in our numerical

analysis, where m~q and m~t denote the masses of the �rst two and third generations of

squarks, respectively. The hierarchy factor �, the phase �~g of the gluino mass, and the

phases �At;b
of the soft SUSY breaking trilinear couplings, with �At = �Ab

= �AU
, are

varied independently (see also discussion in the text).
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Figure 3: SUSY Higgs-DP contributions to �K and �MK given in units of 10�12 MeV

and 10�3, respectively, as functions of the gluino phase arg (m~g), for MSUSY = 1 TeV,

MH+ = 0:2 TeV, tan� = 50 and ÆCKM = 90Æ. As is shown above, the di�erent curves

are obtained for selected values of � and �AU
. The size of the 2HDM e�ect alone on �K is

indicated by an arrow.

33



1 2 4 8

ρ

10
−3

10
−2

10
−1

10
0

 |ε
Κ

(S
U

S
Y

) | [
× 

10
3 ] 

1 2 4 8−1.5×10
−2

−1.0×10
−2

−5.0×10
−3

0.0

∆M
K

(S
U

S
Y

)  [×
 1

012
]  

M
e

V

δ
CKM

=0
o
, ϕΑ

U
=0

o

δ
CKM

=45
o
, ϕΑ

U
=0

o

δ
CKM

=90
o
, ϕΑ

U
=0

o

δ
CKM

=0
o
, ϕΑ

U
=90

o

δ
CKM

=45
o
, ϕΑ

U
=90

o

δ
CKM

=90
o
, ϕΑ

U
=90

o

M
SUSY

=1 TeV,  M
H

+ = 0.2 TeV,   tanβ=50,  arg(m
g
)=180

o
~

Figure 4: SUSY Higgs-DP contributions to �K and �MK given in units of 10�12 MeV and

10�3, respectively, as functions of the hierarchy factor �, for MSUSY = 1 TeV, MH+ =

0:2 TeV, tan� = 50, and argm~g = 180Æ, where the values of ÆCKM and �AU
are varied

discretely.
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Figure 5: SM and SUSY Higgs-DP contributions to �MBd
and �MBs as functions of the

gluino phase arg (m~g), for MSUSY = 1 TeV, MH+ = 0:2 TeV, tan � = 50 and ÆCKM = 90Æ,

where the hierarchy factor � and �AU
are varied independently as shown above. The SM

contributions alone for ÆCKM = 90Æ are displayed by horizontal dashed lines.

35



1 2 4 8

ρ

0

1

10

100

 ∆
M

B
s  [

ps
−

1 ]

1 2 4 8
0.1

1.0

∆M
B

d  [
ps

−
1 ]

δ
CKM

=0
o
, ϕΑ

U
=0

o

δ
CKM

=45
o
, ϕΑ

U
=0

o

δ
CKM

=90
o
, ϕΑ

U
=0

o

δ
CKM

=0
o
, ϕΑ

U
=90

o

δ
CKM

=45
o
, ϕΑ

U
=90

o

δ
CKM

=90
o
, ϕΑ

U
=90

o

M
SUSY

=1 TeV,  M
H

+ = 0.2 TeV,   tanβ=50,  arg(m
g
)=180

o

SM (δ
CKM

=0
o
)

SM (δ
CKM

=45
o
)

SM

SM (δ
CKM

=90
o
)

~

Figure 6: SM and SUSY Higgs-DP contributions to �MBd
and �MBs versus the hierarchy

factor �, for MSUSY = 1 TeV, MH+ = 0:2 TeV, tan� = 50, and argm~g = 180Æ, where

ÆCKM and �AU
obtain discrete values as shown above. Also shown are the SM e�ects alone

for di�erent choices of the CKM phase ÆCKM (horizontal dashed lines).
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Figure 7: SUSY Higgs-penguin contributions to B( �B0
s ! �+��) and B( �B0

d ! �+��) versus

the gluino phase arg (m~g), for MSUSY = 1 TeV, MH+ = 0:2 TeV, tan � = 50, and ÆCKM =

90Æ, where � and �AU
are varied discretely.
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Figure 8: SUSY Higgs-penguin contributions to B( �B0
s ! �+��) and B( �B0

d ! �+��) as

functions of the hierarchy factor �, for MSUSY = 1 TeV, MH+ = 0:2 TeV, tan� = 50, and

argm~g = 180Æ, where ÆCKM and �AU
take discrete values.
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Figure 9: Numerical values for the CP asymmetries A(B0
d!�+L�

�

L )

CP and A(B0
d!�+R�

�

R)

CP as func-

tions of the gluino phase arg (m~g), for MSUSY = 1 TeV, MH+ = 0:2 TeV, tan� = 50, and

ÆCKM = 90Æ, where � and �AU
are varied discretely. Also shown is the prediction for the

CP asymmetries without including B0
d-
�B0
d mixing.
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Figure 10: Numerical estimates of the CP asymmetries A(B0
d!�+L ��L )

CP and A(B0
d!�+R �

�

R )

CP versus

the gluino phase arg (m~g), for MSUSY = 1 TeV, MH+ = 0:2 TeV, tan � = 50, and ÆCKM =

90Æ, where � and �AU
take discrete values as shown above.
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