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I. INTRODUCTION

During the past few years the Symanzik e�ective �eld theory has been an important focus
of research in lattice gauge theory. Symanzik's idea is to describe cuto� e�ects in lattice
�eld theory by a continuum e�ective �eld theory [1]. One writes [1, 2]

Llat
:
= LSym; (1)

where the symbol
:
= means that the lattice and Symanzik �eld theories have the same on-

shell matrix elements. For lattice QCD with Wilson fermions [3] the Symanzik local e�ective
Lagrangian (LEL) is given by [4, 5]

LSym =
1

2g2
tr[F ��F��]� �q (=D +m) q + aK��F �qi���F

��q +O(a2); (2)

where g2 is a renormalized coupling, m is a renormalized quark mass, and aK��F is a short-
distance coeÆcient. The e�ective �eld theory is useful when the scale of QCD in lattice units
is small, �a � 1, and, as used in this paper, when ma � 1 also. With the description in
hand, the lattice �eld theory can be adjusted so that it approaches its continuum limit more
quickly. The e�ective theory shows that if K��F is reduced for any given on-shell matrix
element, then the O(a) term in Eq. (2) makes commensurately smaller contributions to all
other on-shell matrix elements. This application of the Symanzik e�ective �eld theory is
called the Symanzik improvement program [2].

A similar correspondence is set up for the vector and axial vector currents (see below),
introducing further short-distance coeÆcients. In the last several years methods have been
devised to study all of them non-perturbatively [6{10]. The O(a) discretization e�ects vio-
late chiral symmetry, so the key idea is to ensure that violations of chiral symmetry are at
least O(a2). On the other hand, because of asymptotic freedom and the success of pertur-
bative QCD, even at GeV energies [11], one expects perturbation theory to yield accurate
estimates of the short-distance coeÆcients. In this paper, we compare a perturbative calcu-
lation of the currents' short-distant coeÆcients to the non-perturbative results.

There are two issues that should be kept in mind when making such a comparison. First,
the non-perturbative technique su�ers from power corrections. Asymptotically, as �a ! 0
these are formally smaller than any error made from truncating the perturbation series. In
practice, however, these e�ects can be signi�cant.

Second, no two-loop results are available for the improvement coeÆcients considered here.
Tests of perturbation theory are, therefore, not unambiguous, because di�erent choices for
the expansion parameter g2 yield quantitatively di�erent results. The bare coupling g20 (for
the Wilson gauge action) is an especially bad expansion parameter [12]. The obvious remedy
is to rearrange the perturbative series, eliminating g20 in favor of a renormalized (running)
coupling, evaluated at a scale characteristic of the problem at hand. One is then faced,
however, with many choices of renormalization scheme, and the question of how to determine
the \characteristic scale." In this paper we choose the Brodsky-Lepage-Mackenzie (BLM)
prescription [13, 14]. Once this choice is made, little subjectivity remains, so one can ask
quantitatively whether one-loop BLM perturbation theory agrees with the non-perturbative
method.

In the BLM method, the characteristic scale is computed from Feynman diagrams. The
new information presented in this paper consists of the calculations needed to determine the
BLM scales of the normalization and improvement coeÆcients of the vector and axial vector
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currents for Wilson fermions with Sheikholeslami-Wohlert action. These calculations are
a by-product of our recent work on the normalization and improvement of lattice currents
with heavy quarks [15]. Details of the calculational method may be found there.

This paper is organized as follows. In Sec. II we de�ne the lattice currents and review their
description in the Symanzik e�ective �eld theory. Section III recalls the BLM prescription,
focusing on points that are sometimes overlooked. Our new results for the BLM scales are
given in Sec. IV. This paves the way for a systematic comparison with non-perturbative
calculations of the same quantities in Sec. V. Section VI contains a few concluding remarks.

II. LATTICE CURRENTS

In this section we review the description of lattice currents with the Symanzik e�ective
�eld theory. For quarks we take the Sheikholeslami-Wohlert Lagrangian [4], which has

an improvement coupling cSW. At the tree level K
[0]
��F = 1

4
(1 � cSW), so the improvement

condition K��F = 0 requires cSW = 1 + O(g2). For one-loop calculations, it is suÆcient to
specify cSW at the tree level. For the non-perturbative calculations cited below, cSW � 1 is
determined non-perturbatively by the methods of Ref. [7].

We denote the lattice fermion �eld with  . The lattice vector and axial vector currents
take the form

V �
lat = � i
� � acV @� lat � �

�� ; (3)

A�
lat = � i
�
5 + acA@

�
lat
� i
5 : (4)

The improvement couplings cV and cA should be chosen to reduce lattice artifacts, as dis-
cussed below.1 In Symanzik's theory of cuto� e�ects, the lattice currents are described by
operators in a continuum e�ective �eld theory [1, 2, 5, 7]

V �
lat

:
= �Z�1

V �qi
�q � aKV @� �q�
��q + � � � ; (5)

A�
lat

:
= �Z�1

A �qi
�
5q + aKA@
��qi
5q + � � � ; (6)

where, as in Eq. (2), q is a continuum fermion �eld whose dynamics is de�ned by LQCD. The
ellipsis indicates operators of dimension �ve and higher. Further dimension-four operators
are omitted from Eqs. (5) and (6), because they are linear combinations of those listed and
others that vanish by the equations of motion. The short-distance coeÆcients in the e�ective
Lagrangian| �ZJ and KJ (J = V , A)|are functions of g2 and ma, and the improvement
couplings cSW and cJ .

Symanzik improvement is achieved by adjusting cJ so that KJ = 0. Then �ZV V
�
lat and

�ZAA
�
lat have the same matrix elements as �qi
�q and �qi
�
5q, apart from lattice artifacts of

order a2. For light quarks one may expand �ZJ in ma,

�ZJ = ZJ (1 +mabJ) ; (7)

1 The lattice currents in Eqs. (3) and (4) are useful for light quarks. For heavy quarks the \small" improve-

ment terms become large, introducing unnecessary violations of heavy-quark symmetry. Better currents

for heavy quarks are given in Refs. [15, 16].
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and identify KJ with the zeroth order of a small ma expansion. At the tree level the

coeÆcients of the normalization factor are Z [0]
J = 1, b[0]J = 1. In addition, the coeÆcient of

the lattice artifact is
K

[0]
J = c

[0]
J : (8)

The improvement conditionKJ = 0 says that one should set c
[0]
J = 0. Consequently, one-loop

calculations are based solely on the �rst terms in Eqs. (3) and (4).

III. BRODSKY-LEPAGE-MACKENZIE PRESCRIPTION

In this section we review the BLM prescription, following the argumentation from
Ref. [14]. This material should be familiar, but some of the literature on non-perturbative
improvement blurs the di�erence between BLM perturbation theory and other topics, such
as \tadpole improvement" and mean-�eld estimates of the renormalized coupling, which are
also discussed in Ref. [14].

The problem is to �nd a reasonably accurate one-loop estimate of a quantity �, here �ZJ
or KJ . In these cases, one gluon with momentum k and propagator D(k) appears. The
contribution from the Feynman diagrams can be written

g2R�
[1](p) = g20

Z
d4k

(2�)4
D(k)f(k; p) + � � � ; (9)

where p denotes k-independent parameters, such as external momenta. The ellipsis indicates
higher-order terms that we would like to absorb into the renormalized coupling g2R. An
important class of higher-order terms consists of the renormalization parts that dress the
exchanged gluon. In the Fourier transform of the heavy-quark potential, for example, they
turn g20D(k) into g2V (k)D(k), where the potential V (q) = �CFg

2
V (q)=q

2. Thus,

g2R�
[1](p) =

Z
d4k

(2�)4
g2V (k)D(k)f(k; p) + � � � (10)

sums the renormalization parts. Other ways of dressing the gluon would lead to other
physical running couplings, but they all are the same at order �0g

4 [13], where �0 = 11� 2
3
nf

is the one-loop coeÆcient of the � function for nf light quarks.
If there is a characteristic scale q�, one can approximate

g2V (k) =
g2V (q

�)

1 + (�0=16�2)g2V (q
�) ln(k=q�)2

(11)

= g2V (q
�) +

�0
16�2

g4V (q
�) ln(q�=k)2 + � � � : (12)

The aim is to choose q� so that higher-order terms are small, particularly those of order
�0g

4
V , which could be enhanced by a foolish choice of q�. Inserting Eq. (12) into Eq. (10)

and setting the coeÆcient of �0g
4
V to zero yields

ln q�a =
�� [1]

2� [1]
; (13)
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where a is a reference short-distance scale (namely, the lattice spacing), and

�� [1](p) =

Z
d4k

(2�)4
ln(ka)2D(k)f(k; p): (14)

Thus, the BLM prescription is to set g2R = g2V (q
�) in the one-loop approximation.

If one prefers a di�erent renormalized coupling, one must change the scale in the appro-
priate way. The coupling in scheme \S" is related to the V scheme by

1

g2S(q)
=

1

g2V (q)
+
�0b

(1)
S + b

(0)
S

16�2
+O(g2); (15)

where b
(0)
S and b

(1)
S are constants independent of nf . The BLM scale q�S for this scheme is

given by

ln q�S = ln q� � 1

2
b
(1)
S : (16)

For example, for the modi�ed minimal subtraction (MS) scheme, b
(0)

MS
= �8 and b(1)

MS
= 5=3,

q�
MS

= e�5=6q� = 0:435q�. With Eq. (16) one recovers the summary statement of Ref. [13],
namely to absorb into q�S the nf dependence of the two-loop term, which enters through �0.

The BLM prescription has several features that make it a natural choice in matching
calculations, such as those considered in this paper. The e�ective �eld theory framework
suggests using a renormalized coupling, in particular one that has a (quasi-)physical de�-
nition in both the underlying theory (here lattice gauge theory) and in the e�ective theory
(here the Symanzik e�ective �eld theory). For quantitative purposes it is more interesting
to note that

1

g2S(q
�

S)
=

1

g2V (q
�)

+
b
(0)
S

16�2
+O(g2); (17)

so the numerical di�erence in the BLM expansion parameters is small, as long as g2b
(0)
S =16�2

is small.

IV. PERTURBATIVE RESULTS

In Ref. [15] we found for gauge group SU(3) and cSW = 1

Z
[1]
V = �0:129423(6); (18)

Z
[1]
A = �0:116450(5); (19)

in excellent agreement with previous work [17, 18]. (Reference [18] gives precise results as a

polynomial in cSW.) We also found (with c
[0]
J = 0)

b
[1]
V = 0:153239(14); (20)

b
[1]
A = 0:152189(14); (21)

K
[1]
V = c

[1]
V + 0:016332(7); (22)

K [1]
A = c[1]A + 0:0075741(15); (23)
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which agree perfectly with Ref. [19]. Solving the improvement condition KJ = 0 at this
order gives

c
[1]
V = �0:016332(7); (24)

c
[1]
A = �0:0075741(15): (25)

We also directly obtained

b
[1]
V � b

[1]
A = 0:0010444(16); (26)

which is more accurate than the di�erence of the two numbers quoted above. In taking the
di�erence, large contributions from the self energy cancel, but, even so, the near equality

of b
[1]
V and b

[1]
A is a bit astonishing. The mass dependence of �ZJ shows that b

[1]
V � b

[1]
A is not

so small for the Wilson action [15].
In our method for computing the improvement coeÆcients it is easy to weight the inte-

grands with ln(ka)2 and, thus, obtain the BLM scales. We �nd

�Z
[1]
V = �0:270691(19); (27)

�Z
[1]
A = �0:243086(09); (28)

�b
[1]
V = 0:321556(35); (29)

�b
[1]
A = 0:318108(21); (30)

�b
[1]
V � �b

[1]
A = 0:0034247(51); (31)

�c
[1]
V = �0:0222383(15); (32)

�c
[1]
A = �0:0147825(62); (33)

and hence

q�ZV a = 2:846; (34)

q�ZAa = 2:840; (35)

q�ZA=ZV a = 2:898; (36)

q�bV a = 2:855; (37)

q�bAa = 2:844; (38)

q�bV �bAa = 5:153; (39)

q�cV a = 1:975; (40)

q�cAa = 2:653: (41)

The scales are in the expected range. The higher scale for bV � bA means simply that
the di�erence between these renormalization constants arises from very short distances.
These numerical results are new; they have been obtained from two independent computer
programs. As a further check, we have reproduced the values of q�ZV a and q�ZAa for the
Wilson action (cSW = 0), given in Ref. [20].

The dominant contributor to the \large" one-loop normalization constants, Eqs. (18){
(21), is the tadpole diagram (in Feynman gauge) of the self energy. One might expect
perturbation theory to work better for quantities in which the e�ects of tadpole diagrams
largely cancel (albeit in a gauge-invariant way). For example, ZA=ZV and bV �bA are tadpole
free and have smaller one-loop coeÆcients.
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Another way to remove the tadpoles is to write

ZJ = u0 ~ZJ ; (42)

bJ = ~bJ=u0; (43)

where u0 is any convenient tadpole-dominated quantity. Then one can take u0 from a
non-perturbative Monte Carlo calculation and use perturbation theory for ~ZJ and ~bJ . The
corresponding one-loop coeÆcients are

~Z
[1]
J = Z

[1]
J � u

[1]
0 ; (44)

~b
[1]
J = b

[1]
J + u

[1]
0 : (45)

Similarly, to get the BLM scale

� ~Z
[1]
J = �Z

[1]
J � �u

[1]
0 ; (46)

�~b
[1]
J = �b

[1]
J + �u

[1]
0 ; (47)

where �u
[1]
0 is the BLM numerator [cf. Eq. (13)] for u0. Below we take u40 to be the average

value of the plaquette, with u
[1]
0 = �1=12 = �0:08�3 and �u

[1]
0 = �0:204049(1). A glance

at Eqs. (44){(47) shows immediately that tadpole improvement reduces the one-loop coeÆ-
cients. With tadpole improvement the BLM scales become

q�~ZV a = 2:061; (48)

q�~ZAa = 1:803; (49)

q�~bV a = 2:317; (50)

q�~bAa = 2:289: (51)

The scales are lower than without tadpole improvement, but still ultraviolet.
It is perhaps worthwhile emphasizing the di�erence between tadpole improvement and

the BLM prescription. The aim of tadpole improvement is to re-sum large contributions
appearing at order g2 and higher, replacing the sum with a non-perturbative estimate (u0,
for example). The aim of the BLM prescription is to re-sum potentially large renormalization
parts into the renormalized coupling. Although the aims are similar, they are not identical.
They are not mutually exclusive, and neither is a substitute for the other.

V. COMPARISON TO NON-PERTURBATIVE CALCULATIONS

With the BLM scales in hand we can compare the prediction of one-loop BLM-improved
perturbation theory with non-perturbative determinations of the improvement coeÆcients.
We shall make the comparison in two ways. First we compare the numerical values directly,
at two values of the bare coupling. Here there are two methods in the literature, one based
on �nite-size techniques and the Schr�odinger functional [21{23], and another based on large
volumes with hadronic matrix elements [24]. The di�erence between these two illustrates
how large power corrections to the improvement coeÆcients are. We also compare our results
graphically, as a function of coupling, to Pad�e approximants given in Refs. [19, 21, 22]. These

7



TABLE I: Comparison of perturbative and non-perturbative determinations of the improvement

coeÆcients at � = 6:2.

� = 6:2 �V (q
�) BLM Refs. [21{23] Ref. [24]

ZV 0.1468 0.7612 0.7922(9) 0.7874(4)

ZA 0.1469 0.7850 0.807(8) 0.818(5)

ZA=ZV 0.1461 1.0238 1.019(8) 1.039(5)

bV 0.1467 1.2824 1.41(2) 1.42(1)

bA 0.1468 1.2808 | 1.32(5)

bV � bA 0.1257 0.001649 | 0.11(5)

�cV 0.1638 0.03361 0.21(7) 0.09(2)

�cA 0.1498 0.01426 0.038(4) 0.032(7)

u0 ~ZV 0.1616 0.8022 0.7922(9) 0.7874(4)

u0 ~ZA 0.1686 0.8230 0.807(8) 0.818(5)
~bV =u0 0.1559 1.2846 1.41(2) 1.42(1)
~bA=u0 0.1565 1.2828 | 1.32(5)

TABLE II: Comparison of perturbative and non-perturbative determinations of the improvement

coeÆcients at � = 6:0.

� = 6:0 �V (q
�) BLM Refs. [21{23] Ref. [24]

ZV 0.1602 0.7394 0.7809(6) 0.770(1)

ZA 0.1603 0.7654 0.791(9) 0.807(8)

ZA=ZV 0.1593 1.0260 1.012(9) 1.048(8)

bV 0.1601 1.3082 1.54(2) 1.52(1)

bA 0.1603 1.3065 | 1.28(5)

bV � bA 0.1352 0.001774 | 0.24(5)

�cV 0.1808 0.03711 0.32(7) 0.107(17)

�cA 0.1638 0.01559 0.083(5) 0.037(9)

u0 ~ZV 0.1782 0.7872 0.7809(6) 0.770(1)

u0 ~ZA 0.1868 0.8095 0.791(9) 0.807(8)
~bV =u0 0.1712 1.3105 1.54(2) 1.52(1)
~bA=u0 0.1719 1.3087 | 1.28(5)

graphs are helpful for seeing whether discrepancies in the one-loop and non-perturbative
estimates arise from two-loop or power corrections.

We obtain �V (q
�) as follows. First we compute

�1�1 = � 3

4�
lnh2i; (52)

where h2i is the ensemble average of the plaquette. Then we follow Ref. [14] and take �V
to be

�V (3:402=a) � 2�1�1
1 +

p
1� 4:741�1�1

; (53)
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FIG. 1: ZV and ZA vs. g20 . Heavy lines show the non-perturbative results, Eqs. (54) and (55), and

shading possible corrections of order �(�a)2. Circles show BLM perturbation theory, with thin

and dashed lines to indicate a two-loop term ��2V or �2�2V . (a) and (c) no tadpole improvement,

ZBLM
J = 1 + g2V (q

�

ZJ
)Z

[1]
J ; (b) and (d) with tadpole improvement, ZBLM

J = u0[1 + g2V (q
�

~ZJ
) ~Z

[1]
J ].

which agrees with the standard de�nition of �V with an accuracy of order �3s. The scale
3:402=a is the BLM scale for h2i. We then run from 3:402=a to q� with the two-loop
evolution equation. Of course, once two-loop perturbation theory is available, one would
have to extend the accuracy of Eq. (53) and of the evolution.

Table I gives results from our perturbative calculation with non-perturbative results from
the Alpha Collaboration [21{23] and from Bhattacharya et al. [24], at � = 6:2. Table II
gives the same comparison at � = 6:0. Above (below) the horizontal line, we have applied
the BLM prescription without (with) tadpole improvement. The error bars on the entries
from Refs. [21{24] are statistical, and compiled in Ref. [24].

For the normalization factors ZV and ZA, BLM perturbation theory and the non-
perturbative methods agree well, within 3{4%. The di�erence between the two non-
perturbative values of ZV exceeds the reported errors, but is easily explained by power cor-
rection of order (�a)2. For the tadpole-free ratio ZA=ZV and for the tadpole-improved quan-
tities u0 ~ZJ , BLM perturbation theory lies very close to the non-perturbative range. These
impressions are strengthened by Fig. 1, which shows ZV and ZA as functions of g20. Circles
show BLM perturbation theory, and the thin solid (dashed) lines indicate how two-loop
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FIG. 2: bV vs. g20 . (a) no tadpole improvement, b
BLM
V = 1+ g2V (q

�

bV
)b
[1]
V ; (b) with tadpole improve-

ment, bBLMV = [1 + g2V (q
�

~bV
)~b
[1]
V ]=u0. Light grey (light blue) shading indicates power corrections to

bV of order ��a; darker grey (pink) shading power corrections to bV � 1 of order �a=L.

contributions of ��2V (�2�2V ) could modify the result. We show the result with and with-
out tadpole improvement in Figs. 1(b,d) and (a,c), respectively. For the non-perturbative
method, a heavy (blue) line shows the Pad�e approximants [22]

ZV =
1� 0:7663g20 + 0:0488g40

1� 0:6369g20
; (54)

ZA =
1� 0:8496g20 + 0:0610g40

1� 0:7332g20
; (55)

which deviate from the underlying calculations negligibly for g20 � 1. The shaded bands
behind the Pad�e curves show a power-correction of �(�a)2, with � � 500 GeV. The �nite-
volume result also su�ers from power corrections of order (a=L)2. They are estimated to be
small by comparing calculations on lattices with a=L = 1=8 and 1=12 [22]. Also, they are
parametrically smaller, because Ref. [22] holds L� � 2 for all g20.

Next let us turn to the O(ma) corrections to the normalization factors, bV and bA. There
is only one calculation of bA [24], so let us concentrate �rst on bV . The two non-perturbative
results for bV agree perfectly with each other (see the Tables), but they deviate signi�cantly
from one-loop BLM perturbation theory. Some insight can be gleaned from Fig. 2, which
shows bV as a function of g20. The non-perturbative method is represented with the Pad�e
approximant [19]

bV =
1� 0:7613g20 + 0:0012g40 � 0:1136g60

1� 0:9145g20
; (56)

with light (blue) shading for a power correction ��a. In �nite volume there is also a power
correction to bV of order a=L; by construction it applies to bV � 1 [22], but now L with a
varies such that a=L = 1=8 for all g20. We model this e�ect as (bV � 1)(1� 1

8
), shown in the

darker (pink) shading in Fig. 2. Judging from its size and shape, the deviation seen in Fig. 2
looks less like a two-loop e�ect than a combination of power corrections of order a=L and �a.
(Similar conclusions are reached in Ref. [24].) There is almost no di�erence whether one
applies tadpole improvement to bV or not, once the BLM prescription is applied. These two
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FIG. 3: cA and cV vs. g20 . Shading shows power corrections of order ��a to (a) Eq. (57), (b)

Eq. (58). Points with error bars are from (a) Refs. [24, 25], (b) Refs. [23, 24].

approximations truncate higher orders of the perturbation series di�erently, substantiating
the idea that the discrepancy is a power correction.

The non-perturbative calculation of bA agrees with one-loop BLM perturbation theory.
Note, however, that Ref. [24] obtains bV and bV � bA directly, and then bA = bV � (bV � bA).
The agreement between BLM perturbation theory and the non-perturbative results for bV
and bV � bA is not good, so the agreement for bA may be an accident. Since the coeÆcient

b
[1]
V � b

[1]
A in Eq. (26) is remarkably small, the two-loop contribution could be as large as the

one-loop term. Furthermore, inspection of Fig. 14 in Ref. [24] suggests that a �t to the three
smallest masses would yield a smaller value of bV �bA. We consider the comparison of bA and
bV � bA to be unsettled pending a two-loop calculation and a more robust non-perturbative
calculation.

In any case, the mild disagreement on bV and bV �bA is not of much practical importance.
For the sake of argument, suppose ma < 0:1, which holds for the light quarks for which the
currents were designed. Then power corrections in bJ , at �xed a, lead to an uncertainty in a
decay constant or a form factor of only a few per cent. After a continuum limit extrapolation,
these uncertainties will not be important.

Now let us turn to the coeÆcients cJ of the improvement terms in Eq. (3) and (4). At
the tabulated values of �, the non-perturbative and BLM calculations of cA do not agree at
all. At � = 6:0 (Table II) the two non-perturbative calculations also do not agree with each
other. Figure 3(a) shows cA as a function of g20, using the Pad�e approximant [21]

cA = �0:00756g20
1� 0:748g20
1� 0:977g20

(57)

to represent the non-perturbative calculations. The disagreement between BLM perturba-
tion theory and Eq. (57) sets in for g20 > 0:9. There are two reasons to suspect that the
discrepancy stems from a power correction of order �a to the results of Ref. [21]. First,
Fig. 3(a) shows that it has the shape and size of such a power correction. Second, the ex-
tracted value of cA depends on the lattice derivative used to de�ne the current [25]. Note [24]
that errors in cA propagate to cV , because in the Ward identities cA is multiplied by large
hadronic matrix elements such as am2

K=ms � a� 2:5 GeV. This enhancement also explains
why Eq. (57) leads to worse scaling in f� [25]. Figure 3(a) also includes the non-perturbative
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TABLE III: Expansion parameters for perturbation theory.

� �0 ~�0 �1�1 �V (q
�

ZV
) �MS(q

�

ZV
)

6.0 0.0796 0.1340 0.1245 0.1602 0.1784

6.2 0.0770 0.1255 0.1166 0.1468 0.1619

6.4 0.0746 0.1183 0.1101 0.1362 0.1491

7.0 0.0682 0.1016 0.0951 0.1134 0.1222

9.0 0.0531 0.0702 0.0667 0.0748 0.0786

results of Refs. [24, 25]. The di�erence between those points and BLM perturbation theory
could be a modest two-loop e�ect or a small power correction.

For cV , the two non-perturbative results agree neither with each other, nor with BLM
perturbation theory. The Alpha Collaboration has only a preliminary calculation [23]. We
have taken the liberty of extracting results from Fig. 3 of Ref. [23] and �tting them to a
Pad�e formula. The leading behavior is �xed to Eq. (24), and we obtain

cV = �0:01633g20
1� 0:257g20
1� 0:963g20

: (58)

Figure 3(b) plots Eq. (58), the underlying points [23], the non-perturbative results from
hadronic correlation functions [24], and BLM perturbation theory. As usual we show possible
power corrections to Eq. (58) of order ��a, as well as the size of typical two-loop e�ects.
At small g20, there is good agreement with (BLM) perturbation theory, but once g20 > 0:9,
there is a sharp turnover. It is probably a power correction, possibly exacerbated by power
corrections to cA as modeled by Eq. (57). With hadronic correlation functions [24] the non-
perturbative value of cV is half or a third as large. It is not clear at present whether the
discrepancy between Ref. [24] and BLM perturbation theory is a power correction to the
former or a sizable two-loop correction to the latter.

We should also mention that BLM perturbation theory works better than several forms
of mean-�eld perturbation theory (let alone bare perturbation theory). In Table III we list
several choices for �s:

�0 = g20=4�; (59)

~�0 = �0=u0; (60)

as well as �1�1 [Eq. (52)] and �MS(q
�

MS
) [Eq. (17)]. With only one-loop expansions avail-

able, the mean-�eld choices ~�0 and �1�1 give smaller corrections, and one-loop perturbation
theory falls short even when power corrections are negligible. The consistency of BLM-V
perturbation theory for ZV , ZA, and ZA=ZV indicates that the BLM prescription does indeed
re-sum an important class of higher-order contributions. On the other hand, the coupling
�MS(q

�

MS
) seems, empirically, to work less well. In continuum perturbative QCD, it usually

does not matter whether one adopts �V (q
�

V ), �MS(q
�

MS
) or some other renormalized cou-

pling (at the BLM scale), once two-loop e�ects are included. It would not be surprising for
the same to hold for short-distance quantities in lattice gauge theory, such as improvement
coeÆcients.
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VI. CONCLUSIONS

In this paper we have compared non-perturbative calculations of several improvement
coeÆcients to perturbation theory with the BLM prescription. Previously this could not be
done, because the \BLM numerators" in Eqs. (27){(33) were not available. We �nd that,
for the scale-independent quantities considered here, the integration of the log k2-weighted
integrals is numerically straightforward.

BLM perturbation theory for the current normalization factors ZJ agrees very well with
non-perturbative calculations of the same quantities. Here the leading power correction is
only of order (�a)2, and the small deviations can probably be removed with a two-loop cal-
culation. Note that generalizations of the BLM method for higher-order perturbation theory
have been considered in continuum perturbative QCD [26] and in lattice gauge theory [27].

For the improvement coeÆcients bJ and cJ , the leading power corrections are of order
�a (and in the Schr�odinger functional also of order a=L = 1=8), while some of the one-loop
coeÆcients are small. It is consequently diÆcult to diagnose the discrepancies. By noting the
size and dependence on g20 of the di�erences, we concur with the authors of Refs. [24, 25],
namely, that power corrections contaminate the non-perturbative results. In particular,
it seems unlikely that higher orders in perturbative series could explain all discrepancies
between one-loop BLM perturbation theory and the results from Refs. [21{23].
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