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1. Basic formulae for particle–antiparticle mixing

1.1. K sector: basic formula for εK

In the K0 − K0
system, to lowest order in electroweak interactions ΔS = 2 transitions are induced

through the box diagrams of Fig. 4.1. Including leading and next-to-leading QCD corrections in renor-
malization group improved perturbation theory the effective Hamiltonian for the ΔS = 2 transitions for
scales μ < μc = O(mc) is given by

HΔS=2
eff =

G2
F

16π2
M2

W

[
λ2

cη1S0(xc) + λ2
tη2S0(xt) + 2λcλtη3S0(xc, xt)

]
×

×
[
α(3)

s (μ)
]−2/9

[
1 +

α
(3)
s (μ)
4π

J3

]
Q(ΔS = 2) + h.c. (1)

where λi = V ∗
isVid, α(3)

s is the strong coupling constant in an effective three flavour theory and J3 =
307/162 = 1.895 in the NDR scheme [1]. In (1), the relevant operator

Q(ΔS = 2) = (s̄γμ(1 − γ5)d)(s̄γμ(1 − γ5)d), (2)

is multiplied by the corresponding Wilson coefficient function. This function is decomposed into a
charm-, a top- and a mixed charm-top contribution. The functions S0(xi) and S0(xc, xt) are given by
(xi = m2

i /M
2
W):

S0(xt) =
4xt − 11x2

t + x3
t

4(1 − xt)2
− 3x3

t lnxt

2(1 − xt)3
, S0(xc) = xc, (3)

S0(xc, xt) = xc

[
ln
xt

xc
− 3xt

4(1 − xt)
− 3x2

t lnxt

4(1 − xt)2

]
, (4)
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Fig. 4.1: Box diagrams contributing to K0 − K
0

mixing in the SM.

where we keep only linear terms in xc � 1, but of course all orders in xt. The exact expression can be
found in [2].

Short-distance QCD effects are described through the correction factors η1, η2, η3 and the explic-
itly αs-dependent terms in (1). The NLO values of ηi are given as follows [1,3–6]:

η1 = (1.32 ± 0.32)
(

1.30GeV
mc(mc)

)1.1

, η2 = 0.57 ± 0.01, η3 = 0.47 ± 0.05 . (5)

It should be emphasized that the values of ηi depend on the definition of the quark masses mi. The
ones in (5) correspond to mt ≡ mt(mt) and mc ≡ mc(mc) . With this definition the dependences
of η2 on mt and of η3 on mt and mc are fully negligible but the dependence of η1 on mc turns out to
be significant. It can be well approximated by the formula in (5). The scale dependence in mt(μt),
where μt = O(mt), present generally in the functions S0(xt) and S0(xt, xc) is canceled to an excellent
accuracy in the products η2S0(xt) and η3S0(xt, xc). The corresponding scale dependence in mc(μc),
where μc = O(mc), is cancelled to a large extent in the product η3S0(xt, xc) but remains still sizable in
η1S0(xc). As we use mc(mc) and mt(mt) we have included the left-over scale uncertainties due to μc
and μt present in (1) in the errors of ηi that also include the uncertainties due to ΛMS, the scale in the
QCD running coupling. The small changes in η1 and η3 relative to the original papers are due to changes
in αs(MZ).

Now, εK is defined by

εK =
A(KL → (ππ)I=0)
A(KS → (ππ)I=0)

(6)

with I denoting isospin. From (6) one finds

εK =
exp(iπ/4)√

2ΔMK

(
ImM12 + 2ξ̄ReM12

)
, ξ̄ =

ImA0

ReA0
(7)

with the off-diagonal element M12 in the neutral K-meson mass matrix representing K0-K0
mixing

given by
2MKM

∗
12 = 〈K0|Heff(ΔS = 2)|K0〉 . (8)

The factor 2MK reflects our normalization of external states and A0 is the isospin amplitude. ΔMK

is the KL − KS mass difference that is taken from experiment as it cannot be reliably calculated due
to long distance contributions. The expression in (7) neglects higher order CP-violating terms: see the
discussion in the review article in reference [7].

Defining the renormalization group invariant parameter B̂K by [1]

B̂K = BK(μ)
[
α(3)

s (μ)
]−2/9

[
1 +

α
(3)
s (μ)
4π

J3

]
, (9)
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〈K0|Q(ΔS = 2)|K0〉 ≡ 8
3
BK(μ)F 2

KM
2
K (10)

and using (8) and (1) one finds

M12 =
G2

F

12π2
F 2

KB̂KMKM
2
W

[
λ∗c

2η1S0(xc) + λ∗t
2η2S0(xt) + 2λ∗cλ

∗
t η3S0(xc, xt)

]
, (11)

where FK = 160 MeV is the K-meson decay constant and MK the K-meson mass.

To proceed further we neglect the last term in (7) as in the standard CKM phase convention it
constitutes at most a 2% correction to εK . This is justified in view of other uncertainties, in particular
those connected with B̂K . Inserting (11) into (7) we find

εK = CεB̂KImλt {Reλc [η1S0(xc) − η3S0(xc, xt)] − Reλtη2S0(xt)} exp(iπ/4) , (12)

where we have used the unitarity relation Imλ∗c = Imλt and have neglected Reλt/Reλc = O(λ4) in
evaluating Im(λ∗cλ∗t ). The numerical constant Cε is given by

Cε =
G2

FF
2
KMKM

2
W

6
√

2π2ΔMK

= 3.837 · 104 . (13)

To this end we have used the experimental value of ΔMK = 3.837 · 10−15 GeV and MW = 80.4 GeV.

The main uncertainty in (12) resides in the parameter B̂K . The present status of B̂K is discussed
in Sec. 2.2. Here we note only that when B̂K > 0, as found by all non-perturbative methods, the formula
(12) combined with the experimental value for εK implies 0 < δ < π in the standard parametrization or
equivalently η̄ > 0 in the Wolfenstein parametrization.

1.2. B sector: basic formulae for ΔMd,s oscillation frequencies

The strengths of the B0
d,s − B0

d,s mixings are described by the mass differences

ΔMd,s = Md,s
H −Md,s

L (14)

where the subscripts H and L denote the heavy and light mass eigenstates respectively. The long distance
contributions are estimated to be very small, in contrast to the situation for ΔMK , and ΔMd,s are very
well approximated by the relevant box diagrams. Moreover, since mu,c � mt only the top sector can
contribute significantly to ΔMd,s. The charm and mixed top-charm contributions are entirely negligible.

ΔMd,s can be expressed in terms of the off-diagonal element in the neutral B-meson mass matrix
as follows

ΔMq = 2|M (q)
12 |, q = d, s (15)

with M12 given by a formula analogous to (8)

2MBq |M
(q)
12 | = |〈B0

q |Heff(ΔB = 2)|B0
q〉|. (16)

In the case of B0
d − B0

d mixing

HΔB=2
eff =

G2
F

16π2
M2

W (V ∗
tbVtd)

2 ηBS0(xt) ×

×
[
α(5)

s (μb)
]−6/23

[
1 +

α
(5)
s (μb)
4π

J5

]
Q(ΔB = 2) + h.c. (17)

Here μb = O(mb), J5 = 5165/3174 = 1.627 in the NDR scheme [1],

Q(ΔB = 2) = (b̄γμ(1 − γ5)d)(b̄γμ(1 − γ5)d) (18)
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and
ηB = 0.55 ± 0.01 (19)

summarizes the NLO QCD corrections [1,8]. In the case of B0
s − B0

s mixing one should simply replace
d→ s in (17) and (18) with all other quantities and numerical values unchanged. Again mt ≡ mt(mt).

Defining the renormalization group invariant parameters B̂Bq in analogy to (9) and (10)

B̂Bq = BBq(μ)
[
α(5)

s (μ)
]−6/23

[
1 +

α
(5)
s (μ)
4π

J5

]
, (20)

〈B0
q|Q(ΔB = 2)|B0

q〉 ≡
8
3
BBq(μ)F 2

Bq
M2

Bq
(21)

one finds using (17)

ΔMq =
G2

F

6π2
ηBMBq(B̂BqF

2
Bq

)M2
WS0(xt)|Vtq|2, (22)

where FBq is the Bq-meson decay constant. This implies two approximate but rather accurate formulae

ΔMd = 0.50/ps ·

⎡
⎣
√
B̂Bd

FBd

230MeV

⎤
⎦

2 [
mt(mt)
167GeV

]1.52 [ |Vtd|
7.8 · 10−3

]2 [ ηB

0.55

]
(23)

and

ΔMs = 17.2/ps ·

⎡
⎣
√
B̂BsFBs

260MeV

⎤
⎦

2 [
mt(mt)
167GeV

]1.52 [ |Vts|
0.040

]2 [ ηB

0.55

]
. (24)

The main uncertainty here stems from the parameters FBd,s
and B̂Bd,s

. The most recent lattice and QCD
sum rule results are summarized in Sec. 2.1.

1.3. Basic formulae for B oscillation probabilities

The probability P for a B0
q meson (q = d, s) produced at time t = 0 to decay as B0

q at proper time t is
given as

P(B0
q → B0

q) =
1
2

Γq e
−Γqt [cosh(

ΔΓq

2
t) + cos(ΔMqt)]. (25)

Here we neglect effects from CP violation, while Γq = ΓH
q +ΓL

q

2 , ΔΓq = ΓH
q −ΓL

q and ΔMq is defined in
Eq. (14). The Standard Model predicts ΔΓq � ΔMq. Neglecting a possible lifetime difference between
the heavy and light mass eigenstates of the B0

q , the above expression simplifies to:

Punmix
B0

q
= P(B0

q → B0
q) =

1
2

Γq e
−Γqt [1 + cos(ΔMqt)] (26)

Similarly, the probability for the B0
q to decay as B0

q is given by

Pmix
B0

q
= P(B0

q → B0
q) =

1
2

Γq e
−Γqt[1 − cos(ΔMqt)]. (27)

Thus, a measurement of the oscillation frequency gives a direct measurement of the mass difference
between the two physical B meson states∗.

Figure 4.2 shows the time evolution of B0 − B0
oscillations displaying the unmixed (solid) and

mixed (dashed) contributions for two different oscillation frequencies ΔM . The sum of Pmix and Punmix

is just the exponential particle decay Γq e−Γqt and is shown by the dotted line in Fig. 4.2.
∗ΔMq is usually given in ps−1, where 1 ps−1 corresponds to 6.58 10−4eV.
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Fig. 4.2: Time evolution of B0–B
0

oscillations displaying the unmixed (solid) and the mixed (dashed) contribution as well as

the sum of the two (dotted) for (a) slow and (b) fast oscillation frequencies ΔMq .

The integral of the probability Pmix
B0

q
defined in Eq. (27) gives the mixing parameter:

χq =
x2

q

2 (1 + x2
q)

with xq = ΔMq τBq , (28)

where the lifetime τBq = 1/Γq .

2. Theoretical issues

2.1. Non-perturbative parameters for B meson mixing

From the discussion in Sec. 1.2. above, the main uncertainty in determining |Vtd| from ΔMd comes from

the factor FBd

√
B̂Bd

in Eq. 23. In the standard analysis of the Unitarity Triangle (see Chapter 5), ΔMs

is used in a ratio with ΔMd, so that the important quantity is ξ, that is crucial for the determination of
|Vtd|/|Vts|:

|Vtd|
|Vts|

= ξ

√
MBs

MBd

√
ΔMd

ΔMs
, ξ =

FBs

√
B̂Bs

FBd

√
B̂Bd

. (29)

Although the quantities FBq

√
B̂Bq for q = d, s are needed for UT fits, it is common to find FBq and B̂Bq

separately.

2.1.1. FBq and ξ from lattice QCD

Lattice calculations are based on a first-principles evaluation of the path integral for QCD on a discrete
space-time lattice. They have statistical errors arising from the stochastic (Monte Carlo) techniques
used to evaluate the integral. They also have systematic errors from discretization effects, finite volume
effects, the treatment of heavy quarks, chiral extrapolations and quenching (or partial quenching). We
now briefly discuss these different sources of error.
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Statistical, discretization and finite volume errors can all be addressed by brute-force improvement
of numerical simulations. We can also use improved discretization procedures (to reduce discretization
effects at a given lattice spacing) and understand (and even make use of) the finite volume effects.

Lattice results need to be matched either directly to physical quantities, or perhaps to quantities
defined in some continuum renormalization scheme. On the lattice side this can be done using lattice
perturbation theory, but with the development of non-perturbative renormalization methods, the uncer-
tainty from the lattice can be systematically reduced. For a physical quantity (such as the decay constant
FBq ) this is the end of the story. If matching is made to a quantity in a continuum scheme (such as BBq

in MS), the remaining uncertainty comes from the continuum perturbation theory: see for example the
discussion in [9].

There are a number of ways to treat the heavy b-quark on the lattice. Results for B0–B0
mixing

obtained using different approaches broadly agree, suggesting that the heavy quark mass dependence is
under control.

This leaves chiral extrapolations and quenching to consider. We will start with quenching. Recall
that the QCD path integral is over both gauge and fermion fields. However, since the fermions appear
quadratically in the action, the fermion integral can be done exactly to leave a determinant (actually
a determinant for each flavour of quark). The calculation of the determinant is extremely intensive
numerically, so the so-called quenched approximation replaces it with a constant, together with a shift in
the bare couplings. This is not a controlled approximation, but today more and more lattice simulations
are being done including the determinant for at least some of the quarks. The first dynamical quark
algorithms produced sea quarks in degenerate pairs (in order to get a positive weight function for the
Monte Carlo generation of the gauge field ensemble) and two-flavour (Nf = 2) dynamical simulations
are still the most commonly encountered. However, methods are being developed to cope with single
flavours of dynamical quark and Nf = 2 + 1 simulation results, with two degenerate light flavours and
one heavy flavour, are beginning to appear, although there are still questions about the validity of some
steps in the algorithm.

Each quark whose determinant is evaluated is labeled as a ‘dynamical’ or ‘sea’ quark in lattice
parlance. A typical lattice calculation of a hadronic correlation function (from which masses and/or
matrix elements may be extracted) involves an average over an ensemble of gauge fields of a combination
of quark propagators. These propagators are evaluated on the background of each gauge field in the
ensemble by means of a matrix inversion. The set of masses used for the propagators define the ‘valence’
masses of the simulation, which may or may not be the same as the dynamical masses which were
incorporated (via determinant factors) when generating the gauge field ensemble. Usually the valence
and sea masses are different and we talk of a ‘partially quenched’ calculation.

Results for FB from quenched calculations have remained stable for a number of years. Numerical
simulations using two flavours of dynamical quarks show an increase in FB compared to quenched re-
sults. The latest developments have seen the first 3-flavour dynamical results [10,11], where two flavours
are ‘light’ and one is heavier, around the strange quark mass. For the future, the development of more
realistic dynamical simulations will continue.

Another important (and related) issue is that of chiral extrapolations, the subject of a panel dis-
cussion [12] at the Lattice 2002 conference. It is difficult to simulate realistically light (valence or sea)
quarks, so that calculations of FBq , say, are made for a a set of (valence) quark masses mq, typically in
a range from about ms/2 to 2ms and the results are interpolated or extrapolated as required. Likewise,
in partially quenched calculations, results from simulations with a range of sea quark masses need to be
extrapolated. The control of these extrapolations is a serious issue for UT fits because of their effect on
the final values of FBd

and FBs and hence on the impact of the ΔMs/ΔMd constraint. As far back as
late 1994 Booth noted the striking difference between the quenched and QCD chiral logarithms [13] and
posted a warning that FBs/FBd

in QCD would be larger than in the quenched approximation. Recently,
this issue has attracted much more attention [14–18].
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Consider an idealized lattice calculation of the decay constant of a heavy-light pseudoscalar meson
with valence content Qq̄, where Q is the heavy quark and q̄ a light quark. Imagine that the simulation
is performed either with or without the presence of Nf flavours of (degenerate) sea quarks f and let
ΔFBq be the correction to FBq depending on the mass(es) of the valence (q) and sea (f ) quarks. With
no sea quark effects included, the calculation is quenched. When mq �= mf the calculation is partially
quenched and when mq = mf it is QCD(-like). The dependence of ΔFBq on the valence and sea quark
masses can be calculated in quenched (Q), partially quenched (PQ) or ordinary chiral perturbation theory,
and shows up as dependence on the masses mqq, mqf and mff of pseudoscalar mesons made from the
corresponding quarks [19]. The expressions are as follows

(ΔFBq)
QQCD =

1
(4πf)2

(Xm2
qq + Y m2

0) ln
(m2

qq

Λ2

)
(30)

(ΔFBq)
PQQCD = −(1 + 3g2)

(4πf)2

[
Nf

2
m2

qf ln
(m2

qf

Λ2

)
+

(m2
ff − 2m2

qq)
2Nf

ln
(m2

qq

Λ2

)]
(31)

(ΔFBq)
QCD = −(1 + 3g2)

(4πf)2
(Nf

2
− 1

2Nf

)
m2

qq ln
(m2

qq

Λ2

)
(32)

with m2
qf = (m2

qq + m2
ff )/2 (at this order of calculation). In the factor 1/(4πf)2, f is equal to the

common light pseudoscalar meson decay constant at leading order, while X, Y and m0 are also built
from coefficients of the effective Lagrangian. The dependence on the ultraviolet cutoff Λ is canceled
by that of ‘analytic terms’ not shown here. The coupling g comes from the leading interaction term in
the heavy meson chiral Lagrangian (see the textbook by Manohar and Wise [20] for details and original
references) and fixes the B∗Bπ coupling in the limit MB → ∞ by

gB∗Bπ =
2 gMB

f
(33)

where
〈B+(p)π−(q)|B∗(ε, p′)〉 = gB∗Bπε·q. (34)

The decay B∗ → Bπ is not kinematically allowed, but g can be estimated using CLEO results [21]
for D∗ → Dπ, or from a lattice QCD calculation of the matrix element of the light-quark axial current
between B and B∗ mesons [22] (or D and D∗ [23]). The CLEO results lead to g = 0.6, consistent with
the recent lattice calculation [23].

The expressions in Eqs. (30), (31) and (32) show that both the quenched and partially quenched
‘chiral logarithms’ diverge as the valence quark mass and hence mqq vanishes while the sea quark mass
is held fixed. In contrast, there are no divergences when the sea quark masses vanish with the valence
masses held fixed. For the QCD-like case, things also remain finite as the joint valence and sea quark
mass vanishes. The problem for lattice practitioners is how best to perform the chiral extrapolations from
results calculated with sets of mq and mf values, particularly since it is very difficult to make the masses
small enough to see the logarithmic dependence.

For FBd
the situation is like the ‘QCD’ case above where the valence d quark in the Bd meson

and (some of) the sea quarks are very light. For FBs , the valence mass is fixed at ms and the sea quark
masses are extrapolated to small values (more like the partially quenched case above). The JLQCD
collaboration find [24] that these different extrapolations tend to decrease the value of FBd

relative to
FBs , and therefore increase ξ. However, a number of caveats must be kept in mind [25]. Although the
data is consistent with the chiral logarithmic forms, all the data points are at masses beyond the region
of strong variation in the logarithms. Moreover, at these larger masses, higher order terms in the chiral
expansion may be required. Furthermore, in dynamical simulations the lattice spacing changes as the sea
quark mass changes at fixed lattice coupling (β), so that care is needed not to interpret lattice-spacing
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(and volume) dependence as sea-quark mass dependence. An added twist is that JLQCD find that their
results for Fπ are not consistent with the expected logarithmic behaviour.

The MILC collaboration have also estimated chiral logarithm effects as part of their extensive
analysis of Nf = 2 simulations for heavy-light decay constants [17]. Their method is based on extrapo-
lation of the ratio of the light-light to the heavy-light decay constant, where the chiral logarithmic terms
cancel to a large extent. MILC’s conclusion is that these effects do tend to increase the value of the ratio
FBs/FBd

and MILC ascribe a systematic error of +0.04 from chiral logarithms to a central value of 1.16
for FBs/FBd

.

Kronfeld and Ryan (KR) [14] consider the ratios ξf = FBs/FBq and ξB = BBs/BBq as the mass
of the quark q varies from the strange mass down to that of the light quarks u and d and match ChPT
to lattice data for mq not too far from ms. Their analysis gives ξ = 1.32(10). Another more recent
phenomenological analysis (BFPZ) [18] supports the increase in ξ coming from chiral logarithms and
leads to a consistent result ξ = 1.22(7). This value is extracted using the double ratio

R =
(FBs

√
MBs)/(FBd

√
MBd

)
FK/Fπ

. (35)

An expression for R in leading order heavy meson and pion chiral perturbation theory (in full, 3-flavour
QCD) is combined with the experimental ratio (FK/Fπ)expt = 1.22(1) to extract FBs/FBd

. Systematic
error in both analyses arises from the uncertain values of parameters in the heavy meson and pion chiral
Lagrangian, namely the coupling g in the leading interaction term, already encountered above, together
with sums of coefficients of higher-order terms in the heavy meson chiral Lagrangian. In addition the
analysis using R depends on L5, the coefficient of a higher-order term in the pion chiral Lagrangian
through its use of the ratio FK/Fπ .

In conclusion, lattice results for FB can show significant light-quark mass dependence and more
work is needed to understand to what extent this dependence is physical. At present a reasonable conser-
vative view [25] is to allow a decrease of up to −10% in FBd

with a negligible change in FBs as added
systematic errors. These are included in the final estimates presented in Eq. (37).

A summary of lattice calculations for the decay constants, published after 1996, is given in Fig. 4.3
(taken from the review by Lellouch [25]), which shows results for FBd

and the ratio FBs/FBd
. The

‘summary’ numbers at the bottom of the plots give quenched averages for FBd
and FBs/FBd

, together
with ratios of these quantities for Nf = 2 and Nf = 0:

F
Nf =0
Bd

= 178(20)MeV
F

Nf=2

Bd

F
Nf=0

Bd

= 1.09(6)

(FBs/FBd
)Nf =0 = 1.14(3)

(FBs/FBd
)
Nf =2

(FBs/FBd
)
Nf =0 = 1.02(2)

(36)

For the mixing parameter BBq , the situation with quenching and chiral extrapolation looks more
favourable. Very little variation is observed between quenched (Nf = 0) and Nf = 2 results. The
partially quenched chiral logarithm for BBq has a coefficient containing 1 − 3g2 
 −0.1 compared to
1 + 3g2 
 2.1 in the FBq case (using g = 0.6 as discussed above) so the chiral extrapolation is better-
controlled and leads to a small error in B̂Bs/B̂Bd

[14,25,16]. The heavy quark mass dependence is mild
and different formulations agree at the physical point for B-mesons.

There is, however, an issue concerning lattice results for ξ which are normally quoted by combin-
ing results for FB and B̂B. Of course, it is also possible to evaluate ξ directly from the ratio of ΔB = 2
matrix elements. In this case ξ turns out to be larger, although with large errors [35,27]. Clearly the two
procedures should give consistent answers, so this issue will need to be resolved.
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Fig. 4.3: From left to right: lattice results published after 1996 for (a) FBd in quenched (Nf = 0) and two-flavour (Nf = 2)

QCD, (b) the ratio F NF =2
Bd

/F
Nf=0

Bd
, (c) FBs/FBd in quenched (Nf = 0) and two-flavour (Nf = 2) QCD, (d) the ratio

(FBs/FBd )Nf =2/(FBs/FBd )Nf=0. The results are grouped according to the formulation used to treat the heavy quark and

the references are: APE 00 [26], LL 00 [27], UKQCD 00 [28], FNAL 97 [29], CPPACS 00 [30], MILC 02 [17], Ali Khan

98 [31], Collins 99 [32], JLQCD 99 [33], CPPACS 01 [34] and JLQCD 02 [16]. Figs. taken from [25].

2.1.2. Summary on FBq and ξ from the lattice QCD

Using the quenched averages as a starting point together with the ratios of Nf = 2 to Nf = 0 results
allows an extrapolation to Nf = 3 [25]. An additional systematic error equal to the shift from 2 to 3
flavours is added to account for the uncertainty in this procedure† . This leads to:

FBd
= 203(27)( 0

20)MeV FBs = 238(31)MeV
FBs

FBd

= 1.18(4)(120)

B̂Bd
= 1.34(12) B̂Bs = 1.34(12)

B̂Bs

B̂Bd

= 1.00(3)

FBd

√
B̂Bd

= 235(33)( 0
24)MeV FBs

√
B̂Bs = 276(38)MeV ξ = 1.18(4)(120)

. (37)

Here, the last, asymmetric, error, where present, is due the uncertainty in the chiral extrapolation
discussed above. The first error combines statistical and all other systematic errors. In UT analyses, the
value of ξ given above should be understood as

ξ = 1.24(4)(6) (38)

and likewise for other quantities affected by this asymmetric error. Note that this does not apply for
FBs and B̂Bs , for which the chiral logarithmic uncertainties appear small compared to other systematic
errors. The result for ξ in Eq. (38) is consistent with the KR [14] and BFPZ [18] analyses mentioned
above.

2.1.3. FBd
and FBs from QCD sum rules

Within the framework of QCD sum rules [36,37], the decay constants FBd
and FBs can be calculated by

equating phenomenological and theoretical spectral functions for the pseudoscalar Bd and Bs mesons,
†An alternative way to quote the final answer would be to use the Nf = 2 results extracted from Eq. (36) and add a

systematic error for the extrapolation to Nf = 3. In this case, the final central value for FBs/FBd would be 1.16. The value of

1.18, however, is consistent with the latest preliminary MILC results for Nf = 3, which give (FBs/FBd )Nf =3 = 1.18(1)(41)
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Fig. 4.4: FBd as a function of the sum rule scale u for different sets of input parameters. Solid line: central values of Table 4.1;

long-dashed line: mb(mb) = 4.16 GeV (upper line), mb(mb) = 4.26 GeV (lower line); dashed line: μm = 3 GeV (lower

line), μm = 6 GeV (upper line).

which leads to the relation [38–40]‡

M4
BF

2
Bd

=
s0∫
0

e(M
2
B−s)/uρ(s) ds (39)

for the Bd meson and analogously for Bs. Eq. (39) is the central relation for the sum rule analysis. The
theoretical spectral function ρ(s) ≡ �Ψ(s)/π can be obtained by calculating the two-point correlator of
hadronic currents

Ψ(p2) ≡ i

∫
dx eipx 〈0|T{ j5(x) j5(0)†}|0〉 (40)

in perturbative QCD, including corrections from the operator product expansion. For the B meson, the
pseudoscalar current j5(x) takes the form

j5(x) = (mb +mu) : ū(x) iγ5b(x) : . (41)

The parameter s0 in Eq. (39) indicates the energy range up to which experimental knowledge of the
phenomenological spectral function is available. This parameter will be further discussed below.

Substantial progress in determining the theoretical spectral function has been achieved very re-
cently through a calculation of the perturbative three-loop order α2s corrections [42,43]. These are im-
portant because the size of higher-order corrections depends on the renormalization scheme employed
for the quark masses. As can be inferred from refs. [42,43], the α2s term turns out to be of similar order
to the leading contribution if pole quark masses are used, whereas good convergence of the perturbative
series emerges for quark masses defined in the MS scheme. Nevertheless, these scheme dependences
influence only the theoretical uncertainties, since FBd

and FBs are physical quantities which certainly
should not depend on the quark mass definitions. Higher-dimensional operator corrections to the sum
rule are known up to dimension six [39] and are also under good theoretical control.

Figure 4.4 shows numerical results for FBd
of Ref. [39], plotted as a function of the sum rule scale

u, after evaluating the sum rule of Eq. (39). Reliable values of FBq can be extracted from the sum rule
if an energy region exists in which the physical quantity is only weakly dependent on u. For FBd

this
‡A review of the procedure and further original references can be found in [41].
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Parameter Value s0 u0 ΔFBd

mb(mb) 4.21 ± 0.08 GeV 32.8
34.6

6.5
5.0 ∓24

μm 3.0 − 6.0 GeV 33.5
34.4

6.8
4.0 ±10

〈ūu〉(2 GeV) − (267 ± 17 MeV)3 33.9
33.3

5.7
5.5 ±6

O(α2
s )

2×O(α2
s )

no O(α2
s ) 33.6 5.6 ±2

αs(MZ) 0.1185 ± 0.020 33.6 5.6 ±1

Table 4.1: Values for the dominant input parameters, continuum thresholds s0 [GeV2], points of maximal stability u0 [GeV2],

and corresponding uncertainties for FBd [MeV].

Parameter Value s0 u0 ΔFBs

mb(mb) 4.21 ± 0.08 GeV 34.3
36.9

5.8
4.6 ∓26

μm 3.0 − 6.0 GeV 35.2
37.2

6.2
3.6

+8
−9

〈s̄s〉/〈ūu〉 0.8 ± 0.3 35.9
35.2

5.3
4.7 ±8

〈ūu〉(2 GeV) − (267 ± 17 MeV)3 35.7
35.3

5.2
4.9

+5
−4

ms(2 GeV) 100 ± 15 MeV 35.5 5.1 ±2

O(α2
s )

2×O(α2
s )

no O(α2
s ) 35.5 5.1 ±3

αs(MZ) 0.1185 ± 0.020 35.5 5.1 ±1

Table 4.2: Values for the dominant input parameters, continuum thresholds s0 [GeV2], points of maximal stability u0 [GeV2],

and corresponding uncertainties for FBs [MeV].

turns out to be the case in the range 4 GeV2 <∼ u <∼ 6 GeV2. Averaging the results of refs. [38,39] in this
energy range, one extracts the central results FBd

= 208 MeV and FBs = 242 MeV.§

The dominant uncertainties in the sum rule determination of FBd
and FBs arise from the strong

dependence on the value of the bottom quark mass mb and correspondingly on the scale μm at which the
quark masses are renormalized. The ranges for the variation of these parameters and the corresponding
variations of FBd

and FBs have been collected in Tables 4.1 and 4.2 respectively. The reader should
note that compared to Ref. [39], the error on mb(mb) has been enlarged, in order to coincide with
the value employed throughout this report, although the larger uncertainty should be considered very
conservative. The Tables also list the values u0 at which the sum rule displays optimal stability, as well
as the parameters s0 which can be determined consistently from an independent sum rule for the Bd and
Bs meson masses. Additional smaller uncertainties are due to: variation of the strong coupling constant
αs; higher order QCD corrections; the value of the quark condensate 〈ūu〉 [44] which is the leading
contribution from higher-dimensional operators; the strange condensate 〈s̄s〉 and the strange quark mass
ms in the case of FBs . Ranges for these inputs together with the variations of FBd

and FBs are also
collected in Tables 4.1 and 4.2. For further details of the numerical analysis, the reader is referred to
Ref. [39].

§Owing to the criticism put forward in Ref. [39], the result of Ref. [40] has not been included in the average, despite the

apparent agreement for the numerical values.
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Adding all errors for the various input parameters in quadrature, the final results for the Bd and Bs

meson leptonic decay constants from QCD sum rules are:

FBd
= 208 ± 27 MeV and FBs = 242 ± 29 MeV. (42)

Owing to the strong sensitivity of these results on the bottom quark mass, one should note that for
example using the very recent average mb(mb) = 4.24 GeV [45], the resulting values for FBd

and FBs

are lowered by almost 10 MeV.

2.1.4. BBd
and BBs from QCD sum rules

The status of the determination of the hadronic B-parameters BBd
and BBs from QCD sum rules is

less satisfactory than for the decay constants. In principle, the B-parameters can be calculated from two
different types of sum rules: namely three-point function sum rules with the insertion of two pseudoscalar
currents and one four-quark operator [46,47], or two-point function sum rules with the insertion of two
local four-quark operators [48,49]. However, both approaches are plagued with difficulties¶.

The first determinations of the hadronic B-parameters [46,47] employed three-point function sum
rules and found a value of BBd

(mb) = 0.95 ± 0.10, slightly lower than the factorization approximation
which results in BBd

= 1. The dominant non-factorizable contribution due to the gluon condensate
turned out to be negative, thus lowering the B-parameter. However, the perturbative part was only
considered at the leading order, and thus the scale and scheme dependences of BBd

were not under
control. Besides, the analytic structure of three-point function sum rules is more delicate than for two-
point correlators, and therefore great care has to be taken to properly extract the quantity in question [41].

For the case of the two-point function sum rules, next-to-leading order QCD corrections have been
calculated in Ref. [48], which provides better control over the renormalization dependence of BB . This
analysis resulted in BBd

(mb) = 1.0 ± 0.15. However, here the phenomenological parametrization of
the spectral function is more complicated, since contributions from intermediate states containing B∗

mesons have to be taken into account in addition to the B meson. Steps in this direction have recently
been taken in Ref. [49] were the value BBd

(mb) = 1.15 ± 0.11 was obtained, now indicating a positive
correction.

Although averaging the results of the two approaches might appear problematic, we nevertheless
decided to quote a common value for the B meson B-parameter from QCD sum rules:

BBd
(mb) = 1.10 ± 0.15 and B̂Bd

= 1.67 ± 0.23, (43)

which covers the outcome of both methods within the uncertainties. On the other hand, general agree-
ment exists for the flavour dependence of the B-parameter. In all present sum rule approaches it was
found to be negligible, thus yielding BBs/BBd

= 1 to a good approximation.

2.2. K0–K0
mixing: determination of BK

2.2.1. BK from lattice QCD

The most commonly used method to calculate the matrix element 〈K0 | Z (s̄d)V −A(s̄d)V −A(μ) | K0〉
is to evaluate the three point correlation function shown in Fig. 4.5. This corresponds to creating a K0

at some time t1 using a zero-momentum source; allowing it to propagate for time tO − t1 to isolate the
lowest state; inserting the four-fermion operator at time tO to convert the K0 to a K0

; and finally allowing
the K0

to propagate for long time t2 − tO. To cancel the K0 (K0
) source normalization at times t1 and t2

and the time evolution factors e−EK t for times t2 − tO and tO − t1 it is customary to divide this three-
point function by the product of two 2-point functions as shown in Fig 1. If, in the 2-point functions, the

¶For a different approach see also Ref. [50].
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Fig. 4.5: Ratio of lattice correlation functions used to calculate BK .

bilinear operator used to annihilate (create) the K0 (K0
) at time tO is the axial density s̄γ4γ5d, then the

ratio of the 3-point correlation function to the two 2-point functions is (8/3)BK .

BK is defined to be the value of the matrix element at the physical kaon and normalized by the
Vacuum Saturation Approximation value 8/3M2

KF
2
K

〈K0 | Z (s̄d)V −A(s̄d)V −A(μ) | K0〉 = (8/3)BKM
2
KF

2
K .

The earliest calculations ofBK were done using Wilson fermions and showed significant deviations from
this behaviour. It was soon recognized that these lattice artifacts are due to the explicit breaking of chiral
symmetry in the Wilson formulation [51–55]. Until 1998, the only formulation that preserved sufficient
chiral symmetry to give the right chiral behaviour was Staggered fermions. First calculations using this
approach in 1989 gave the quenched estimate BK(NDR, 2GeV) = 0.70 ± 0.01 ± 0.03. In hindsight,
the error estimates were highly optimistic, however, the central value was only 10% off the current best
estimate, and most of this difference was due to the unresolved O(a2) discretization errors.

In 1997, the staggered collaboration refined its calculation and obtained 0.62(2)(2) [56], again the
error estimate was optimistic as a number of systematic effects were not fully included. The state-of-the-
art quenched calculation using Staggered fermions was done by the JLQCD collaboration in 1997 and
gave BK(2GeV) = 0.63 ± 0.04 [57]. This estimate was obtained using six values of the lattice spacing
between 0.15 and 0.04 fermi, thus allowing much better control over the continuum extrapolation as
shown in Fig. 4.6 along with other published results. This is still the benchmark against which all results
are evaluated and is the value exported to phenomenologists. This result has three limitations: (i) It is
in the quenched approximation. (ii) All quenched calculations use kaons composed of two quarks of
roughly half the “strange” quark mass and the final value is obtained by interpolation to a kaon made up
of (ms/2,ms/2) instead of the physical point (ms,md). Thus, SU(3) breaking effects (ms �= md) have
not been incorporated. (iii) There are large O(a2) discretization artifacts, both for a given transcription of
the ΔS = 2 operator on the lattice and for different transcriptions at a given value of the lattice spacing,
so extrapolation to the continuum limit is not as robust as one would like. These limitations are discussed
after a brief summary of the recent work.

In the last four years a number of new methods have been developed and the corresponding results
are summarized in Table 4.3.

• The Rome collaboration has shown that the correct chiral behaviour can be obtained using O(a)
improved Wilson fermions provided non-perturbative renormalization constants are used. Their
latest results, with two different “operators”, are BK(2GeV) = 0.63(10) and 0.70(12) [58].
These, while demonstrating the efficacy of this method, do not supplant the staggered result, as
the continuum extrapolation is based on only three points and the data have larger errors. The
discretization errors can be characterized as BK(a) = BK(1 + aΛ) with Λ ≈ 400MeV and are
similar in magnitude to those with staggered fermions at 1/a = 2 GeV, as are the differences in
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Fig. 4.6: Published estimates of BK with fermion formulations that respect chiral symmetry. All results are in the quenched

approximation.

Collaboration year BK(2GeV) Formulation Renormalization a−1 (GeV)

Staggered [56] 1997 0.62(2)(2) staggered 1-loop ∞

JLQCD [57] 1997 0.63(4) staggered 1-loop ∞

Rome [58] 2002 0.63(10) Improved Wilson NP ∞
Rome [58] 2002 0.70(12) Improved Wilson NP ∞

CP-PACS [59] 2001 0.58(1) Domain Wall 1-loop 1.8 GeV

CP-PACS [59] 2001 0.57(1) Domain Wall 1-loop 2.8 GeV

RBC [60] 2002 0.53(1) Domain Wall NP 1.9 GeV

DeGrand [61] 2002 0.66(3) Overlap 1-loop 1.6 GeV

DeGrand [61] 2002 0.66(4) Overlap 1-loop 2.2 GeV

GGHLR [62] 2002 0.61(7) Overlap NP 2.1 GeV

Table 4.3: Quenched estimates for BK evaluated in the NDR scheme at 2GeV. The fermion formulation used in the calculation,

the method used for renormalizing the operators, and the lattice scale at which the calculation was done are also given. NP

indicates non-perturbative renormalization using the RI/MOM scheme and a−1 = ∞ implies that the quoted result is after a

continuum extrapolation.
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estimates with using different operators. In the staggered formulation, the artifacts are, however,
O(a2Λ2) and O(α2

s ) and the data suggest an unexpectedly large Λ ∼ 900MeV.

• Four collaborations have new results using domain wall and overlap fermions as shown in Table 4.3
[63,60,59,61,62]. Both formulations have built in chiral symmetry at finite a and O(a) improve-
ment. Each of these collaborations have used slightly different methodology, so they cannot be
compared head on, or combined to do a continuum extrapolation. Thus, the results are quoted with
reference to the lattice spacing at which the calculation was done. The differences reflect O(a2)
(and O(α2

s) in cases where perturbative renormalization constants have been used) artifacts.

• Calculations are in progress [64] using another method with good chiral behaviour, twisted mass
QCD.

Deriving an estimate for the physical B̂K , starting from the current best quenched lattice estimate, the
JLQCD staggered result BK(2GeV) = 0.63(4), requires consideration of the following issues.

• The O(a2) errors in the staggered formulation are large. Nevertheless, the error 0.04 obtained
by the JLQCD collaboration on including both O(a2) and O(α2

s ) terms in the extrapolation is a
reasonable 1σ estimate of both the statistical and the extrapolation to continuum limit errors.

• A choice for αs and the number of flavours in the perturbative expression has to be made to convert
BK → B̂K . It turns out that the result is insensitive to whether one uses quenched or full QCD
values. Using the 2-loop expression, the result for the central value isB̂K = 0.86(6).

• An estimate of the systematic uncertainty associated with the quenched approximation and SU(3)
breaking. Preliminary numerical estimates suggest that dynamical quarks would increase the value
by about 5% [65,66]. Sharpe estimates, using ChPT, that unquenching would increase BK by
1.05±0.15, and SU(3) breaking effects would also increase it by 1.05±0.05 [67]. This analysis of
systematic errors is not robust and, furthermore, the two uncertainties are not totally independent.
So one can take an aggressive and a conservative approach when quoting the final result forB̂K .
In the aggressive approach, the error estimate is given by combining in quadrature the offset of the
central values with respect to unity. This gives a 7% uncertainty and

B̂K = 0.86 ± 0.06 ± 0.06 . (44)

In the conservative approach, advocated by Sharpe [67], one combines the uncertainty in quadra-
ture to get a 16% uncertainty. The final result in this case is

B̂K = 0.86 ± 0.06 ± 0.14 (45)

Given the lack of a robust determination of the systematic error, it is important to decide how to
fold these errors in a phenomenological analysis. One recommendation is to assume a flat distribution for
the systematic error and add to it a Gaussian distribution with σ = 0.06 on either end, and do a separate
analysis for the aggressive and conservative estimates. In other words, a flat distribution between 0.72
and 1.0 for a conservative estimate of B̂K (or from 0.80 to 0.92 for the aggressive estimate) to account
for systematic errors due to quenching and SU(3) breaking. Since this is the largest uncertainty, current
calculations are focused on reducing it.

Finally, the reasons why the quenched lattice estimate of BK has been stable over time and con-
sidered reliable within the error estimates quoted above are worth reemphasizing:

• The numerical signal is clean and accurate results are obtained with a statistical sample of even 50
decorrelated lattices.

• Finite size effects for quark masses ≥ ms/2 are insignificant compared to statistical errors once
the quenched lattices are larger the 2 fermi.

• In lattice formulations with chiral symmetry, the renormalization constant connecting the lattice
and continuum schemes is small (< 15%), and reasonably well estimated by one-loop perturbation
theory.
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• For degenerate quarks, the chiral expansion for the matrix element has no singular quenched log-
arithms (they cancel between the AA and V V terms) that produce large artifacts at small quark
masses in observables like M2

π , fπ, etc. Also, the chiral expansions have the same form in the
quenched and full theories [68–71].

• ChPT estimates of quenching and SU(3) breaking systematic errors are at the 7–16% level [70,65,66].

2.2.2. BK from non-lattice approaches

The parameter BK can also be calculated using other non-perturbative approaches to QCD, like QCD
sum rules, the large-Nc expansion or the chiral quark model. As for the parameter BB in the B-meson
system, BK can be obtained from sum rules by considering two-point [72–74] or three-point [75,76]
correlation functions. However, both methods suffer from the same inadequacies as in the case of BB.
For the two-point function sum rule, the phenomenological spectral function is difficult to parametrise
reliably, whereas for the three-point function sum rule no next-to-leading order QCD corrections are
available and thus a proper matching with the Wilson coefficient function is at present not possible. For
these reasons, we shall concentrate below on existing results in the large-Nc expansion [77–80], which
in our opinion are developed furthest. After commenting on the large-Nc approach in more detail, the
calculation of BK within the chiral quark model [81] will also be briefly discussed.

Calculations of weak hadronic matrix elements in the framework of the large-Nc expansion were
developed by Bardeen, Buras and Gérard in the nineteen-eighties. ForBK , at the next-to-leading order in
1/Nc, this method resulted inBK = 0.7±0.1 [77], to be compared withBK = 0.75 in the strict large-Nc

limit. However, at that time the next-to-leading order correction to the Wilson coefficient function [82]
was not available, and anyhow it is debatable whether the result of [77] can be properly matched to the
short distance coefficient. The proper matching of the scale and scheme dependencies in matrix elements
as well as Wilson coefficients is, however, a crucial aspect for all approaches to weak hadronic matrix
elements.

In the approach of [78] a significant dependence on the matching scale is still present, resulting
in sizable uncertainties for BK . Explicit cancellation of scale and scheme dependences was demon-
strated in Ref. [79] within the chiral limit, and, to a lesser extent in Ref. [80], also for a physical strange
quark. The main ingredients in the approaches of [79,80] are: the large-Nc expansion; chiral pertur-
bation theory to control the low-energy end of the Green function required for the calculation of the
matrix elements; the operator product expansion to control the higher-energy region of the Green func-
tion above roughly 1 GeV; a model which connects the low- and high energy regimes. To this end, in [79]
the relevant Green function was saturated by the lowest lying vector meson, the ρ, whereas in [80] the
extended Nambu-Jona-Lasinio model was applied which, however, does not display the correct QCD
high-energy behaviour. The dependence on these models constitutes the dominant uncertainty for the
latter approaches.

In the chiral limit, the findings B̂K = 0.38 ± 0.11 [79] as well as B̂K = 0.32 ± 0.13 [80] are
in very good agreement with the current algebra result B̂K = 0.33 [83], obtained by relating B̂K to the
K+ → π+π0 decay rate. In fact, this agreement could be interpreted as a successful description of the
K+ → π+π0 decay from large-Nc. The authors of Ref. [80] have also extended their calculation beyond
the chiral limit with the result B̂K = 0.77 ± 0.07. The smaller error compared to the chiral limit case
is due to a reduced model dependence for a physical strange quark. However, as is obvious from these
results, the chiral corrections amount to more than 100%, and it remains to be seen whetherB̂K of [80]
incorporates all such corrections. Nevertheless, it is interesting to observe that the final result of Ref. [80]
is again very close to the strict large-Nc prediction, and is also in good agreement with the average from
lattice QCD quoted above.

An independent approach to hadronic matrix elements and to BK in particular is the chiral quark
model [81]. The chiral quark model provides a link between QCD and chiral perturbation theory and
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bears some similarity to the extended Nambu-Jona-Lasinio model already mentioned above. In this
framework, the hadronic matrix elements depend on the values of quark and gluon condensates, also
present in the QCD sum rule approach, as well as constituent masses for the quarks. For values of
these parameters which fit the ΔI = 1/2 rule for K → ππ decays, the authors of [81] then obtain
B̂K = 1.1 ± 0.2, where the error is dominated by the variation of constituent quark mass and gluon
condensate. However, owing to a poor matching between long- and short-distance contributions in the
case of BK , an additional systematic uncertainty of the order of 15% could be present in the result
of Ref. [81].

3. Experimental methods for the study of B0 and B0 mixing

The system of neutral B mesons, B0 and B0
, can be described in terms of states with well defined mass

and lifetime exhibiting the phenomenon of particle-antiparticle oscillations. The frequency of B0d and
B0

s mixing can be described by the mass difference ΔMd,s as defined in Eq. (14). This mass difference
between the two mass eigenstates leads to a time-dependent phase difference between the particle wave
functions. In the Standard Model, B0–B0

mixing is described via second order weak processes, as
displayed for the case of K0–K0

mixing in Fig. 4.1. The mass difference ΔMd,s can be determined by
computing the electroweak box diagram, where the dominant contribution is through top quark exchange
as can be seen in Eq. (22). A measurement of ΔMd or ΔMs in principle allows the determination of
the Cabibbo-Kobayashi-Maskawa matrix elements |Vtd| or |Vts| as indicated by the relations in Eq. (23)
and (24). The main uncertainty in relating measurements of the mixing frequency to the CKM matrix
elements originates from the parameters FBd,s

and B̂Bd,s
as discussed in Sec. 2.1.. However, in the ratio

ΔMd/ΔMs several of the theoretical uncertainties cancel as is obvious from Eq. (29). Thus, the ratio
ΔMd/ΔMs is related to the ratio of CKM matrix elements |Vtd|/|Vts| and will ultimately determine one
of the sides of the CKM unitarity triangle.

3.1. Time integrated oscillation analyses and determination of B hadron production rates

At the Υ(4S), only B0
d and B+ mesons are produced, whereas at high energy colliders B0

s mesons and
b-baryons are also present. In the latter case, B0

d and B0
s mesons contribute to time integrated mixing

measurements with a weight proportional to their relative production fractions:

χ̄ = fB0
d
χd + fB0

s
χs. (46)

Here, fB0
d

and fB0
s

are the production rates of B0
d and B0

s mesons in b quark jets, while χd,s are the re-

spective mixing parameters defined in Eq. (28)‖. The non-linear relation between x and χ (see Eq. (28) )
implies that χ becomes insensitive to x for values greater than x ∼ 5. Thus, a time dependent oscillation
analysis is necessary to observe fast oscillations as expected for B0

s mesons. At the Υ(4S) resonance, a
measurement of χd allows to directly extract xd because only slowly oscillating B0

d mesons are produced.
A time integrated mixing analysis is, however, important to determine the hadron production fractions
fB0

d
and fB0

s
. For example, fB0

d
is an essential input for a measurement of Vcb using B0

d → D∗+�−ν̄�

decays and the source of an important systematic error in ΔMd measurements at high energy colliders.
Furthermore, the sensitivity to B0

s–B0
s oscillations in inclusive analyses depends on the B0

s production
rate fB0

s
.

The production rates of B hadrons in b quark jets can be obtained from the measured integrated
oscillation rates of B mesons (see Eq. (46) ). When measuring the time integrated oscillation parameter
in a semileptonic sample, the mixing probability can be written as

χ̄ = gB0
s
χs + gB0

d
χd, (47)

‖The world average for the time integrated mixing parameter is χ̄=0.1194 ± 0.0043 [84].
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b-hadron fractions direct measurement direct plus mixing

fB0
s

(9.2 ± 2.4)% (9.3 ± 1.1)%

fb−baryon (10.5 ± 2.0)% (10.5 ± 1.8)%

fB0
d

= fB+ (40.1 ± 1.3)% (40.1 ± 1.1)%

Table 4.4: Average values of b-hadron production rates obtained from direct measurements and using time integrated mixing

as of the ICHEP 2002 conference [87].

where gB0
s

and gB0
d

are the fractions of B0
d and B0

s mesons in a semileptonic sample. Assuming that the
semileptonic width is the same for all B hadrons, we obtain

gBi = fBi Ri where Ri =
τi
τB
. (48)

This results in

fB0
s

=
1
Rs

(1 + r) χ̄− (1 − fb−baryon Rb−baryon) χd

(1 + r) χs − χd

fB0
d

=
1
Rd

χ̄− (1 − fb−baryon Rb−baryon) χs

χd − (1 + r) χs
(49)

where r = Ru/Rd = τ(B+)/τ(B0
d). We assume fB0

d
= fB+ , fB+ + fB0

d
+ fB0

s
+ fb−baryon = 1

and χs = 0.5.

From the previous expressions, the values of fB0
s

and fB0
d

are determined and combined with those
obtained from direct measurements (for more details see Ref. [85]). The results are shown in Table 4.4.
It is clear that fB0

s
is essentially determined from the time integrated mixing measurement. The error

on fB0
s

is dominated by the uncertainty on the integrated oscillation parameter χ̄, which is not expected
to improve substantially in the near future. Different uncertainties contribute to the error on fB0

d
. The

most important one is the poor knowledge of the b-baryon production rates. It has to be noted that fB0
d

is
essentially determined by the DELPHI direct measurement [86].

3.2. Flavour tagging techniques

In general, a measurement of the time dependence of B0–B0
oscillations requires the knowledge of:

• the proper decay time t of the B0 meson (see Sec. 3.3.),

• the flavour of the B or B meson at both production and decay in order to determine whether the
B0 meson has oscillated.

Events are classified on the basis of the sign of the production and decay tagging variables as mixed or
unmixed. To accomplish this, it is necessary to determine the b quark content (b or b̄) of the B meson
at production and at decay time. The figure of merit to compare different flavour tags is the so-called
effective tagging efficiency ε(1 − 2 pW )2, where the efficiency ε represents the fraction of events for
which a flavour tag exists and pW is the mistag probability indicating the fraction of events with a wrong
flavour tag. The mistag probability is related to the dilution D, another quantity used to express the
power of a flavour tag:

D = 1 − 2 pW . (50)

The dilution D is defined as the number of correctly tagged events NR minus the number of incorrectly
identified events NW divided by the sum:

D =
NR −NW

NR +NW
. (51)
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Fig. 4.7: (a) Schematic sketch of a typical BB event. (b) A simplified picture of b quark fragmentation into B mesons.

Fig. 4.7(a) is a sketch of a BB event showing the B and B mesons originating from the primary
production vertex and decaying at a secondary vertex indicating possible flavour tags on the decay vertex
side (SST ) and opposite side (lep, K, Qjet ).

3.2.1. Decay flavour tagging

Several techniques are used to determine the b quark flavour at decay time. The B flavour can be identified
by the charge of a lepton from a semileptonic B decay. In a prompt b→ �− decay, the charge of the lepton
reflects the b flavour. However, other processes can also give a lepton in the final state such as cascade
decays b → c → �+ resulting in a wrong sign tag, right sign cascade decays b → W− → c̄ → �−,
semileptonic τ decays b → W− → τ− → �− or b → J/ψX → �± decays giving both sign leptons.
These processes resulting in wrong sign leptons can be suppressed by using the lepton momentum or
transverse momentum with respect to the b jet axis.

The b quark flavour can also be inferred from the charge of a reconstructed charm meson (D∗−

from B0
d or D−

s from B0
s) or that of a kaon assumed to come from a b → c → s transition. In fully

inclusive analyses, the b flavour can be obtained from the jet charge (see Eq. (52) ), the charge of a
reconstructed dipole or from multitags as further detailed in Sec. 3.4.

3.2.2. Production flavour tagging

Methods to tag the production b quark flavour differ somewhat between high energy colliders (LEP, SLC,
Tevatron) and the B factories. At high-energy colliders, the production flavour tags can be divided into
two groups, those that tag the initial charge of the b quark contained in the B candidate itself (same side
tag) and those that tag the initial charge of the other quark (̄b) produced in the same event (opposite side
tag).

Same side tagging methods exploit correlations of the B flavour with the charge of particles pro-
duced in association with the B meson. Such correlations are expected to arise from b quark hadroniza-
tion and from B∗∗ decays. It has been suggested [88] that the electric charge of particles produced near
a B meson can be used to determine its initial flavour. This can be understood in a simplified picture
of b quark fragmentation as shown in Fig. 4.7(b). For example, if a b quark combines with a ū quark
to form a B− meson, the remaining u quark may combine with a d̄ quark to form a π+. Similarly, if a
b quark hadronizes to form a B0

meson, the associated pion would be a π−. A similar charge correlation
is expected for a charged kaon produced in association with a B0

s meson. Decays of the orbitally excited
(L = 1) B∗∗ mesons, B∗∗0 → B(∗)+π− or B∗∗+ → B(∗)0π+, also produce pions with the same charge
correlation. This tagging method has been successfully used for example at CDF [89,90].

There are several methods of opposite side flavour tagging as illustrated in Fig. 4.7(a). The meth-
ods using a lepton from the semileptonic decay of a B hadron, a kaon or the presence of a charmed
particle from the other B̄ hadron in the event, were already discussed above.
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The technique based on the jet charge exploits the fact that the momentum weighted sum of the
particle charges of a b jet is related to the b-quark charge. In the most basic form, the jet charge can be
defined as:

Qjet =
∑

i qi · (�pi · â)∑
i �pi · â

, (52)

where qi and �pi are the charge and momentum of track i in the jet and â is a unit vector defining the
jet direction. On average, the sign of the jet charge is the same as the sign of the b quark charge that
produced the jet. More sophisticated weights (e.g. (�pi · â)κ) or track impact parameter information are
often introduced to improve the b flavour separation. The jet charge can also be used as a same side tag,
if tracks from primary vertex can be efficiently distinguished with respect to those from secondary decay
vertices.

Other tagging methods include the charge dipole method that aims of reconstructing the b hadron
decay chain topologically. This method has been utilized at SLD taking advantage of the superb decay
length resolution of the SLD CCD pixel vertex detector to separate tracks from the B decay point from
tertiary tracks emitted at the charm decay vertex [91]. A charge dipole is defined as the distance between
secondary and tertiary vertices signed by the charge difference between them (see also Sec. 3.4.).

Another interesting production flavour tagging method is available at SLD. It exploits the large
polarized forward-backward asymmetry in Z → b̄b decays [92–95]. This b flavour production tag makes
use of the large electron beam polarization Pe ∼ 73% at the SLC collider. A left- or right-handed
incident electron tags the quark produced in the forward hemisphere as a b orb̄ quark with a mistag rate
pW of 28% at nearly 100% efficiency [91].

At asymmetric e+e− B factories, B0
d − B0

d pairs are produced through the Υ(4S) resonance with
a boost βγ = 0.425 and 0.55 at KEKB and PEP II, respectively. The two neutral Bd mesons produced
from the Υ(4S) decay evolve in time in a coherent P -wave state where they keep opposite flavours
until one of the Bd mesons decays. From this point in time onwards, the other B meson follows a time
evolution according to the expression Γe−Γ|Δt| (1± cos ΔM Δt) where Δt is the proper time difference
between the two B decays. Hence, the production flavour tag of one of the B mesons can be taken as
the decay flavour tag of the other. The main flavour tagging methods currently used at BaBar and Belle
include b→ �− lepton tagging and b→ c→ s kaon tagging.

It is common to combine different production tags in an oscillation analysis to achieve mistag
probabilities of pW ∼ 26% at LEP [96–101] or even 22% for SLD [102]. An equivalent figure for CDF
in Run I of the Tevatron is pW ∼ 40% [103]. Effective mistag probabilities of pW ∼ 24% are achieved
by the BaBar and Belle experiments [104,105]. It is interesting to mention that the effect of B0

d and
B0

s mixing substantially decreases the tagging power of opposite side tagging methods at high-energy
colliders while mixing of the other B meson (i.e. the coherent mixing occurring before the first B decay)
does not contribute to a mistag probability at the Υ(4S).

3.3. Analytical description of oscillation analyses

A physics function of the form Γe−Γt (1 ± cos ΔM t) is used to describe the signal in B oscillation
analyses. At high energy colliders such as LEP, SLC or the Tevatron, the B meson decay proper time t
can be obtained from a measurement of the distance LB between the B production vertex and the B decay
vertex. The proper time t is related to the decay distance LB and to the boost βγ by

c t =
LB

βγ
= LB

MB

pB
. (53)

At asymmetric e+e− B factories, the proper time difference Δt between the two B candidate decays is
the relevant measure. It is computed as:

Δt = Δz/βγc, (54)
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where Δz is the spatial separation between the two B decay vertices along the boost direction.

The uncertainty on the decay time σt can be expressed in units of the B lifetime τB as

σt

τB
=

√√√√(σ(LB)
L0

B

)2

+
(
t

τB

σ(pB)
p

)2

where L0
B = cτB · pB/MB . (55)

The proper time resolution σt depends on the uncertainty σ(LB) to infer the decay length from the
primary to the B decay vertex and on the B momentum resolution σ(pB). Note that the latter uncer-
tainty scales with t/τB , while the vertexing resolution is independent of the proper time and only adds a
constant error.

The dependence of B oscillations on the proper time resolution and other detector effects is
illustrated in Fig. 4.8. Rather than plotting the mixed and unmixed probabilities Punmix/mix(t) =
1/2 Γe−Γt (1±cos ΔM t) as introduced in Eq. (27) and Eq. (26), it is customary in B oscillation analyses
to either determine a mixing asymmetry Amix or to calculate the fraction of mixed events Fmix

Amix =
Punmix − Pmix

Punmix + Pmix
= cos ΔM t, Fmix =

Pmix

Punmix + Pmix
= (1 − cos ΔM t)/2. (56)

As an example, Fig. 4.8(a) shows the oscillation pattern of Amix for ΔM = 5 ps−1 assuming an
ideal case with perfect tagging, ideal proper time resolution and no background. The reduction of the
amplitude due to a finite decay length resolution is shown in Fig. 4.8(b). Figure 4.8(c) indicates what
happens when the resolution of the (silicon) vertex detector is not sufficient to resolve the oscillations:
Amix is completely smeared out and oscillations are no longer visible. The effect of a finite momentum
resolution is displayed in Fig. 4.8(d). Since the uncertainty on the proper time coming from the momen-
tum resolution is linear in proper time t, as seen in Eq. (55), the rapid oscillation damps in time while the
first few “wiggles” can still be seen completely. The oscillation amplitude is reduced if a mistag proba-
bility is introduced, as can be seen in Fig. 4.8(e). Finally, in a real measurement, background will also
be present which additionally reduces the relative importance of the oscillation amplitude. The effect of
background on the mixing amplitude, in addition to a finite decay length and momentum resolution, as
well as a non-zero mistag probability, is shown in Fig. 4.8(f). Note, however, that this “realistic” distri-
bution is based on half a million signal events. Imagine the corresponding error bars for a measurement
with a few hundred signal events and an oscillation frequency of ΔM = 20 ps−1.

In a B0 mixing measurement, a value for ΔM is usually extracted from the data using a maximum
likelihood method. In the following, we illustrate some of the essential steps for a B0

d analysis determin-
ing ΔMd in more detail. We use the example of an analysis where like-sign (unlike-sign) events describe
mixed (unmixed) events as would be the case, for example, in a dilepton analysis. The total probability
to observe a like-sign tagged event at the reconstructed proper time trec is:

P like(trec) = fbb̄

∑
q=d,s

fBqp
Bq

W Pmix
rec.Bq

(trec) + fb

∑
q=u,d,s,baryons

fBq(1 − p
Bq

W )Punmix
rec.Bq

(trec) +

fbkg.(1 − pbkg.
W )Pbkg.(trec) (57)

and correspondingly for an unlike-sign tagged event:

Punlike(trec) = fbb̄

∑
q=d,s

fBq(1 − p
Bq

W )Pmix
rec.Bq

(trec) + fb

∑
q=u,d,s,baryons

fBqp
Bq

W Punmix
Bq

(trec) +

fbkg.p
bkg.
W Pbkg.(trec). (58)

where fbb̄ is the fraction of b̄b events and pi
W are the mistag probabilities. The probability Pmix

rec.Bq
(trec)

to observe the mixed B0
d or B0

s mesons at proper time trec is the result of a convolution of the oscilla-
tion probability function as given in Eq. (26) and Eq. (27) with the detector resolution function R and
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Fig. 4.8: Illustration of various detector and analysis effects on the mixing amplitude Amix: (a) perfect resolution, (b) good

decay length resolution, (c) poor decay length resolution, (d) finite momentum resolution, (e) mistag probability and (f) decay

length and momentum resolution plus mistag including background.

weighted with an acceptance function Acc(t)

P(un)mix
rec.Bq

(trec) =
∫ ∞

0
Acc(t)R(trec − t, t)P(un)mix

Bq
(t)dt. (59)

To extract the value ΔM of the oscillation frequency, the following likelihood function is mini-
mized :

L = −
∑

like−sign

ln(P like(trec)) −
∑

unlike−sign

ln(Punlike(trec)). (60)

In order to fully exploit the available statistics, more sophisticated mixing analyses make use of
those variables on an event-by-event basis, or often divide the event sample into classes with e.g. different
tagging capabilities.

3.3.1. The amplitude method

For ΔMs measurements, the amplitude method [106] is used to set limits on ΔMs and to combine
results from different analyses. For the mixed and unmixed B0

s events an amplitude A is introduced in
the expressions describing the mixed and unmixed probabilities:

Punmix
B0

s
=

1
2
ΓBse

−ΓBs t[1 +A cos ΔMst] (61)

and similarly:

Pmix
B0

s
=

1
2
ΓBse

−ΓBs t[1 −A cos ΔMst] (62)
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The amplitude method works as follows. A B0
s oscillation amplitude A and its error σA are ex-

tracted as a function of a fixed test value of ΔMs using a likelihood method in analogy to Eq. (60) based
on the physics functions defined in Eq. (61) and Eq. (62). To a very good approximation, the statistical
uncertainty on A is Gaussian and the experimental sensitivity is :

S =
1
σA

∼
√
N/2 fsig (1 − 2pw) e−(ΔM σt)2/2 (63)

where N and fsig are the number of candidate events and the fraction of signal in the selected sample,
pW is the mistag probability to incorrectly tag a decay as mixed or unmixed characterizing the effective
flavour tagging efficiency as discussed in Sec. 3.2., and σt is the resolution on proper time or proper time
difference in the case of the B factories. The sensitivity S decreases rapidly as ΔM increases. This
dependence is controlled by σt.

If ΔMs equals its true value ΔMtrue
s , the amplitude method expects A = 1 within the total

uncertainty σA. If ΔMs is tested far below its true value, a measurement consistent with A = 0 is
expected. A value of ΔMs can be excluded at 95% C.L. if A+ 1.645σA ≤ 1. If the true B0

s oscillation
frequency ΔMtrue

s is very large, far above the experimental sensitivity, A = 0 is expected to be measured
and all values of ΔMs such that 1.645σA(ΔMs) < 1 are expected to be excluded at 95% C.L. Because
of proper time resolution, the quantity σA(ΔMs) is an increasing function of ΔMs. It is therefore
expected that individual values of ΔMs can be excluded up to ΔMsens

s , where ΔM sens
s is called the

sensitivity of the analysis defined by 1.645σA(ΔM sens
s ) = 1. The results from different analyses and

experiments can be combined by simple averaging different amplitude spectra.

3.4. Description of oscillation analyses

Many different analysis methods have been devised to study B0
d and B0

s mixing. These range from
fully inclusive to fully exclusive analyses and, thus, they differ significantly in terms of selection effi-
ciency, sample purity and mistag rates. Moreover, they make use of various production and decay tags.
The methods also differ in the techniques used to reconstruct the B decay length and to estimate the B
momentum, and therefore have different proper time resolutions. In the following, analysis methods de-
veloped to measure ΔMd are discussed first and those used in the search for B0

s oscillations are presented
afterwards.

3.4.1. B0
d–B0

d oscillation analyses

Exclusive methods

The most straightforward and cleanest method relies on the exclusive reconstruction of the B0
d decay

chain. However, because of its low efficiency, it has only recently become accessible with the advent
of e+e− asymmetric B factories. Using samples of ∼30M BB events, BaBar [107] and Belle [108]
reconstruct the decays B0

d → D(∗)−π+, D(∗)−ρ+, D(∗)−a+
1 , J/ψK∗0 (BaBar), and B0

d → D(∗)−π+,
D∗−ρ+ (Belle), where charmed mesons are fully reconstructed in several D∗− and D0 decay modes.
Very clean signals are obtained, see Fig. 4.9, and the decay flavour is unambiguously determined by the
charge of the D(∗) meson (or the charged kaon in case of the J/ψK∗0 decay).

The average separation of the two B decay points is Δz = 255 (200)μm with σz 
 180 (140)μm
for Babar (Belle), which corresponds to a resolution on Δt (Eq. 54) of about 1.1 ps. For a measurement
of the B0

d oscillation frequency it is therefore critical to have good control over the resolution. Table 4.5
summarizes the number of events, signal mode purity and production flavour tag information for these
as well as all other analyses presented below.
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Decay modes Analysis Events/Signal fmode Production flavour tag

B0
d → D(∗)−h+a BaBar exclusive [107] 7380/6347 86% Multiple tags

J/ψK∗0 Belle exclusive [108] 8325/6660 80% Multiple tags

B0
d → D∗−π+ Belle semi-incl. [116] 4899/3433 70% Lepton

B0
d → D(∗)−X ALEPH semi-excl. [113] 4059/2395 38?% Lepton+jet charge

CDF semi-excl. [103] 874/358 27% Lepton

DELPHI semi-excl. [114] 10030/4212 27?% Jet charge

OPAL semi-excl. [112] 347/253 48% Lepton

B0
d → D(∗)−�+ν BaBar semi-excl. [109] 17506/14182 74% Multiple tags

Belle semi-excl. [110] 16397/15118 80% Multiple tags

CDF semi-excl. [111] 888/530 Lepton

CDF semi-excl. [89] /6266 Same-side tag

OPAL semi-excl. [112] 1200/926 65% Jet charge

DELPHI semi-incl. [114] 5958/4135 59% Jet charge

OPAL semi-incl. [115] /7000 36% Multiple tags

B0
d → X�+ν BaBar semi-incl. [120] 99k/ 37% Lepton

Belle semi-incl. [121] 281k/ Lepton

ALEPH semi-incl. [113] 5957/ Lepton

CDF semi-incl. [117] 5968/ 39% Lepton (μμ)

CDF semi-incl. [103] 10180/ Lepton (eμ)

DELPHI semi-incl. [114] 4778/ 33% Lepton

L3 semi-incl. [119] 1490/ Lepton

L3 semi-incl. [119] 2596/ 34% Lepton (impact parameter)

OPAL semi-incl. [100] 5357/ Lepton

ALEPH semi-incl. [113] 62k/ Jet charge

CDF semi-incl. [118] 13k/ Lepton+jet charge

DELPHI semi-incl. [114] 60k/ 29% Jet charge

OPAL semi-incl. [101] 95k/ 30% Jet charge

L3 semi-incl. [119] 8707/ Jet charge

SLD semi-incl. [93] 581/ 51% Polarization+jet charge

SLD semi-incl. [92] 2609/ 31% Polarization+jet charge

B0
d → all ALEPH inclusive [123] 423k/ 35% Jet charge

DELPHI inclusive [122] 770k/ 40% Multiple tags

SLD inclusive [94] 3291/ 60% Polarization+jet charge;

Charge dipole decay tag

SLD inclusive [94] 5694/ 60% Polarization+jet charge;

Kaon decay tag 1993–95

SLD inclusive [95] 7844/ 60% Multiple tags;

Kaon decay tag 1996–98
a h+ stands for π+, ρ+, a+

1 .

Table 4.5: Summary of B0
d mixing analyses showing the signal decay modes, analysis method, total number of selected events

and estimated signal, fraction of signal decay mode in the selected sample (fmode), and production flavour tag.
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Fig. 4.9: Distributions of beam-energy substituted mass for exclusively reconstructed B0
d decays in the BaBar (left) and Belle

(right) analyses.

Semi-exclusive methods

Several analyses have combined an identified lepton with a fully reconstructed charmed hadron. Gener-
ally, the presence of a D(∗)−, with charge opposite that of the lepton, tags the decay of a B0

d meson. This

simple picture is complicated by decays of the type B+ → D∗∗0
�+ν, where the D∗∗0

decays into a D(∗)−

meson.

Measurements have been performed at B factories by BaBar [109] and Belle [110] and at high
energy colliders by CDF [111,89] and OPAL [112]. B0

d mesons are partially reconstructed in the mode
B0

d → D(∗)−�+ν, where the D∗− or D− meson is fully reconstructed. The selection relies on the kine-
matical properties of B0

d and D(∗)− decays. In particular, the low Q value of the decay D∗− → D0π−

is exploited to identify D∗− mesons efficiently and cleanly. Fig. 4.10 shows the mass difference ΔM =
M(D∗−)−M(D0) in the BaBar and OPAL analyses. Signal purities range from ∼45% to ∼90% for the
different experiments, depending mostly on the D0 decay mode.

In order to increase the selection efficiency, analyses by ALEPH [113], CDF [103], DELPHI [114],
and OPAL [112] select B0

d → D(∗)−X decays, where the D(∗)− meson is also fully reconstructed.
Despite the more inclusive nature of this method, the identification of a D(∗)− decay guarantees that the
B0

d purity remains high. However, bb tagging is generally needed to suppress the significant number of
D∗− produced in cc events.

Semi-inclusive methods

One of the semi-inclusive methods selects B0
d → D∗−�+ν decays without attempting to fully reconstruct

the D0 meson but only the lepton and the slow π− from the D∗− → D0π− decay. This partial reconstruc-
tion method yields much larger data samples than obtained with the exclusive reconstruction but suffers
from higher background. It has been applied by DELPHI [114] and OPAL [115]. The combinatorial
background can be studied with same-sign lepton-pion pairs and ΔM side bands. The B+ → D∗∗0

�+ν
component needs to be estimated from the simulation.

A similar technique is used by Belle [116] to reconstruct B0
d → D∗−π+ decays. In this analysis,

only the fast π+ and the slow π− are reconstructed. This information is sufficient to compute the D0

missing mass, assuming that the B0
d meson is at rest in the Υ(4S) rest frame and using energy and

momentum conservation. The event is required to contain a high-momentum lepton to tag the other B
meson flavour and to suppress the large non-BB background. This method is only possible at the Υ(4S)
where sufficient kinematical constraints are available.
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Fig. 4.10: Distributions of the mass difference between D∗− and D0 candidates for BaBar (left) and OPAL (right). The BaBar

distribution is shown for D∗−e+ν candidates. The distributions on the right correspond to the modes D0 → K+π− (top) and

D0 → K+π−π0 (bottom), where the π0 is not reconstructed.

The most widely used method relies on the inclusive reconstruction of semileptonic decays. At
high energy colliders, it has been employed by ALEPH [113], CDF [117,118,103], DELPHI [114],
L3 [119], OPAL [100,101], and SLD [93,92]. This method is efficient since the decay rate for B0

d →
X�+ν is approximately 20% (using electrons and muons) and the decay flavour tag is excellent. A
high-p and high-pT lepton is selected to suppress the contribution from cascade leptons (from b → c →
�+ transitions) and the accompanying charmed hadron (denoted “D” in the following) is reconstructed
inclusively using charged tracks in the jet containing the lepton. The position of the B decay vertex and
the B momentum are obtained using algorithms that aim to classify tracks as coming from either primary
or secondary vertices. The B decay vertex is then obtained by intersecting the trajectories of the lepton
and that of a D candidate.

The analyses are combined with a variety of different production flavour tags and are thus referred
to as “dilepton”, “lepton-jet charge” and “Multiple tags” analyses (see Table 4.5).

Dilepton analyses have also been performed by both BaBar [120] and Belle [121]. Here, there is
no attempt to reconstruct the D decay and the time difference is extracted directly from the separation Δz
between the intersections of the two leptons with the beam axis. Momentum and angular cuts are applied
to reduce the wrong-sign background from cascade leptons. In the BaBar analysis, the main background
consists of B+B− events and is determined to be ∼55% and the main source of mistag originates from
events containing one direct lepton and one cascade lepton, amounting to 13% of the total sample.

Inclusive methods

A few analyses rely on fully inclusive techniques to select large samples of B0
d decays. These techniques

aim to capture most decays by using topological vertexing. As for the semi-inclusive methods, the
selection algorithms generally do not provide any enhancement in the B0

d purity. The primary issue here
is the decay flavour tag.

SLD uses two different decay tags: the charge of a kaon coming from the B decay chain [94,95]
or the charge dipole of the secondary vertex [94]. These analyses require the net charge of all tracks
associated with the decay to be zero to enhance the B0

d fraction from ∼40% to ∼60%. The kaon decay
tag is more efficient than the lepton decay tag but has a worse mistag rate of ∼20%. The charge dipole
technique takes advantage of the B0

d → D−X+ dipole structure and the fact that the B0
d and D− vertices
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are separated along the B0
d line of flight due to the finite charm lifetime. For the B0

d analyses the charge
dipole is defined as the difference between the weighted mean location of the positive tracks and of the
negative tracks along the axis joining the primary and secondary vertices. The track weights account for
the uncertainty in determining the location of each track. A positive (negative) charge dipole tags the
decay flavour of the B0

d (B0
d) meson.

At LEP, DELPHI [122] also developed a fully inclusive method based on the charge dipole tag.
The vertex algorithm uses topological and kinematical information to separate primary and secondary
tracks. A secondary lepton is found in a subset of the vertices and provides the decay flavour tag (these
leptons are referred to as “soft” leptons since decays with high p and pT are used in other DELPHI
analyses). For the remainder of the sample, the B decay products are boosted back into the B meson
rest frame and a charge dipole is formed between the forward and backward hemispheres (as defined
by the thrust axis). Given that the forward (backward) hemisphere contains mostly tracks from the
D (B) decay vertex, one expects a ±2 charge difference between the two hemispheres. The ALEPH
inclusive analysis [123] reconstructs topological vertices in both event hemispheres as in the inclusive
semileptonic analysis. The flavour tagging is performed by computing the product of the jet charges in
the two hemispheres of each event. This product thus combines production and decay flavour tags and is
sensitive to whether mixing occurred or not.

Table 4.5 summarizes the different B0
d mixing analyses. It should be noted that this Table provides

only an approximate representation of the performance of each analysis. The reader is referred to the
specific papers for more detailed comparisons.

3.4.2. B0
s and B0

s oscillation analyses

The study of time dependent B0
s oscillations has been performed with a wide range of analysis techniques

at high energy colliders. The study of B0
s oscillations is more challenging than that of B0

d oscillations due
to two main differences. Only about 10% of b quarks hadronize into B0

s mesons, as compared to about
40% into B0

d mesons. The B0
s oscillation frequency is expected to be at least a factor of 20 larger than

that for B0
d oscillations. To address this, sophisticated analyses have been developed with an emphasis on

lowering the mistag rate, increasing the B0
s purity and, especially, improving the proper time resolution,

all of which affect the sensitivity to B0
s oscillations.

Exclusive methods

Fully exclusive analyses have been performed by ALEPH [124] and DELPHI [98] via the (all charged
particles) modes B0

s → D−
s π

+, D−
s a

+
1 , D0K−π+, D0K−a+

1 (last two for DELPHI only), where the D−
s

and D0
are fully reconstructed in several decay modes. The decays B0

s → D∗−
s π+, D∗−

s a+
1 and D(∗)−

s ρ+

are also reconstructed by adding one or more photons to the above final states (ALEPH only) or by
considering the events falling into the “satellite” mass region below the B0

s mass peak.

The number of selected signal decays is small (see Table 4.6) but the method provides excellent
proper time resolution for two reasons. As there is no missing particle in the decay (at least for events
in the main peak), the B0

s momentum is known with good precision and therefore the contribution of the
momentum uncertainty to the proper time resolution is small. As a result, unlike all other methods, σt
does not grow significantly when increasing the proper time t. In addition, the reconstructed channels are
two-body or quasi two-body decays, with an opening angle of their decay products which is on average
larger than that in multi-body final states; this results in a better accuracy on the B decay length. Despite
the limited statistics, this method contributes to the study of B0

s oscillations at the highest values of
ΔMs. As detailed in Sec. 3.7., this is the preferred method for future studies of B0

s oscillations at hadron
colliders.
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Semi-exclusive methods

Many analyses have been developed with semi-exclusive methods. B0
s decays are partially reconstructed

in the modes B0
s → D−

s �
+ν�X and B0

s → D−
s h

+X, where h represents any charged hadron (or system
of several hadrons) and the D−

s meson decay is either fully or partially reconstructed in the modes D−
s →

φπ−, K∗0K−, K0
s K−, φρ−, K∗0K∗−, φπ−π+π−, φ�−ν, φh−X. Partial reconstruction in D−

s h
+ modes

has the benefit of larger statistics but the D−
s �

+ν�X channel has the advantage of a considerably higher
B0

s purity, lower mistag rate and higher proper time resolution.

Analyses in the mode B0
s → D−

s �
+ν have been performed by ALEPH [124], CDF [125], DEL-

PHI [126] and OPAL [127]. Selection of D−
s decays proceeds as described above. CDF only uses

a partial reconstruction of the mode D−
s → φπ−X. Some background suppression (especially from

B → DsDX) is achieved by requiring that the lepton and the D−
s comes from the same vertex.

The hadronic channel B0
s → D−

s h
+X has been used by DELPHI [98] and SLD [128]. Fully

reconstructed D−
s decays are selected only in the modes D−

s → φπ− and K∗0K− because of their lower
background level. D−

s candidates are then combined with one or more secondary tracks to form B0
s decay

candidates. Among B0
s decays contributing to the D−

s signal, approximately 10% have the wrong decay
flavour tag due to the process W+ → D+

s (b → cc̄s transition). This source of mistag is essentially
absent in the semileptonic analyses. Despite lower statistics, the SLD analysis contributes to the B0

s

oscillation sensitivity at large ΔMs thanks to its excellent decay length resolution (see Table 4.6).

Semi-inclusive methods

The semi-inclusive lepton method, based on the process B0
s → X�+ν�, is the most sensitive method at

LEP and has been used by ALEPH [124], DELPHI [126], OPAL [129] and SLD [130]. The principle of
the method (see the discussion above in the case of B0

d mixing) is to reconstruct the D−
s inclusively by

relying on topological vertexing and kinematical information. Fairly loose criteria are applied to select
large event samples, see Table 4.6.

For this method, it is important to reduce the contribution from cascade decays and to increase the
B0

s purity of the sample (B0
s mesons represent about 10% of all b-hadrons produced, see Table 4.4). To

enrich the sample in direct B0
s semileptonic decays, the following quantities are used: momentum and

transverse momentum of the lepton, impact parameters of all tracks in the opposite hemisphere relative
to the main event vertex, kaons at primary or secondary vertices in the same hemisphere, and charge of
the secondary vertex. Those variables are usually combined in a global discriminant variable. The result
of this procedure is to increase the B0

s purity by about 30%; the corresponding mistag rate at decay is
∼10% or less. The above information, as well as the proper time resolution, is then used on an event-
by-event basis. As an example, Fig. 4.11 shows the neural network output distributions sensitive to the
b→ �− fraction and the B0

s purities in the ALEPH data. The decay length resolution is somewhat worse
than in the case of semi-exclusive analyses due to missing or mis-assigned tracks.

Inclusive methods

Fully inclusive methods are sensitive to most B decay modes and, thus, have high efficiency. Such
techniques have been developed by DELPHI [122] and SLD [131]. The analyses rely on inclusive
topological vertexing to select B decay products and to reconstruct the B decay vertex. The DELPHI
analysis is the same as the one described earlier for B0

d mixing. A very large data sample is obtained but
the mistag rates are high (see Table 4.6). SLD is able to exploit the excellent 3D spatial resolution of its
CCD-pixel vertex detector to cleanly separate the charged decay products from secondary (originating
directly from the B decay) and tertiary (originating from cascade D decays) vertices. The decay flavour
is determined from the charge dipole δQ defined as the distance between secondary and tertiary vertices
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signed by the charge difference between them. Positive (negative) values of δQ tag B0 (B0) decays as
shown in Fig. 4.12.

Charge Dipole  (cm)

0

500

1000

1500

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

E
nt

rie
s 

/ 0
.0

5 
cm

  SLD Data

  MC

  MC b

  MC b

Fig. 4.12: Distribution of the charge dipole for SLD data (points) and Monte Carlo (solid histogram). Also shown are the

contributions from hadrons containing a b quark (dashed histogram) or a b̄ quark (dotted histogram).

Table 4.6 summarizes the different B0
s mixing analyses. It should be noted that the Table presents

only the average performance of the analyses and that most analyses substantially increase their sensi-
tivity by relying on event-by-event information.
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Decay modes Analysis Events/Signal fmode pW σL σp/p

B0
s → D(∗)−

s h+a ALEPH [124] 80/29 36% 0 180 μm 0.005 (peak)

exclusive 0.03 (satellite)

B0
s → D(∗)−

s h+a DELPHI [98] 44/23 52% 0 117 μm (58%) b

D0K−h′+ exclusive 216 μm (42%)

B0
s → D−

s X DELPHI [98] 3079/1266 50% 10% 260 μm (77%) 0.10 (77%) c

semi-excl. 304 μm (13%) 0.26 (23%)

650 μm (10%)

SLD [128] 361/174 55% 10% 50 μm (60%) 0.08 (60%)

semi-excl. 151 μm (40%) 0.18 (40%)

B0
s → D−

s �
+ν ALEPH [124] 333/156 47% 240 μm 0.11

semi-excl.

CDF [125] /1068 61%

semi-excl.

DELPHI [126] /436 53% 200 μm (82%) 0.07 (82%)

semi-excl. 740 μm (16%) 0.16 (16%)

OPAL [127] 244/116 48% 500 μm 0.10

semi-excl.

B0
s → X�+ν ALEPH [124] 74k/ 10% 13%d 251 μm (75%) 0.064 (60%)

semi-incl. 718 μm (25%) 0.020 (40%)

DELPHI [126] 68k/ 10% 8-18%

semi-incl.

OPAL [129] 53k/ 8% 12%d

semi-incl.

SLD [130] 2k/ 16% 4% 55 μm (60%) 0.06 (60%)

semi-incl. 217 μm (40%) 0.18 (40%)

B0
s → all DELPHI [122] 770k/ 10% 43%e 400 μm 0.15

inclusive 33%f

SLD [131] 11k/ 16% 22% 78 μm (60%) 0.07 (60%)

inclusive 304 μm (40%) 0.21 (40%)
a h+ stands for π+, ρ+, a+

1 and h′+ stands for π+, a+
1 .

b For the best data subset (B0
s peak and 1994-95 data).

c Evaluated at t = 1 ps for the best subset of data.
d Fraction of non-(b→ �−) decays.
e For 615k vertices with charge dipole tag.
f For 155k vertices with soft lepton tag.

Table 4.6: Summary of B0
s mixing analyses showing the signal decay modes, analysis method, total number of selected events

and estimated signal, fraction of signal mode in the selected sample fmode, decay flavour mistag rate pW for B0
s decays, decay

length and momentum resolutions. For semi-exclusive analyses, the number of signal events corresponds to the number of D−
s

signal decays (not the number of signal events in the selected decay mode) and fmode represents the fraction of B0
s in the D−

s

signal.
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Fig. 4.13: Examples of ΔMd results from (a) CDF (Ref. [118]) and (b) BaBar (Ref. [120]). See text for details.

3.5. B0
d oscillation results. Measurement of the ΔMd frequency

As detailed in Sec. 3.4., many methods and channels have been used to study B0
d–B0

d oscillations. These
analyses have been performed by the ALEPH [113,123], BaBar [107,109,120], Belle [108,110,116,121],
CDF [89,90,103,111,117,118], DELPHI [98,114,122], L3 [119], OPAL [112,115,100,101] and SLD [92–
95] collaborations.

In the following, we will discuss the results of a few representative measurements of ΔMd.
Fig. 4.13(a) showss the fraction of mixed events as a function of proper decay length for a semi-
inclusive analysis at CDF using a lepton sample with an inclusively reconstructed vertex combined,
on the opposite side, with a lepton and jet charge tag to infer the production flavour [118]. Although
this analysis is based on about 240,000 events, the total height of the oscillation amplitude is small
(∼ 0.05) due to an effective tagging efficiency of ε(1 − 2pW )2 ∼ 1% for each tag yielding a value of
ΔMd = (0.500 ± 0.052 ± 0.043) ps−1. In this analysis, a large mistag rate pW resulting in (1 − 2pW )
being small is compensated by the number of events N being large (see Eq. (63) ). This result can be
compared to a measurement from BaBar [120] based on about ∼ 6300 neutral B mesons fully recon-
structed in multihadronic modes (mainly B0

d → D̄(∗)X). An opposite lepton and kaon tag with low
mistag fractions of pW ∼ 8% and ∼ 16%, respectively, are the reason for an oscillation amplitude of
∼ 0.5 in the mixed asymmetry as shown in Fig. 4.13(b). Note the statistical error on the ΔMd value
obtained by BaBar for this analysis: ΔMd = (0.516 ± 0.016 ± 0.010) ps−1. From this example we
can see the trade-off between a poor tagging power in high statistics B samples produced for example
in a hadronic pp̄ environment at the Tevatron and lower statistics analyses with superior tagging and low
mistag probabilities in an e+e− environment for example at the B factories. In addition, compared to
inclusive methods, analyses with fully reconstructed B mesons have a higher sample purity.

Fig. 4.14 shows the result of two other ΔMd analyses. One of the most precise single mea-
surements performed at the Z0 resonance is an inclusive D∗ analysis by OPAL [115] using B0 →
D∗−�+ν decays. High statistics D∗− → D̄0π− decays were reconstructed using the slow π− from
the D∗− decay while inferring the D0

with an inclusive technique. Same-sign lepton-pion pairs serve
to constrain the combinatorial background in the opposite sign lepton-pion pair signature. A clear os-
cillation signal is observed in the fraction of mixed events as can be seen in Fig. 4.14(a). A value of
ΔMd = (0.497 ± 0.024 ± 0.025) ps−1 is extracted. Another example of a precise ΔMd analysis at
the Z0 pole by DELPHI is shown in Fig. 4.14(b). A sample of 770,000 events with an inclusively re-
constructed vertex has been selected. Tags based on several separating variables such as the jet charge,
dipole charge and the transverse momentum of the (soft) lepton have been combined into a probability
to determine the fraction of like-sign events as displayed in Fig. 4.14(b). DELPHI obtains a value of
ΔMd = (0.531 ± 0.025 ± 0.007) ps−1.
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Fig. 4.14: Examples of ΔMd results from (a) OPAL (Ref. [115]) and (b) DELPHI (Ref. [122]). See text for details.

In order to combine all individual ΔMd results to obtain a world average value, possible statistical
correlations between individual analyses have to be taken into account and also the systematic errors
which are often not negligible have to be combined properly. The main sources of systematic uncertain-
ties are determinations of sample compositions, mistag probabilities, b hadron production fractions and
contributions from b hadron lifetimes. Before being combined, the measurements are adjusted on the
basis of a common set of input values. Details of the averaging procedure are described in Ref. [85].

A compilation of all ΔMd measurements available as of the 2002 ICHEP conference, can be
found in Fig. 4.15. The individual results from each experiment are combined and averaged using the
procedure described above. There exist also time-integrated measurements of B0

d mixing from the AR-
GUS [132,133] and CLEO [134,135] collaborations which can be converted into a value for ΔMd as-
suming the width difference ΔΓd in the B0

d system to be zero and no CP violation in B0
d mixing. The

quoted world average, at the bottom of Fig. 4.15, also includes χd measurements by ARGUS and CLEO.
The ΔMd averages per experiment are displayed in Fig. 4.16.

The different results from the combination procedure are [87]:

ΔMd =

⎧⎪⎪⎨
⎪⎪⎩

(0.491 ± 0.041) ps−1 Argus-CLEO (from χd)
(0.498 ± 0.013) ps−1 LEP-SLD-CDF
(0.503 ± 0.007) ps−1 Belle-BaBar
(0.503 ± 0.006) ps−1 world average

. (64)

At the end of the LEP-CDF-SLD era, ΔMd has been determined with a relative precision of about
2.6%. The LEP-CDF-SLD results are in excellent agreement with the Belle-BaBar measurements. After
the inclusion of the results from B factories, the precision on ΔMd is improved by a factor of two. The
world average B0

d mixing frequency is now dominated by the results of B factories.

3.6. Results on B0
s oscillations. Limits on the ΔMs frequency

B0
s–B0

s oscillations have also been the subject of many studies by ALEPH [96,97,124], CDF [125],
DELPHI [98,99,126,136], OPAL [127,129] and SLD [102,128,130,131]. No oscillation signal has been
observed to date. To set lower limits on the oscillation frequency ΔMs, all B0

s mixing analyses use the
amplitude method [106] described in Sec. 3.3.1.
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DELPHI D*/Qjet(91-94) 0.523 ±0.072 ±0.043 ps-1
DELPHI l/l(91-94) 0.480 ±0.040 ±0.051 ps-1

DELPHI π*l/Qjet(91-94) 0.499 ±0.053 ±0.015 ps-1
DELPHI l/Qjet(91-94) 0.493 ±0.042 ±0.027 ps-1
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B Oscillations
Working Group

Fig. 4.15: Individual and combined measurements of ΔMd at B factories, LEP, SLD and CDF as of the ICHEP 2002 confer-

ence [87]. The quoted world average, at the bottom, also includes χd measurements performed by ARGUS and CLEO.
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Fig. 4.16: Combined measurements of ΔMd averaged by experiment as of the ICHEP 2002 conference [87]. The quoted world

average, at the bottom, also includes χd measurements by ARGUS and CLEO.
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Fig. 4.17: Examples of measured B0
s oscillation amplitudes as a function of the mixing frequency ΔMs from (a) ALEPH

(Ref. [124]) and (b) SLD (Ref. [131]). See text for details.
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Two examples of measured B0
s oscillation amplitudes as a function of the mixing frequency ΔMs

are shown in Fig. 4.17. The ALEPH collaboration recently presented an improved search for B0
s oscil-

lations combining three analyses based on different final states [124]. First, fully reconstructed decays
of B0

s mesons yield a small sample of B0
s candidates with excellent decay length and momentum resolu-

tion. Semileptonic decays with a reconstructed D+
s meson provide a second sample with larger statistics,

high B0
s purity but with a poorer momentum and decay length resolution due to the partial decay re-

construction. Finally, semileptonic B hadron decays are inclusively selected and yield the data sample
with the highest sensitivity to B0

s oscillations since the higher statistics compensates for the low aver-
age B0

s purity and the poorer proper time resolution. Fig. 4.17(a) shows the fitted amplitude spectrum
as a function of ΔMs for the third sample. From this inclusive semileptonic sample alone, ALEPH ex-
cludes all frequencies below 11.5 ps−1, while the combined 95% C.L. limit from all three analyses yields
ΔMs > 10.9 ps−1.

Fig. 4.17(b) shows the amplitude spectrum from an analysis by SLD [131]. This analysis deter-
mined the B flavour at production time by exploiting the large forward-backward asymmetry of polarized
Z0 → bb̄ decays and uses additional information from the hemisphere opposite to that of the recon-
structed B decay such as the jet charge, the lepton and kaon tags. The B flavour at decay is tagged by a
charge dipole method as explained in Sec. 3.4.2. Although this analysis is based on only 11,000 decays,
it reaches a sensitivity of 8.8 ps−1 because of the slower rise of the uncertainty on the amplitude due to
the excellent proper time resolution.

No B0
s oscillation signal has been seen so far. The most sensitive analyses are the ones based on

the inclusive lepton samples at LEP. Because of better proper time resolution, smaller data samples of in-
clusive decays analyzed at SLD as well as measurements using only a few fully reconstructed B0

s decays
at LEP, turn out to be very useful to explore the high ΔMs region. This point is illustrated in Fig. 4.18(a)
showing the ΔMs sensitivities for the different B0

s oscillation analysis methods. The uncertainty on the
amplitude A (actually 1.645σA) is plotted as a function of ΔMs combining the existing results of the
various B0

s analyses methods from different experiments. The combination of all fully inclusive methods
crosses the dashed line corresponding to the condition 1.645σA = 1 used to define the 95% C.L. sen-
sitivity at about 9.5 ps−1. This represents the combined sensitivity of all inclusive methods from the
various experiments. Due to the combination of high statistics and adequate vertexing resolution, the
inclusive lepton methods give currently the most sensitive results. The D+

s -lepton samples also reach a
high sensitivity while the exclusive methods that attempt to fully reconstruct hadronic B0

s decays have a
lower sensitivity because of the small number of B0

s candidates that have been exclusively reconstructed
to date. However, the slow growth of the amplitude error for the exclusive method can be inferred from
Fig. 4.18(a). Note, the visible scattering of points for the exclusive method which results from the small
number of events contributing in these analyses.

All available results on ΔMs oscillations can be combined into a world average exclusion limit
using the amplitude method. All data on the measurements of B0

s oscillation amplitudes versus ΔMs,
as provided by the experiments, are averaged to yield a combined amplitude A as a function of ΔMs as
shown in Fig. 4.18(b). The individual results have been adjusted to common physics inputs and all known
correlations have been accounted for. The sensitivities of the inclusive analyses which depend on the
assumed fraction, fB0

s
, of B0

s mesons have been re-scaled to a common average of fB0
s

= 0.093 ± 0.011
(see Table 4.4). Figure 4.18(b) includes all results as of the ICHEP 2002 conference. The measurements
are dominated by statistical uncertainties. Neighbouring points are statistically correlated. The combined
result is [87]:

ΔMs > 14.4 ps−1 at 95%C.L.
with a sensitivity of ΔMs = 19.2 ps−1 (65)

Values between 14.4 ps−1 and ∼ 22 ps−1 cannot be excluded because the data appear to be compatible
with a signal in this region. The amplitude plot presents a deviation from A = 0 at about ΔMs ∼
17.5 ps−1 for which a significance of ∼ 2.2 σ can be derived. This means that there is not enough
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Fig. 4.18: (a) Uncertainty (1.645 σA) on the amplitude A as a function of ΔMs for the various B0
s oscillation analyses. The

dashed line corresponds to the condition 1.645 σA = 1 used to define the 95% C.L. sensitivity. (b) Combined measurements

of the B0
s oscillation amplitude as a function of ΔMs, including all results as of the ICHEP 2002 conference. Neighbouring

points are statistically correlated.

sensitivity for the observation of a B0
s–B0

s signal at this frequency.

The different measurements of the B0
s oscillation amplitude as of the ICHEP 2002 conference are

shown in Fig. 4.19, where the amplitudes for the various analyses are given at ΔMs = 15 ps−1 along
with the relevant statistic and systematic errors. The exclusion sensitivities are also indicated Fig. 4.19
shows which analyses contribute most in the high ΔMs region. Note that the individual measurements
are quoted as in the original publications, but the averages include the effects of adjustments to a common
set of input parameters.

Although all B0
s mixing results are presently limited by statistics, a discussion of systematic un-

certainties in these analyses is relevant for a future measurement of B0
s oscillations. Critical analysis

parameters (σL, σp and pW ) are extracted from detailed Monte Carlo simulation and are subject to mod-
elling uncertainties. A first level of control is typically achieved with detailed comparisons between data
and MC. In addition, measurements from calibration samples are performed to cross-check the param-
eters directly from the data but not all critical parameters can be tested in this manner. Of particular
importance to the sensitivity at large ΔMs values is the proper time resolution and, in particular, the
decay length resolution. The latter has been tested with a variety of techniques: fit to the decay length
distribution of τ decays, fit for the primary vertex in Z0 decays to light-flavour quarks, study of tracks
with negative impact parameter. These studies find that the decay length resolution is typically under-
stood at the 10% level or better.

3.7. Future prospects for ΔMd and ΔMs determination

The current world average B0
d oscillation frequency constitutes a measurement at about 1% precision.

It is dominated by the results of the B factories which will further improve the precision on Δmd. The
uncertainty on the B0

d lifetime starts to become a main contributor to the systematic error on future
measurements of ΔMd. A simultaneous fit of the B lifetime and ΔMd will improve this situation as
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Fig. 4.19: Measurements of the B0
s oscillation amplitude as of the ICHEP 2002 conference. The amplitudes are given at

ΔMs = 15 ps−1 along with the relevant statistical and systematic errors. The exclusion sensitivities are indicated on the

right, within in parentheses, The shaded area indicates the ± 1 σ region on the average, and the dashed lines correspond to the

values 0 and 1.

demonstrated in Ref. [107]. For a data sample of 300 fb−1, the BaBar and Belle experiments expect to
improve the B0

d oscillation frequency by a factor two, down to a precision of about 0.4%

The future interest in B mixing clearly lies in a measurement of B0
s oscillations. Some of the

still preliminary analyses from LEP and SLD are in the process of being finalized for publication while
no new measurements or improved limits are to be expected. Since no B0

s mesons are produced at the
B factories and running at the Υ(5S) resonance as a source of B0

s mesons is not foreseen in the near
future, the hopes of the heavy flavour community focus on the Tevatron Collider experiments CDF and
DØ to measure B0

s oscillations. For such a measurement it is important that the resolution of the ver-
texing device is good enough to resolve the expected (rapid) oscillations while a small boost correction
will prevent the measured oscillations to damp out with proper time. The path to measure B0

s oscilla-
tions is therefore to use fully reconstructed B0

s mesons rather than higher statistics samples of partially
reconstructed B0

s candidates from e.g. semileptonic decays.

A measurement of ΔMs will be the next crucial test of the Standard Model probing whether the
obtained result will fit to the current constraints on the CKM triangle which are all in beautiful agreement
(see results in Chapter 5). It is noteworthy to mention that physics with B0

s mesons is unique to the
Tevatron until the start of the LHC in 2007.

3.7.1. CDF and DØ detector upgrades in Run II at Tevatron

The Fermilab accelerator complex has undergone a major upgrade since the end of Run I in 1996. The
centre-of-mass energy has been increased to 1.96 TeV and the Main Injector, a new 150 GeV proton
storage ring, has replaced the Main Ring as injector of protons and anti-protons into the Tevatron. The
Main Injector also provides higher proton intensity onto the anti-proton production target, with the goal

179



to allow for more than an order of magnitude higher luminosities. Run II officially started in March
2001. The design luminosity during the first phase of Run II (Run IIa) is 5-8·1031 cm−2s−1 for a final
integrated luminosity of ∼ 2 fb−1 by the end of Run IIa.

Since 1996, the CDF and DØ detectors have also undergone major upgrades [138,139] to allow
operation at high luminosities and bunch spacing of up to 132 ns. Details of the DØ detector upgrade can
be found elsewhere [139]. The main upgrade for DØ is the installation of a tracking system contained
in a 2T superconducting solenoid surrounded by a scintillator preshower detector. The tracking upgrade
includes a silicon microstrip tracker which consists of six barrel segments with disks in between plus
three more disks located at each end of the tracker. In addition, there are two large disks placed at
the end of the silicon tracker to increase the pseudorapidity coverage. The silicon system is enclosed
within a central fiber tracker providing momentum resolution at the level of σ(pT )/pT = 0.02-0.05 for
low-pT tracks with high tracking efficiency for charged particles with pseudo-rapidity η < 2.5. Vertex
reconstruction is expected with a resolution of 15-30 μm in the rφ-plane and about 80 μm in the rz-
plane. A major upgrade of the muon system together with central and forward scintillators will allow
DØ to trigger and reconstruct muon tracks. The B physics triggers at DØ allow to trigger on muons and
electrons while a new Level 1 tracking trigger and a Level 2 silicon trigger are under construction.

The CDF detector improvements for Run II [138] were motivated by the shorter accelerator bunch
spacing of up to 132 ns and the increase in luminosity by an order of magnitude. All front-end and
trigger electronics has been significantly redesigned and replaced. A DAQ upgrade allows the operation
of a pipelined trigger system. CDF’s tracking devices were completely replaced. They consist of a new
Central Outer Tracker (COT) with 30,200 sense wires arranged in 96 layers combined into four axial
and four stereo superlayers. It also provides dE/dx information for particle identification. The Run II
silicon vertex detector, covering a total radial area from 1.5-28 cm, consists of seven double sided layers
and one single sided layer mounted on the beampipe. The silicon vertex detector covers the full Tevatron
luminous region which has a RMS spread of about 30 cm along the beamline and allows for standalone
silicon tracking up to a pseudo-rapidity |η| of 2. The forward calorimeters have been replaced by a
new scintillator tile based plug calorimeter which gives good electron identification up to |η| = 2. The
upgrades to the muon system almost double the central muon coverage and extent it up to |η| ∼ 1.5.

3.7.2. Prospects for B0
s mixing at CDF

The most important improvements for B physics at CDF are a Silicon Vertex Trigger (SVT) and a Time-
of-Flight (ToF) system with a resolution of about 100 ps. The later employs 216 three-meter-long scin-
tillator bars located between the outer radius of the COT and the superconducting solenoid. More details
about the CDF II Time-of-Flight detector and its performance can be found in Ref. [140,141]. The ToF
system will be most beneficiary for the identification of kaons with a 2 σ-separation between π and K for
p < 1.6 GeV/c. This will enable CDF to make use of opposite side kaon tagging and allows to identify
same side fragmentation kaons accompanying B0

s mesons [140,141].

In Run I, all B physics triggers at CDF were based on leptons including single and dilepton trig-
gers. A newly implemented Silicon Vertex Trigger gives CDF access to purely hadronic B decays and
makes CDF’s B physics program fully competitive with the one at the e+e− B factories. The hadronic
track trigger is the first of its kind operating successfully at a hadron collider. It works as follows: with
a fast track trigger at Level 1, CDF finds track pairs in the COT with pT > 1.5 GeV/c. At Level 2, these
tracks are linked into the silicon vertex detector and cuts on the track impact parameter (e.g. d > 100 μm)
are applied. The original motivation for CDF’s hadronic track trigger was to select the two tracks from
the rare decay B0 → ππ but it will play a major role in collecting hadronic B0

s decays for the measure-
ment of B0

s oscillations. Since the beginning of Run II, much work has gone into commissioning the
CDF detector. The Silicon Vertex Trigger was fully operational at the beginning of 2002. A detailed
discussion of the SVT and its initial performance can be found elsewhere [142,143].
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The CDF detector upgrades described above play an important role in CDF’s prospects for mea-
suring B0

s mixing. The inner layer of silicon mounted on the beampipe improves the time resolution for
measuring the B0

s decay length from originally σt = 0.060 ps to 0.045 ps. This will be important if ΔMs

is unexpectedly large. The Time-of-Flight system will enhance the effectiveness of B flavour tagging,
especially through same side tagging with kaons and opposite side kaon tagging, to a total expected
εD2 ∼ 11.3% [144,141].

Fig. 4.20 shows the expected event yield of fully reconstructed B0
s decays necessary for a 5 σ obser-

vation of B0
s oscillations as a function of the mixing frequency ΔMs for different signal-to-background

ratios. If the B0
s mixing frequency is around the current Standard Model expectation of ΔMs ∼ 18ps−1

(see discussion in Sec. 6. of Chapter 5), Fig. 4.20 indicates that CDF would only need a few thousand
fully reconstructed B0

s mesons to discover B0
s flavour oscillations. Originally, CDF estimated to fully

reconstruct a signal of about 75,000 B0
s → D+

s π
− and B0

s → D+
s π

−π+π− events from the two-track
hadronic trigger in 2 fb−1 [144]. This assumes all detector components and triggers work as expected.
Although with the beginning of 2002, the CDF detector is in stable running conditions operating with
reliable physics triggers, including the hadronic two-track trigger, there appear to be indications that the
projected event yield might be overestimated. Given this and the small amount of data delivered by the
Tevatron and recorded by CDF to date (about 100 pb−1 by the end of 2002) it will take some time until
CDF can present first results on B0

s mixing [145].

3.7.3. Prospects for B0
s mixing at DØ

The major difference for a search of B0
s oscillations at DØ is the collection of B0

s candidate events. DØ
currently does not operate a hadronic track trigger. However, it will be able to collect B0

s candidate
events using lepton triggers. Various B0

s decay modes such as B0
s → D+

s π
−, B0

s → D+
s π

−π+π− and
B0

s → D+
s �

−ν are under investigation by the DØ collaboration. The fully hadronic decay modes can
be collected by single lepton triggers where the trigger lepton serves as an opposite side lepton tag and
the B0

s meson is reconstructed on the other side. In this case the event yield is suppressed leaving DØ
with a few thousand events of this type in a data sample of 2 fb−1. If the B0

s oscillation frequency is
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small enough, semileptonic B0
s decays can be used utilizing DØ’s lepton trigger data. But due to the

escaping neutrino, the boost resolution is reduced limiting the ΔMs reach. DØ expects to collect about
40,000 events in the semileptonic channel in 2 fb−1. Monte Carlo studies indicate that DØ will be able
to measure B0

s oscillations in this mode up to a mixing frequency of ΔMs ∼ 20 ps−1.

4. Use of the amplitude spectrum for CKM fits

In this Section we discuss how to include ΔMs information in CKM fits starting from the amplitude
spectrum given by the LEP Oscillation Working Group [87].

The 95% C.L. limit and the sensitivity (see definition in Eq. (63) ), are useful to summarize the
results of the analysis. However to include ΔMs in a CKM fit and to determine probability regions
for the Unitarity Triangle parameters, continuous information about the degree of exclusion of a given
value of ΔMs is needed. We describe how to include this information in both Bayesian and frequentist
approaches. The requirements for an optimal method are:

• the method should be independent of the significance of the signal: this criterion is important to
avoid switching from one method to another because of the presence (absence) of a significant
signal (whose definition is arbitrary);

• the probability regions derived should have correct coverage.

For the discussion in this Section we use the World Average computed by the LEP Oscillation Working
Group [87] and presented a the CKM-Workshop, corresponding to a 95% C.L. lower limit at 15.0 ps−1

and to a sensitivity at 18.0 ps−1.

In Sec. 4.1. we review and analyse how to include ΔMs information for the CKM fits. Sec. 4.2.
describes the newly-proposed frequentist method for including ΔMs information in CKM fits.

4.1. Review of the available methods. The likelihood ratio method

Modified χ2 method

The first CKM fits [146–148] used the χ2 of the complete amplitude spectrum w.r.t. 1:

χ2 =
(

1 −A

σA

)2

(66)

The main drawback of this method is that the sign of the deviation of the amplitude with respect to the
value A = 1 is not used. A signal might manifest itself by giving an amplitude value simultaneously
compatible with A = 1 and incompatible with A = 0; in fact, with this method, values of A > 1 (but
still compatible with A = 1) are disfavoured w.r.t. A = 1, while it is expected that, because of statistical
fluctuations, the amplitude value corresponding to the “true” ΔMs value could be higher than 1. This
problem was solved, in the early days of using ΔMs in CKM fits, by taking A = 1 whenever it was in
fact higher.

A modified χ2 has been introduced in [149] to solve the second problem:

χ2 = 2 ·
[
Erfc−1

(
1
2
Erfc

(
1 −A√

2σA

))]2
(67)

Relation between the log-likelihood and the Amplitude

The log-likelihood values can be easily deduced from A and σA using the expressions given in [106]:

Δ logL∞(ΔMs) =
1
2

[(
A− 1
σA

)2

−
(
A

σA

)2
]

=
(

1
2
−A

)
1
σ2

A

, (68)
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Δ logL∞(ΔMs)mix = −1
2

1
σ2

A

, (69)

Δ logL∞(ΔMs)nomix =
1
2

1
σ2

A

. (70)

The last two equations give the average log-likelihood value for ΔMs corresponding to the true oscilla-
tion frequency (mixing case) and for ΔMs being far from the oscillation frequency (|ΔMs−ΔM true

s | �
Γ/2, no-mixing case). Γ is here the full width at half maximum of the amplitude distribution in case of
a signal; typically Γ 
 1/τB0

s
. Fig. 4.21 shows the variation of ΔL∞(ΔMs) corresponding to the

amplitude spectrum of Fig. 4.18(b).

Likelihood ratio method R

Instead of the χ2 or the modified χ2 methods, the log-likelihood function Δ logL∞(ΔMs) can be used:
this is the log-likelihood referenced to its value obtained for ΔMs = ∞ [150,151]. The log-likelihood
values can easily be deduced from A and σA, in the Gaussian approximation, by using the expressions
given in Eqs.(68), (69), (70). The Likelihood Ratio R, defined as,

R(ΔMs) = e−Δ logL∞(ΔMs) =
L(ΔMs)

L(ΔMs = ∞)
, (71)

has been adopted in [151] to incorporate the ΔMs constraint.

Comparison between the two methods using the world average amplitude spectrum

The variation of the amplitude as a function of ΔMs and the corresponding Δ logL∞(ΔMs) value are
shown in Fig. 4.22-(a) and (b). The constraints obtained using the Likelihood Ratio method (R) and
the Modified χ2 method (χ2) are shown in Fig. 4.22-(c). In this comparison the Modified χ2 has been
converted to a likelihood using L ∝ exp(−χ2/2). It is clear that the two methods (R and χ2) give very
different constraints. In particular the Modified χ2 method, with the present World Average, corresponds
to a looser constraint for CKM fits (and in particular for the determination of the ρ̄ and γ parameters).

The toy Monte Carlo

In order to test and compare the statistical properties of the two methods it is necessary to generate
several experiments having similar characteristics as the data used for the World Average. We will call
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equivalent those experiments having the same dependence of σA as a function of ΔMs.

The dependence of σA on ΔMs can be reproduced by tuning the parameters of a fast simulation
(toy-MC). The method used here is similar to the one presented in [152]. The error on the amplitude can
be written as:

σ−1
A =

√
N ηB0

s
(2εd − 1) (2εp − 1)W (σL, σP ,ΔMs) (72)

where N is the total number of events, ηB0
s

the B0
s purity of the sample, εd(p) the tagging purity at the

decay (production) time, σL the uncertainty on the B0
s flight length and σp the relative uncertainty in the

B0
s momentum. W is the function that accounts for the damping of the oscillation due to the finite proper

time resolution. The parameters σL, σp and the global factor that multiplies the W function are obtained
by adjusting the simulated error distribution to the one measured with real events. Figure 4.23 shows
the agreement between the toy-MC calculation and the real data up to ΔMs = 25ps−1 (the upper value
of ΔMs at which amplitudes are given). An additional problem is that, in principle, one would like to
define the likelihood within the interval [0,∞] whereas the amplitude spectrum is measured only up to a
certain value. For the present World Average the value is 25 ps−1. A procedure has to be introduced to
continue σA and A.

The continuation for σA is shown in Fig.4.23. The continuation ofA is more delicate. In particular
it is more sensitive to the real amplitude spectrum. Nevertheless if ΔMsens

s << ΔM last
s , the significance

S (S = A/σA) is approximately constant. It is then a good approximation to continue using:

A(ΔMs) =
A(ΔM last

s )
σA(ΔM last

s )
σA(ΔMs). (73)

Although this procedure is reasonable, it should be stressed that it is very desirable to have all the ampli-
tudes (with errors) up to the ΔMs value where the significance remains stable.

Comparison of the methods in case of an oscillation signal

In this Section we compare the two methods in the presence of a clear ΔMs oscillation signal. We
perform several ΔMs toy-MC analyses with the same σA versus ΔMs behaviour as the World Average
analysis. For this study we have generated a ΔMs signal at 17 ps−1. This value corresponds to the value
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where there is the bump in the World Average amplitude spectrum. The statistics of the virtual experi-
ments is much larger than the registered data, at present, so that clear oscillation signals are expected.

The results in Fig. 4.24 show that only the Likelihood Ratio method is able to see the signal at the
correct ΔMs value. The same exercise has been repeated for different generated values of ΔMs, always
giving the same result.

Test of the coverage of the two methods applied to CKM fits

In the absence of a clear B0
s oscillation signal, the Likelihood Ratio method results in a ΔMs range

which extends to infinity at any C.L. A criticism was made in [149] that it is then dangerous to use this
information in a CKM fit. The best way to answer this objection is to test the coverage of the probability
regions (68%, 95% and 99%) computed by the fit by performing a Monte Carlo simulation.

To do this we have prepared a simplified CKM fit where we measure the quantity Rt (see Chap-
ter 1), using only the ΔMd and the ΔMd/ΔMs constraints. The set of constraints on the quantity Rt is:

ΔMd = a2R2
t (74)

ΔMd/ΔMs = b2R2
t (or ΔMs = a2/b2) (75)

where a and b are Gaussian distributed parameters with errors σa = 20% and σb = 10%, thus taking into
account the theoretical uncertainties.

Several experiments have been generated, each of them characterized by the following set of
parameters:

Rt

atheo extracted from the a distribution
btheo extracted from the b distribution
ΔMd(theo) computed from Rt and a
ΔMs(theo) computed from Rt and b
ΔMd(exp) from ΔMd(theo) smeared by the experimental resolution
Amplitude spectrum from a toy-experiment generated with ΔMs(theo)
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Fig. 4.24: Toy-MC analyses with ΔMs generated at 17 ps−1 corresponding to four virtual experiments. Each experiment is

summarized in three plots: (a) amplitude spectrum, (b) Δ logL∞(ΔMs), (c) comparison between the Likelihood Ratio method

(R) and the Modified χ2 method (χ2).

68% 95% 99%

ΔMs = 10 67.5 ± 1.5 93.1 ± 0.8 98.1 ± 0.4

ΔMs = 18.2 71.4 ± 1.4 96.1 ± 0.6 99.6 ± 0.2

ΔMs = 25 69.5 ± 1.5 96.4 ± 0.6 99.3 ± 0.3

Table 4.7: Results obtained with the Likelihood Ratio method. For three different values of generated ΔMs (left column)

we indicate the percentage of “experiments” for which the generated true value of Rt falls inside the 68%, 95% and 99%

probability interval.

For each experiment the best-fit value for Rt was determined and it was counted how many times it fell
inside the 68%, 95% and 99% probability regions defined by the Likelihood Ratio and by the Modified
χ2 methods. This exercise was repeated 1000 times. The measured frequencies for the three probability
regions using the Likelihood Ratio or the Modified χ2 method are given in Table 4.7 and 4.8 respectively.

For the Likelihood Ratio method the measured frequencies correspond to the confidence level
intervals and the coverage is close to correct. This is not the case for the Modified χ2 method where the
confidence levels are significantly underestimated for the true value of ΔMs. The effect stems from the
fact that the χ2 defined in Eq. 67 reaches its minimum systematically above the true value of ΔMs.

Some conclusions

In this first part we have studied the problem of including in CKM fits the ΔMs World Average amplitude
spectrum. We have tested two different methods and compared the results in case of an oscillation
signal. MC simulations also were performed for a CKM fit to test the coverage of the two methods.
The conclusion is that the Likelihood Ratio method, proposed in [150,151], is optimal because it gives
probability intervals with correct coverage and, in case of a signal, it also gives the correct value of ΔMs.

186



68% 95% 99 %

ΔMs = 10 48.6 ± 1.6 83.8 ± 1.2 94.3 ± 0.7

ΔMs = 18.2 64.6 ± 1.5 93.0 ± 0.8 99.2 ± 0.3

ΔMs = 25 77.5 ± 1.5 98.2 ± 0.4 99.7 ± 0.2

Table 4.8: As for Table 4.7, but for the Modified χ2 method.

4.2. Use of the amplitude spectrum in a frequentist approach

The aim of this Section is to describe the frequentist method for incorporating experimental constraints
derived from the amplitude spectrum as a function of the B0

s oscillation frequency (ΔMs) into a global
CKM fit. In other words, we address the questions: what is the pdf of a likelihood measurement of ΔMs,
and what is the confidence level (CL) as a function of ΔMs to be associated with an observation obtained
with a given level of sensitivity?

Infinite statistics

We assume that the xs measurement is performed using the log-likelihood. The measured value of
xs (xmes

s ) is defined to be the one maximizing L(xs): the outcome of one experiment xmes
s is a random

number. For infinite statistics, the xmes
s = ΔMsτb random number follows a (leading-order: lo) Gaussian

probability density function:

Φxs
lo (xmes

s ) =
1√

2πΣ(xs)
exp

(
−1

2

(
xmes

s − xs

Σ(xs)

)2
)

(76)

where the standard deviation Σ(xs) is given by the second derivative of the expected L, through the
integral A

(
√
NΣ(xs))−2 =

+∞∫
−∞

(
(Ṗ−)2

P−
+

(Ṗ+)2

P+

)
dtmes ≡ A(xs) (77)

Ṗ± =
∂P±
∂xs

= ∓fs
1
2
d t sin(xst)e−t ⊗ Gt (78)

N is the total number of mixed and unmixed events and the integrals are performed using the true value
of xs, not the measured one. It follows from Eq. (76) that one may set a confidence level CLlo(xhyp

s ) on
a given hypothetical value xhyp

s using the χ2 law:

CLlo(xhyp
s ) =

∫
<

Φxhyp
s

lo (xmes
s

′)dxmes
s

′ = Prob(χ2, 1) (79)

χ ≡ χxhyp
s (xmes

s ) =
xmes

s − xhyp
s

Σ(xhyp
s )

(80)

where the integral is performed over the xmes
s

′ domain where Φxhyp
s

lo (xmes
s

′) < Φxhyp
s

lo (xmes
s ), that is to say

where |χxhyp
s (xmes

s
′)| > |χxhyp

s (xmes
s )|.

If the log-likelihood is parabolic near its maximum, as is the case for infinite statistics, then, in
the vicinity of xmes

s , Σ(xhyp
s ) 
 cst = Σ(xmes

s ), and one can evaluate Σ as the second derivative of the
experimental log-likelihood, taken at the measured value xmes

s . In effect:

∂2L
∂xs

2 |xs=xmes
s

=
∑
−

(
P̈−P− − (Ṗ−)2

P2
−

)2

+
∑
+

(
P̈+P+ − (Ṗ+)2

P2
+

)2

(81)
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N→∞= −NA(xs) = −Σ−2 (82)

where P̈± denotes the second derivative with respect to xs:

P̈± =
∂2P±
∂xs

2
= ∓fs

1
2
d t2 cos(xst)e−t ⊗ Gt (83)

which does not appear in the final expression thanks to the normalization of the probability density
function, and assuming that xmes

s = xs (which is true for infinite statistics).

Equivalently, one can evaluate Σ by locating the value of xhyp
s which yields a drop of −1/2 in the

log-likelihood, for the experiment at hand, or one can compute the χ2 directly using the approximation

χ2(xhyp
s ) =

(
xmes

s − xhyp
s

Σ(xhyp
s )

)2


 2(L(xmes
s ) − L(xhyp

s )) ≡ χ̃2(xhyp
s ) (84)

Finite statistics

For large enough xhyp
s , the approximation Σ(xhyp

s ) 
 Σ(xmes
s ) breaks down since the sensitivity of the

experiment vanishes: Σ(xhyp
s ) → ∞ for xhyp

s → ∞ . It follows that the likelihood is not parabolic for
large enough xhyp

s , however large the statistics.

The vanishing sensitivity makes χ2, as defined by Eq. (80), a poor test statistic to probe for large
xs values. Furthermore, it is not a straightforward task to infer the correct CL(xhyp

s ) from the χ2 value:
Eq. (79) does not apply (i.e., it is not a true χ2) because Eq. (76) is a poor approximation∗∗ .

In the realistic case of finite statistics, the next-to-leading order statistical analysis of a likelihood
measurement [153] is used here to obtain the key-formula expressing the probability density function of
the random number xmes

s beyond the Gaussian approximation:

Φxs
nlo(x

mes
s ) = Φxs

lo (xmes
s ) e−a3

xsχ3
(1 + a0

xsχ) (85)

a0
xs =

2B − C
2A

1√
NA

= −Σ̇ (86)

a3
xs =

3B − C
6A

1√
NA

(87)

where A(xs) is the integral defined in Eq. (77), B(xs) and C(xs) being two new integrals:

B(xs) =
+∞∫

−∞

(
Ṗ−P̈−

P−
+

Ṗ+P̈+

P+

)
dtmes (88)

∗∗The redefinition of the χ2 using the right-hand side of Eq. (84) provides a test statistic more appropriate for large values of

xhyp
s . Although Eq. (79) does not apply, χ̃2 is capable of ruling out xhyp

s values lying beyond the sensitivity reach (if L(xmes
s )

is large enough) provided one computes the CL using:

CL(xhyp
s ) =

∞∫
χ̃2(x

hyp
s )

Ψx
hyp
s (χ̃2′) dχ̃2′

where Ψx
hyp
s is the probability density function of the χ̃2 test statistic, for xs = xhyp

s , obtained using a toy Monte Carlo. The

rejection of xhyp
s values beyond the sensitivity reach is not a paradox: it uses the fact that large values are unlikely to yield an

indication of a clear signal, especially at low values of xs. Such a treatment, as well as others (e.g., the minimum value of the

likelihood could be used to define another test statistics) are satisfactory. We prefer here to use xmes
s , and only this quantity,

because an analytical expression for its probability density function is available (Eq. 85) and thus the computation of the CL

can be carried out in practice. This is nothing but the standard choice made when dealing with better defined measurements.
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Fig. 4.25: Left Plot: The equivalent χ2 (cf. Eq. (79) ) expressing the confidence levels computed using the next-to-leading order

expression Eq. (85) in the actual situation where the maximum value of the likelihood is reached for ΔMs(mes) = 17.2 ps−1.

The horizontal axis is the difference ΔMs(hypothetical)−ΔMs(mes). The minimum value of the equivalent χ2 is not reached

for ΔMs(hypothetical) = ΔMs(mes) because the maximum of the next-to-leading order probability density function is

slightly shifted below the true ΔMs value. The left hand side of the plot is nearly parabolic and resembles closely the one that a

simplistic interpretation of the likelihood curve provides. The right hand side of the plot states that there is almost no constraint

on high values of ΔMs. One is far from dealing with a measurement in the usual (Gaussian) sense. Right Plot: The equivalent

χ2 in the would-be situation where the maximum value of the likelihood is reached for ΔMs(mes) = 10 ps−1. Although the

equivalent χ2 is not truly parabolic, the Gaussian limit is almost reached: one is close to dealing with a measurement in the

usual (Gaussian) sense.

C(xs) =
+∞∫

−∞

(
(Ṗ−)3

P2
−

+
(Ṗ+)3

P2
+

)
dtmes (89)

The integral C tends to be small because, on the one hand the two contributions have opposite signs, and
on the other hand the denominator is of order two: it follows that a3 
 a0/2. The right hand side of
Eq. (86) links the next-to-leading order correction terms a0 and a3 to the dependence on xs of Σ. When
Σ depends significantly on xs, not only is the standard treatment of Sec. 4.2. invalid, but the well-known
formula Eq. (79) itself becomes incorrect, even if one uses the correct Σ(xs).

The expression Eq. (85) is identical to Eq. (76) for small χ values. Although it extends the range
of validity to larger χ values, it cannot be trusted too far away from the origin, where higher order correc-
tions start to play a role. In particular, Φnlo becomes negative (hence meaningless) for χ > −a0−1 (a0 is
negative since it is equal to minus the derivative of Σ with respect to xs). Since Φ is sizable only when
χ ∼ O(1) the next-to-leading order terms, when relevant, are of the form N− 1

2 × (ratio of integrals):
they are negligible for large enough N and for small enough ratio of integrals. The double-sided CL is
computed as in Eq. (79), replacing Φlo by the next-to-leading order approximation. Using the right hand
side of Eq. (79) to translate the confidence level thus obtained into a more familiar equivalent†† χ2, one
obtains the results shown in Fig. (4.25) in two cases: first for the actual situation using the parametriza-
tion of the world average likelihood as described in Sec. 4.1. where the maximum of the likelihood is

††In the CKMfitter package, it is this equivalent χ2 which is added to the overall χ2.
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reached at the boundary of the experimental sensitivity; second for a hypothetical situation where the
maximum of the likelihood would be reached well within the sensitivity region.

In conclusion, we have presented a frequentist analysis of the Bs oscillation. Its domain of validity
extends to the level of sensitivity reached by LEP and SLD. The treatment presented here provides, in a
frequentist approach, a practical means to incorporate into a CKM fit the information on ΔMs contained
in the data, both present and future.
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