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Abstract

We compute perturbative QCD corrections to the lifetime splitting between the charged and
neutral B meson in the framework of the heavy quark expansion. These next-to-leading log-
arithmic corrections are necessary for a meaningful use of hadronic matrix elements of lo-
cal operators from lattice gauge theory. We find the uncertainties associated with the choices
of renormalization scale and scheme significantly reduced compared to the leading-order re-
sult. We include the full dependence on the charm-quark maswithout any approxima-

tions. Using hadronic matrix elements estimated in the literature with lattice QCD we obtain
7(B*)/7(Bj) = 1.053 + 0.016 £ 0.017, where the effects of unquenching ahgn, correc-

tions are not yet included. The lifetime difference of heavy baryghand=; is also briefly
discussed.

PACS numbers: 12.38.Bx, 13.25.Hw, 14.40.Nd
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b ¢ WA b

Figure 1: Weak annihilation(WA) and Pauli interference(PIl) diagrams in the leading order
of QCD. They contribute td@'(BY) andT'(B™), respectively. The crosses represphf3| = 1
operators, which are generated by the exchandé& dfosons. CKM-suppressed contributions
are not shown.

1 Preliminaries

TheHeavy Quark Expansio(HQE) technique provides a well-defined QCD-based framework
for the calculation of total decay ratestsflavoured hadrons [1]. The HQE yields an expansion
of the decay raté'(H,) in terms of Agcp/ms, Where H, represents any hadron containing a
singleb-quark and any of the light,d,s (anti-)quarks as valence quarks, is theb-quark mass
andAqcp is the fundamental scale of QCD, which determines the size of hadronic effects. In
the leading order of\ocp/my the decay rate off, equals the decay rate of a fréejuark,
which is unaffected by the light degrees of freedomif Consequently, the lifetimes of all
b-flavoured hadrons are the same at this order. The first corrections to the free quark decay
appear at ordefAgcp/my)? and are caused by the Fermi motion of thquark in , and the
chromomagnetic interaction of the final state quarks with the hadronic cloud surrounding the
heavyb-quark. These mechanisms have a negligible effect on the lifetime difference between
the B and BY mesons, because the strong interaction excellently respects isospin symmetry. At
order(Agcp/my)?, however, one encounters weak interaction effects betweerdbark and
the light valence quark. These effects, knowmask annihilation\WA) and Pauli interference
(PI) [1], are depicted in Fig. 1. They are phase-space enhanced with respect to the leading
free-quark decay and induce corrections{d/,) of order 167*(Agep/mp)? = O(5—10%).
The measurement of lifetime differences among diffeteffevoured hadrons therefore tests the
HQE formalism at the third order in the expansion parameter.

The calculation of'( H,,) consists of three steps: the first step is an operator product expan-
sion (OPE) integrating out the healdy boson, which mediates the welkecay. This results in
an effectivg A B| = 1 Hamiltonian describing the flavour-changing weak interaction of the Stan-
dard Model up to corrections of order? /M7, whereA B denotes the change in bottom-quark
number:

Gr

H = EVJ, > Via {Cl(,ul) QY (m) + Cz(ﬂl)ledl(M)} + h.c. 1)
d'=d,s

u'=u,c

HereGr is the Fermi constant and thg;’s are elements of the Cabibbo-Kobayashi-Maskawa
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(CKM) matrix. The Wilson coefficients’;(11) contain the short-distance physics associated
with scales above the renormalization scale The weak interaction is encoded in the four-
quark operators

QYY" =byu(1 = %)W (1= ), Q5" =byu(1 =) u"(1 = 75)d;, (2)

with summation over the colour indicesand;j. We have omitted penguin operators and doubly
Cabibbo-suppressed terms in (1), which have a negligible effect oBthé3! lifetime differ-
ence. Next the total decay rdiéH,) is related toH by the optical theorem:

1
2My,

['(Hy) = (Hy|T'|Hy). 3)

Here we have adopted the conventional relativistic normalizatténH,) = 2EV and intro-
duced the transition operator:

T = Imz'/d%T[H(x) H(0)]. (4)

The second step is the HQE, which exploits the hierarahy> Agcp to expand the RHS of (3)

in terms of Agcp/my. To this end an OPE is applied  which effectively integrates out the

hard loop momenta (corresponding to the momenta of the final state quarks). We decompose the
result as

T = [T+ T+ B[ + O0(1/my)]
75 = Tu—i_Td—’_,];ing (5)

Here7,, denotes the portion df which is suppressed by a factor bfmj with respect taZ;
describing the free quark decay. The contributiong;térom weak spectator interactions read

T" = [ Vil (FUQT + FYQ% + GMT + GYTY)

+ Vel (FQ" + FEQ% + GT" + GSTS)| + (d— s)
GEMi Ve |”

T! = TSSO FQU 4 QY + GUT + GITY ). (6)

The superscript; of the coefficientsF'?, Fé, G4, G refers to thecq intermediate state (see
Fig. 1). We include singly Cabibbo-suppressed contributions. In wrifiigve have used
[Voa|? + [Vaus|?> = 1 andmy ~ m, ~ 0, so thatF'® = F*, etc.. Here we encounter the local
dimension-6 AB = 0 operators

Q7 = by, (1 —5)qqy" (1 — 75)b, QY = b(1 —5)qq(1 + 75)b,
T = by, (1 — )T qqy" (1 — ~5)T°D, Té = b(1 —v5)Tqq(1 +v5)T°b,  (7)
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whereT“ is the generator of colour SU(3). We define th& = 0 operators at the renormaliza-

tion scaley, which is of ordern;,. The Wilson coefficientd™ . .. G¢ are computed in pertur-
bation theory. When applied to mesofis: and7? correspond to the WA and Pl mechanisms

of Fig. 1, respectively. In the case of baryons their role is intercharige@ncodes the Pl effect
and7? describes the weak scattering of thquark with the valence quark (see Fig. 5). The co-
efficients in (6) depend om,. Since the hard loops involve the charm quark, they also depend on
the ratioz = m?2/m?. The truncation of the perturbation series makés . . G¢ also dependent

onu; = O(my). This dependence diminishes in increasing orders,ofTo the considered or-

der, the dependence @iy cancels between the coefficients and the matrix elements of operators
in (6), so that observables are independentofThe remaindef;,, in (5) involves additional
dimension-6 operators, which describe power-suppressed contributions to the free quark decay
from strong interactions with the spectator quark. The operatdfs,jpare isospin singlets and

do not contribute to th&—BY lifetime difference. The formalism of (5)—(7) applies to weakly
decaying hadrons containing a single bottom quark and no charm quarks. Decays of hadrons like
the B. meson with more than one heavy quark have a different power counting than in (5) [2]. In
the third step one computes the hadronic matrix elements of the operators in (7). They enter our
calculation in isospin-breaking combinations and are conventionally parametrized as [3, 8]

(BUQ" = Q") (no)| BY) = [fEMpBi(no). (BY(Q% — Q%)(1o)|BT) = fEMEBa(po),
(BT = T%) (o) |BY) = fEMper(no),  (BUTE = T§)(no)|BT) = fzMpes(po). (8)
Here f is the B meson decay constant. In thacuum saturation approximatiq’SA) one has
By (1) = 1, Ba(po) = 1 4+ O(as(my), Agep/mw) ande; o(10) = 0. Corrections to the VSA

results are of order/N,., whereN, = 3 is the number of colours.
Using the isospin relatiofBY|Q**| BY) = (B*|Q“¢|B*) we now find from (3) and (6):

GEmi |V |?
127
Here we have introduced the shorthand notation

I'(By) —T(B") = f5Mp (|%d|2ﬁu + [Vl Fe — ﬁd) . B. 9)

FZ(Za to) Bi(po)
F9(2, o) = (Fjggz% , Bluo) = zQ((500)> forg = d,u,c. (10)
G§(2, o) €2(fto)

The strong interaction affects all three steps of the calculation. The minimal way to in-
clude QCD effects is the leading logarithmic approximation, which includes corrections of order
alIn"(py /Mw), n = 0,1,...in the coefficients”; 5(1) in (1). The corresponding leading or-
der (LO) calculation of the width difference in (9) involves the diagrams in Fig. 1 [1,3]. Yet LO
results are too crude for a precise calculation of lifetime differences. The heavy-quark masses in
(9) cannot be defined in a proper way and one faces a large dependence on the renormalization
scaley,. Furthermore, results fds, » ande, » from lattice gauge theory cannot be matched to the
continuum theory in a meaningful way at LO. Finally, as pointed outin [3], at LO the coefficients
F, Fs in (9) are anomalously small. They multiply the large matrix elements parametrized by



2 T*and7? at next-to-leading order 5

B, 1, while the larger coefficients, G5 come with the small hadronic parameters, rendering

the LO prediction highly unstable. To cure these problems one must include the next-to-leading-
order (NLO) QCD corrections of order"* In"(u; /My,). NLO corrections to the effective

|AB| = 1 Hamiltonian in (1) have been computed in [4,5]. The second step beyond the LO re-
quires the calculation of QCD corrections to the coefficigrits. . G¢ in (6). Such a calculation

has been first performed for th&—BY lifetime difference in [6], wher&(a,) corrections were
calculated in the SU(3)limit neglecting certain terms of order In this limit only a few penguin
effects play a role. A complete NLO computation has been carried out for the lifetime difference
between the two mass eigenstates of Bfemeson in [7]. In particular the correct treatment

of infrared effects, which appear at intermediate steps of the calculation, has been worked out
in [7]. The computation presented in this paper is conceptually similar to the one in [7], except
that the considered transitiondsB = 0 rather thamAB = 2 and the quark masses in the final
state are different. While this work was in preparation, QCD correctio@$'tand7 ¢ have also

been calculated in [8]. There are two important differences between our analysis and [8]:

(i) in [8] the NLO corrections have been computed for the limiting case0, i.e. neglecting
the charm-quark mass in the final state. The corrections to this limit are of ohderor
roughly 20%. In Sect. 2 we include the dependence on the charm-quark mass exactly.

(i) in [8] a definition of theAB = 0 operators in the heavy-quark effective theory (HQET)
has been prefered over the use of full QCD, which we chose in (7). (The transformation
between the two schemes can be deduced from [8], see eqgs. (19) — (21) below.) HQET
operators were chosen to eliminate the mixing of the dimension-6 operators in (7) into
lower-dimensional operators under renormalization. We emphasize that this mixing does
not impede the use of QCD operators in the HQE: it results purely from ultraviolet ef-
fects and can be accounted for by a finite renormalization of the affected operators. (The
subtraction ofn,-enhanced contributions to higher-dimension operators in QCD is equiv-
alent to the subtraction of power-divergent contributions to higher-dimension operators in
HQET.) For a more detailed discussion with an explicit example we refer the reader to [7]
and to Sect. 3.2.

Finally one must compute the non-perturbative QCD effects residirffg i, . . . f2e». Results

from lattice gauge theory for the matrix elements in (8) have been recently obtained in [9]. Earlier
results using HQET fields can be found in [10]. In the matching of the results to continuum QCD
the dependence d8,, ...e; on iy and on the chosen renormalization scheme must cancel the
corresponding dependence of the Wilson coefficients, which requires NLO accuracy.

2 T and T at next-to-leading order
We decompose the Wilson coefficients in (6) as

Fu(zaluo) = Clz(lul) Fﬁ(z7xul7xuo) + Cl(:ul) 02(:u1) Fl%(zaxul?xuo)
+ 022(#1) (2, @py s Tp)
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U u,(0 O‘s(,ul) u,(1
Fy(z ) = FyO) + =2 B (2, 1) + 0 (o) (11

with z,, = p1/m, and an analogous notation for the remaining Wilson coefficients in (6). The LO
coefficients are obtained from the diagrams in Fig. 1. The non-vanishing coefficients read [3]

1 u, 1 u, u, 1 u, z
an(o)(Z) = §F12(0)(Z) = 3F22(0)(Z) = §G22(0)(2) =—(1- 2)2 <1 + §> )
1 u,(0 1 u,(0 u,(0 1 u,(0

S (2) = S Fgiy) (2) = 3F33) (2) = 5668 (2) = (1= 2)" (14 22),
1 c 1 c, c, 1 c
17 (2) = 5F5 V() =3F5(2) = 2G V) =VI-d (12, (12)
1 c,(0 1 c,(0 c,(0 ¢,(0)
SFE () = SR () = 3FER () = 5G5S = VI T (1 422),

d, d, d, ) d,
6511 (2) = Fis" (=) = 673" (2) = Gn<0’<z> = 05" (=) =6(1-2)",
while
U, u u, c, c, c, d,
Gu(o) =G 0 Gs 11— Gs (1% = Gu(o) = G12(0) Gs(101 - Gs 12 = G1p O 0,
Fgi) =Gy =0. (13)
To obtain the NLO corrections;; Gsl we have calculated the diagrarmis and the

imaginary parts of); in Fig. 2. At NLO one becomes sensitive to the renormalization scheme.
First, this affects the quantities,, z and «, entering our calculation. The NLO coefficients
given below correspond to the use of the pole-mass definitiomfand the definition oty in

the MS scheme [11].z can be either calculated from the pole masses or fromMBanasses,
because = m?/m? = m?*(m.)/mi(my) + O(a?). Second, the choice of the renormalization
scheme is also an issue for the effective four-quark operators appearing at the various stages of
our calculation. In the prediction of physical quantities this scheme dependence cancels to the
calculated order, nevertheless it must be taken care of when assembling pieces from different
theoretical sources. The Wilson coefficielits, of H in (1) andF;;’(l) Gfég) depend on

the scheme used to renormalize thé&? = 1 operators in (2), but this dependence cancels in
Fe G4 Our results below correspond to the definitioncaf, in [5]. F=® .. g%

also depend on the renormalization scheme ofAlie = 0 operators in (7). This dependence
cancels only when these coefficients are combined with the hadronic paratBeteande; »
calculated from lattice QCD. It is therefore important that our scheme is used in the lattice-
continuum matching of these quantities. We useMfiescheme with the NDR prescription for

~v5 [5]. To specify the scheme completely, it is further necessary to state the definition of the
evanescent operators appearing in the calculation [12]. We use

EQl = w1 =%)a@y" (1= )b — (4-89)Q
EQs] = byl =7)q@y" Y (1 +75)b — (4—8¢) Qs (14)

and analogous definitions d&[T] and E[Ts]. When the diagram§, ... E, for e.g. Qs are
calculated inD = 4 — 2= dimensions, the result can be expressed as a linear combination of
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b Dy b b Dig b b € Dyp b

Figure 2: WA contributions in the next-to-leading order of QCD. The PI diagrams are obtained
by interchanging: andd and reversing the fermion flow of the andd lines. The first line
shows the radiative corrections 0B =0 operators, which are necessary for the proper infrared
factorization. Not displayed are the diagraids E; and D}_g which are obtained from the

corresponding unprimed diagrams by left-right reflection and the reverse of the fermion flow.

Qs and E[Qs]. Effectively, (14) defines how Dirac strings with two or three Dirac matrices are
reduced. (Note that (14) also implies the replacement rlesy,. (1 — v5) ® 7Py (1 — ;) —
(16 —4£)7,(1—=75) @7 (L =75) andy,y, (1 —75) @97 (1+75) — 4(1+€)(1—75) @ (1+75).)
The particular choice of the-8¢ terms in (14) is motivated by Fierz invariance: the one-loop
matrix elements of e.gQs and its Fierz transforn)§ = —1/2b;7,(1 + 75)b;3,7" (1 — 75)
are in general different. This feature is an artifact of dimensional regularization. With (14) and
a corresponding definition af[Q%], however, Fierz invariance is maintained at the one-loop
level. This choice, which has also been made in [5] forAie¢ = 1 operators, has the practical
advantage that one can freely use the Fierz transformation at any step of the calculation. In other
words: “Fierz-evanescent” operators ligg — Q% can be identified with 0.

In the procedure of matching the full theory (eq. (4)) to the effectivé = 0 theory, infrared
singularities are encountered@t« ) both in the full-theory diagrams and in the matrix elements
of operators in the effective theory. The diagrams relevant for this issuBareD, and E; —
E,. The singularities cancel in the Wilson coefficiedtandG, but need to be regularized at in-
termediate steps of the calculation. We takettlggiark on-shell, assign zedsemomentum to the
external light quarks and use dimensional regularization for the infrared (as well as the ultravio-
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let) divergences. In this case, care has to be taken to treat the Dirac algebra in a consistent way.
In computing the matching condition betwebn — D, and E; — E, we have used two different
methods, which lead to the same result. In both methods ultraviolet divergences appeaking in

— FE, and D5 are subtracted, respectively, byB = 0 and AB = 1 counterterms, in the usual

way.

In the first method, we distinguish IR singularities arising in loop integrals from UV sin-
gularities, and treat the Dirac algebra in strictly four dimensions in the IR-divergent parts. In
the second method, IR and UV divergences are not distinguished-dirdensional Dirac al-
gebra is used throughout. In this case evanescent operaias those given in (14), give a
non-vanishing contribution in the matching procedure. This is a subtlety of the IR regulator used
in method 2 [13]. If a different IR regulator, such as a gluon mass or method 1, is used, the
non-vanishing bare one-loop matrix elementtois cancelled by a finite counterterm, so tliat
disappears from the NLO matching calculation [5, 12]. The non-zero contribution in method 2
originates in diagrant; with the insertion of an evanescent operakor This diagram is zero
in dimensional regularization, thus leaving the corresponding counterterm uncancelled. We have
further parametrized the evanescént:) parts appearing in thé-dimensional projections of
general Dirac structurds ® I" onto the basic operatorg and()s. There are four independent
parameters in the calculation, corresponding teeing a string of two, three, four or five Dirac
matrices. We have checked that all four parameters disappear from the final result for the coeffi-
cients. (This is true for the evanescént:) parts multiplying IR poles. The UV poles give rise
to a dependence on these parameters, which corresponds to a usual scheme dependence that is
cancelled by the matrix elements of operators in the effective theory. Our choice of scheme is
specified by (14).)

We would also like to mention that the Fierz orderingeB = 1 operators is immaterial
because Fierz symmetry is respected by the standard NDR renormalization scheme employed by
us. This has been checked by using the Fierz form leading to Dirac strings with flavour structure
bb ® wu in method 1, andu ® @b in method 2, and similarly for the contribution with— d.

(The Fierz form used in method 2 fod @ db is such that a closed fermion loop is generated in
Dy —=Dy.)

In the NLO corrections to (9) we sét,,| = 1 andV,, = 0. This introduces an error of order
|V.a|*as(my)z In 2, which is well below 1% ofr(B*)/7(BY) — 1. Hence (9) only involves the
differencesFs) — F2W . Gul) — Ggll. Our results for these coefficients read:

wu,(1 d,(1
F11( )(Zaxulaxuo) - Fll( )(Zaxmaxuo) =

(4(1—2)* (16 +192) 4z (93 +40z — 57 2%)

] In(1—=2) + [ 5 ] In(z) +

32(1—2)"] In(z,) + [~16(1 - 2)*] In(z,,) +
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[32 (1—2)] 2, 2(1—2) (15241492 +1552%)
———— | T

9 27
F Z ‘rltl?'rlio) F12( (Zwrulal‘uo):
[ (1—2) (—4— 62—1—2)] [Lig(z)—i—ln(l_;) ln(z)] N
(1-— (2+1 — 62— 622
[8 2)? + 32—1—3,2)] (- 2) + [82(37 ;3,2 62)] () +

16 (1—2) (64224 2?%)
9

116 (1= 2)* 2+ 2)| In(z,,) + [ ] m +

4 (1—2) (30+332—132%
3

u,(1 d,(1
F22( )(Zaxulaxuo) - F22( )(Zaxmaxuo) =

:16 (19 — 2)9(—1 + 2) z] [LiQ(Z) N In(1 — ;) ln(z)] N

-16(1—2)2(1+2z)2] (1) + [42(135+302—6822)

92 27 ] In(z) +

16012 (8+2)
) ) +

[_8(1—23)2 (8+2)] In(z,,) +

27 81

[16 (1 — 2) (6+22+22)] 2 4 (1—2) (544 — 1852z — 68 2?)
s

(1 d,(1
Fg,l(l)(zaxunxuo) - Fs,fl)(% xmaxuo) =

In (1—2) In(z )] .,

32(1—2)° (1422)] [Lig(z) +

—8(1—2)" (24102 -32%)| In(1-2) +
(82 (18 — 155 2 + 144 22 — 27 23) 1 In
Il
9

(1—2) (133 — 53z + 40 22)
27

:—48 (1—2)% (1+ 22)} In(z,,) +
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(1 d,(1
F5,1(2)(27 xmaxuo) - FS,fQ)(Za xulaxltO) =

(64 (1—2) (2—2) (14+22)

]P&@%+mu_;ﬂm@]+

3
(—16(1—2)? (1+22+622 32
6(1l—2)° (1+22+6= z)] (- 2) +
3z
1 4—-24 1822 — 323
62z ( z; 8z 32)] In(z) +

:—32 (1—2)* (1+ 22)} In(z,,) + {—32 (1—2)% (1+ 22)} In(z,,) +

[ —32 (1—2)2(1+22)] 2 8 (1 —2) (=17 =292 + 36 2?)
s
9 3

u,(1) d,(1) _
Fg'y (2, Ty s Tpy) — Fg'5 (2, Tpy, Ty) =

(32 (1—2) (39— z) (1 +22)] [Lig(Z’) N In(1 —;) In(z)
:—8(1—2)2 (2—1{—)?2%—822—323)1 (1 2) +
:82(18—1232;—8222—923)1 In(z) +
:—32(1—23))2 (1—}—22)1 In(z,.) + l—16(1—z?))2 (1+22) n(,,) +
(=32 (1—2) 2 (1—1—22)] N 4 (1= 2) (=259 — 421 z + 488 2?)

27 81

Gqﬁ(l) (Zu e xuo) - Gclli(l) (27 Ly s l‘uo) -

In(1 — 2) In(z)
]+

[16 (4 —32) (1 —z2)] [Lig(z) +

[(1 —2)* (122 + 52)} In(1—-2) + [Z (384 - 2536Z —e )] In(z) +

=24 (1= 2)*] W(z) + [-6(1—2)° (4432)] In(x,,) +
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4(7-92) (1—2)] o,  (1—2) (—2450 + 2575 = + 517 22)
3 ™t 18

u,(1 d,(1
G12( )(Zaxmaxuo) - G12( )(Z7xﬂl7xHO> =

[8@—43@(1—zn[mxa+J“1‘§>m“ﬂ ;

[2(1—2) (2+32+1322)] In(1—z2) + l4z(12+242_2522)] In(z) +
p, 3

12(1-2)* (144 2)] In(z,,) + [-12(1=2)* (8+2)] In(zy,) +

(4 (1—2) (6+22+z2)] 2 (1—2) (818 — 667z — 19 2%)
™
3 9

,(1 d,(1
GSQ( )(Z7xu17xuo) - G22( )(Z,l‘m,l‘uo) -

—8 (1 —2) (3(;4— 31z+5% )] [Lig(z) N In(1 —22) ln(z)] N

4(1-2) (—;;—682—1—52)1 (- 2) + l4z(162—91022—z )] In(2) +
—4(1=2)° B+2)] In(w) + [2(1-2)" (8+2)] W(a) +

(2 (1—2) (604 772+ 722)1 s, (1= 2) (2803427862 + 725 )
m
9 27

d,(1)
GS 11 (2 xuuxuo) GS(H (2, xuwxuo) =

[~18(1 = 2> (14+22)] In(1 - 2) + l_44 (4;32) 22] In(z) +

4(1—2) (2841032 — 164 22)
9

1
Gg (12 (Z Ly xuo) GS 12 (Z Tpys xuo) -

16 (1= 2) (1+22)] |Lis(e) + 2= ;') In(z) |
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3

[—4(1—2)2 (1+2) (1+22)] (1 2) + l4z(6—51z+2822)

] In(z) +

C24(1— 2 (1422)] (o) + [—8 (1—2)32 (1+22)] o,
4(1—2) (=53 —80z+822%)

9

(1 d,(1
Gg‘,é;('za Tpys xuo) - GS,(22) (Za Ly s xuo) =

(16 (1 — 2) (1;22) (3—1—52)] [L12(2)+ ln(l—;') ln(z)] N
[—2(1—2)® (—2+312+6422432%)

_ P ] In(1—2) +

PE (36—33629—i- 6222—1-923)] In(z) +

:8 (1—2)* (142 z)} In(z,,) + [4 (1—2)* (1+ 22)} In(z,,) +

M _ _ _ 2
4(1—-2)(1+22) (9+7%2) 2 (1 —2) (385 + 1519 z — 3278 2%) (15)
9 27
HereLiy(z) = — J5 dt[In(1 — ¢)]/t is the dilogarithm function. Any dependence on infrared

regulators has cancelled from the coefficients in (15) showing that infrared effects properly fac-
torize. As another check we have verified that the dependenge cancels analytically to the
calculated order.

For our numerical studies we choose the following range for the input parameters:

as(Mz) = 0.118 £0.003, my, = 4.8+£0.1GeV, z =0.085£0.015. (16)

Throughout this paper we always remof%a?) terms from the calculated coefficients. (For
instance, at NLO we write a product such @F" as C} o Fyo + 2C1 Lo dC1F, Where
CinLo = Ci 1o + dCy denotes the NLO Wilson coefficient.) In all terms we use the two-loop
expression for the running coupling, in QCD with five flavours. Numerical values for the
calculated coefficients can be found in Tab. 1. The two contributions fl6in— F'4)B; +

(G* — GYe; and from(F¥ — F3) B, + (G% — G4)ey to I'(BY) — I'(B*) are separately scheme-
independent. Tab. 1 reveals that the former part is expected to give the dominant contribution
to the desired width difference. The results also show a substantial improvement jof-the
dependence in the NLO compared to LO. This dependence is plotted in Fig. 3 for the two Wilson
coefficients of the important vector operators. The approximation employed in [8] sety

in the NLO correction is also plotted. Expectedly, the accuracy of this approximation decreases
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z 0.085 0.070 0.100
p | my/2 ‘ my ‘ 2my mp my

FwlO _ pdLlO 0865 0.270 | —0.176 | 0.280| 0.261
FwNLO _ pdNLO 396 | 0460 | 0.386| 0.469 | 0.452

FUMO — FERO 1 0,002 | 0.042] 0.105] 0.043| 0.042
FeNWO _ p@NLO L0035 | 0.033| 0.026| 0.031] 0.035

GO — @dlO 1 _9912 | —8.618 | —7.848 | —8.887 | —8.353
GUNLO _ QaNLO | g 665 | —8.501 | —8.154 | —8.718 | —8.280

GUMO —GEMO | 2679 | 2404 | 2231 2420 2.385
GENFO _ GENMO ) 1668 | 1.850| 1.902| 1.854| 1.843

Table 1: Numerical values for the coefficients in (9) far(My) = 0.118 and g = my =
4.8 GeV.
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Figure 3: Dependence d¢f* — F'? andG* — G? on 11 /my, for the input parameters in (16) and
1o = my. The solid (short-dashed) line shows the NLO (LO) result. The long-dashed line shows
the NLO result in the approximation of [8], i.e.is set to zero in the NLO corrections.

for small i1, because the difference to the exact NLO result is of ordér,) z1n z. For the

final result of our coefficients we estimate thedependence in a more conservative way: we
vary gy in F*...G% andF¢. .. G% independently. Further the variation withand o, (M) in

the ranges of (16) is calculated and all these sources of theoretical uncertainty are symmetrized
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individually and added in quadrature. The dependence isronly an issue folG* — G<. We
find:

NLO LO app

F*—F%| 0.460+0.101 | 0.27040.480 | 0.440 4+ 0.119
F¥—F4| 0.033+£0.046 | 0.042+0.052| 0.025 % 0.045 (17)
G*— G| —850+0.40 | —8.62+0.90 | —8.00 %+ 0.32
G% — G4 | 1.85+0.08 2.40 + 0.23 1.80 4 0.10

The quoted central values correspond to the chpice= m, and the central values in (16).
The third column in (17) shows the result for the approximation of [8], setting 0 in the

NLO corrections. Foyi; = my this approximation reproduces the size of the NLO corrections
to F* — F? and G% — G¢ to better than 15% . The small NLO correction@ — G¢ is,
however, overestimated. The NLO result for this coefficient, which is largest in magnitude, is
better reproduced by the LO result than by the approximation of [8].

The origin of thea(u1) z1n 2 terms, which are the main cause of the discrepancy between
the first and third column in (17), can be traced back to diagramof Fig. 2. This diagram
defines the scheme of the charm-quark mass. One can abserlgthez In » terms into the LO
by replacingz with z = m?(u) /m; (1), which implies the replacement

u,(0
o, OF© )

) ) -
- 47w Oz Tm

Zlnz (18)

in the NLO corrections td™ and similarly in the other Wilson coefficients. Heyf) = 8

is the LO anomalous dimension of the quark mass. This procedure sums the terms of order
al(uy) zIn" z with n = 0,1, ... to all orders in perturbation theory. This can be seen by per-
forming an OPE of the transition operatbwhich treatsn,. as a light mass scale: then increasing
powers ofm, correspond tAAB = 0 operators of increasing dimension amd andm, enter

the result at the same scaleat which the OPE is performed. In every order of the perturbation
seriedn 7 is splitintoln(u?/m3) contained in the Wilson coefficients ahdm?/4%) residing in

the matrix elements. Since there are no dimension-8 operators with charm-quark fields contribut-
ingto'(BY) —T'(B™), no terms of ordem? In(m?/u?) can occur. From our NLO results we can
indeed verify that the procedure in (18) removesdhg:; ) z In z terms, while e.g. terms of order
as(p1) 2% In 2 persist as expected, because there are dimension-10 operators with charm-quark
fields of the typem.(bq)(gb)(cc). Usingz = 0.055 rather than: = 0.085 in the coefficients
tabulated in the third column of (17) indeed removes the disturbing discrepancy with the NLO
result forG* — G. Also the central values df* — F¢ andGY% — G¢% move closer to the NLO
result, while no significant improvement occurs fdf — £'¢.

The width difference in (9) involves the produﬁﬂT B, which is independent of the renor-
malization scheme and scales. In order to compare the scheme dependent coefficimitits
the calculation in [8] forz = 0, we need to take into account that the coefficients in [8] are
defined for matrix elements in HQET rather than in full QCD. The matching relation connecting
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HQET and full-QCD matrix elements of the four operatérsused in [8] has the form

as(my)

(Oraenlim) = (1+ 2T (Ghuger(m), 19)

where thel x 4 matrix(j{”_s can be found in eq. (36) of [8]. The renormalization scheme of oper-
ator matrix elements in full QCD is identical in our paper and in [8,9]. The only further difference
is that the operator® are linear combinationg) = SQ, of our basis) = (Q, Qs, T, Ts)”

with

10 2 0
0 -2 0 -4
S=1a1 (20)
s 0 -+ 0
0o -3 0 2

(This simple relation holds beyond tree level because the renormalization schemes are identical.
The preservation of Fierz-symmetry by the choice of evanescent operators in (14) is important
for this property.) It follows that our coefficients are related to the corresponding coefficients
A+ 2B in[8] at scaleu = m, through

1 =g g = T — (07 — — AT S
L (Fo —SF(1)> _ AT g Y (BTg_ AT WS gY 21
3( T 40 15 8) (21)

Here we have suppressed flavour laleets u, d and the double indicelg = 11, 12, 22 refering
to the AB = 1 coefficientsC;C; (see (11)). Note that in the notation of [8] labelsd are
interchanged with respect to our convention and that the coefficients withllalzee defined
with a relative factor of two. Using (21) we have verified that the results of [8] obtained=fod
are in agreement with ours in this limit.

3 Phenomenology
3.1 7(B*)/m(BY)
One can directly use (9) to predict the desired lifetime ratio:

7(B™)
7(By)

2% ( mp )2 IB ’
— 0.0325
(0.04 13Gev) \200Mev)

[(10£02) By + (01+£0.1)By — (184£09)e; + (4.0+02)ex].  (22)

—1 = 7(B") [(BY) —T'(BY)]

Herer(B*) = 1.653 ps has been used in the overall factor and the hadronic paranikterse,
are normalized at, = m, throughout this section.

In [3] it has been noticed that without a detailed study of the hadronic parameters one expects
7(B™)/7(BY) to deviate from 1 by up te-20%. This feature originates from the large coefficient
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of €; and persists in our NLO prediction in (22), because the NLO correctio6&'to G¢ are
small. Confronting (22) with the recent measurements [14, 15],

r(BY) { 1.082 & 0.026 = 0.012 (BABAR) (23)

7(BY) 1.091 4 0.023 +0.014 (BELLE)

one expects | to be significantly smaller thah/N,. = 1/3, i.e. nonfactorizable contributions
appear to be small. This result is confirmed by the existing computations gfshe quenched
lattice QCD [9, 10]. However, due to its large coefficient sophisticated non-perturbative methods
are definitely necessary to computesufficiently accurately. The other important term in (22)
is the first one: the NLO enhancement®f — F¢ in (17) has altered the coefficient &, in
(22) from 0.6 £ 1.0 in the LO to1.0 + 0.2. While from the LO result not even the sign of this
contribution was known, the NLO result now clearly establishes a positive contribution of order
3% tor(B™T)/7(BY) from the term involvingB;.

The hadronic parameters have been computed in [9] using the same renormalization scheme
as in the present paper. They read

(B1, Ba,€1,65) = (1.10+£0.20, 0.79 +0.10, —0.02 £ 0.02, 0.03 £ 0.01). (24)

Using |V,| = 0.040 £ 0.0016 from a CLEO analysis of inclusive semileptorficdecays [16],
the world averaggs = (200 & 30) MeV from lattice calculations [17] anth, = 4.8 £ 0.1 GeV
in (22), we find

7(B™T)
7(B3)

7(B™)
7(By)

= 1.053£0.016 £0.017, [ ] = 1.041 £0.040 £ 0.013, (25)
LO

where the first error is due to the errors on the NLO coefficients as given in (22) and the hadronic
parameters (24), and the second error is the overall normalization uncertainty-ayéitg | and
fBin(22). The first error reduces to 0.008 in NLO and 0.038 in LO, if the errors on the hadronic
parameters are neglected, demonstrating the substantial reduction of scale dependence at NLO in
comparison with the LO. This result is gratifying as the strong scale dependence observed at LO
had been a major motivation for a NLO analysis. This is also seen in Fig. 4, where we show the
lifetime ratio as a function of the renormalization scale We should, however, emphasize that

the result and error given in (25) do not include the effects/af, corrections and unquenching,

which could well be on the order of 0.05. The NLO result slightly exceeds the central value of
the LO result and improves the agreement with the experimental value in (23).

32 7(E))/T(Ey)

The SU(3)y anti-triplet (A, ~ bud, =) ~ bus, =, ~ bds) comprises theé-flavoured baryons
whose light degrees of freedom are ififastate. These baryons decay weakly. Baryon lifetimes
have attracted a lot of theoretical attention: the measiigelifetime falls short ofr(BY) by
roughly 20% [18], which has raised concerns about the applicability of the HQE to baryons. Un-
fortunately this interesting topic cannot yet be addressed at the NLO level, bedaysér(BY)
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Figure 4: Dependence of B™)/7(BY) — 1 on u, /m; for the central values of the input param-
eters andg., = m,. The solid (short-dashed) line shows the NLO (LO) result. The long-dashed
line shows the NLO result in the approximation of [8], zas set to zero in the NLO corrections.

receives contributions from the SU{3$inglet portion7,;,, of the transition operator in (5) and

NLO corrections td/,;,,, are unknown at present. Further the hadronic matrix elements entering
7(Ay)/7(BY) involve penguin contractions of the operators in (7), which are difficult to compute.

It is, however, possible to predict the lifetime splitting within the iso-dout#gt =; ) with NLO
precision. The corresponding LO diagrams are shown in Fig. 5. =Ferthe weak decay of

the valences-quark could be relevant: the decays — Ay, Z; — Aye 7. and=) — Ayr®

are triggered by — w transitions and could affect the total rates at@hg %) level [19]. Once

the lifetime measurements reach this accuracy, one should correct for this effect. To this end we
define

- _ 1—B(Z, — Ay X 1 — —0 —
['(Z) —T(Z, — AX) = (T(Z):b) v X) = = for 5, = =), =, , (26)

['(Z)

where B(Z, — A, X) is the branching ratio of the above-mentioned decay modes. T3
is the contribution frond — c¢ transitions to the total decay rate. In analogy to (9) one finds

= _ Gimip|Va|®

(=) -TE) o 5Mp (VP F* + Vo PFe — FY) - B> (27)
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b ¢ P| b

b WS b

Figure 5: Weak scatteringWsS) and Pl diagrams fag, baryons in the leading order of QCD.
They contribute td'(Z))) andl'(Z; ), respectively. CKM-suppressed contributions are not shown.

Here B= = (L3 (uo), LT%(10), L3* (110), L5%(10))T comprises the hadronic parameters defined
as

EBIQ" — QM) (mo)|Z) = fEMpMz, L *(10),
(E(Q% — Q) (o) |Zy) = fEMpMs, LT(1o),
(EIT" =T (o)|Z) = [faMpMz, L *(10),
(ENTE =T (o)|Z) = [EMpMs, L5&(juo). (28)

In contrast to theB meson system, the four matrix elements in (28) are not independent at the
considered order ingep/m,. Since the light degrees of freedom are in a spin-0 state, the matrix
elements=,|2Q% + Q1]=,) and (=,|2T¢ + T7|=,) are power-suppressed compared to those in
(28) (see e.g. [1,3]). This, however, is not true in all renormalization schemes, Nfilseheme

used by u2Q% + Q¢ and2T7¢ + T receive short-distance corrections, because hard gluons can
resolve the heavirquark mass. This feature is discussed in [7]. These short-distance corrections
are calculated from the diagrams . .. F, in Fig. 2. For our scheme we find

ig(mb) b as(me) [ —28/3 -7 Lib (my) Aqcep
(i) =[5+ =m (50 22)] (2l ) + o2 9
As an important check we find that the dependence on the infrared regulator drops out in (29).
With (29) we can express the width difference in (27) in terms of just the two hadronic parameters
L7* andL3*. We find
7(Z5)
(&)

-1 = 7)) [IE) -1(E))

~ 059 (Ve 2( my )2 /8 2?(52)><
27 004) \a8Gev) \200Mev) T5ps

[(0.04£0.01) Ly — (1.0040.04) Ly |, (30)

with L; = L (uo = my). For the baryon case there is no reason to expect the color-octed matrix
element to be much smaller than the color-singlet ones, so that the terni.ywithl dominate
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the result. The hadronic parametérs, have been analysed in an exploratory study of lattice
HQET [20] for A, baryons. Up to SU(3)corrections, which are irrelevant in view of the other
uncertainties/.>* and L are equal.

4 Conclusions

We have computed the Wilson coefficients in the heavy quark expansion to(drges/m;)*

for the BT—B) lifetime difference at next-to-leading order in perturbative QCD. These coeffi-
cients depend on the scheme and s¢aglesed to define the matrix elements of thé&s = 0
operators in the effective theory. Our scheme is specified by the NDR prescription fdiS
subtraction and the definition of evanescent operators given in (14)OT&g accuracy is cru-

cial for a satisfactory matching of the Wilson coefficients to the matrix elements determined with
lattice QCD. Current lattice calculations, which are still in a relatively early stage in this case,
yield, when combined with our calculations,B")/7(BY) = 1.053 + 0.016 & 0.017 [see (25)].

The effects of unquenching angdm, corrections are not yet included, but could well be on the
order of 0.05. Next-to-leading order corrections{@ ) /7(BY) were recently computed in the
approximationn,. = 0 [8]. Taking the limitm,. — 0 of our results we find agreement with this
calculation.

A substantial improvement of the NLO calculation is the large reduction of perturbative un-
certainty reflected in the scale dependencé\éf = 1 Wilson coefficients from the standard
weak Hamiltonian. This scale dependence had been found to be very large at leading order, pre-
venting even an unambiguous prediction of the sigm(@™)/7(BY) — 1 up to now [3]. With
this major source of uncertainty removed by the NLO calculation, further progress will depend
on continuing advances in the evaluation of the nonperturbative hadronic matrix elements and
the computation of /m,-suppressed effects.
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