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A Relativistic O(a2) Improved Action for Heavy Quarks
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We extend the Fermilab formalism for heavy quarks to develop an O(a2) improved relativistic action. We
discuss our construction of the action, including the identi�cation of redundant operators and the calculation of
the improvement coeÆcients.

1. INTRODUCTION

Amajor source of uncertainty in numerical sim-
ulations of lattice QCD comes from �nite lattice
spacing e�ects. Since these e�ects arise at short
distances, they can be analyzed using an e�ective
�eld theory, as �rst proposed by Symanzik [1].
We may write the e�ective Lagrangian (LEL) as

Le� = Lcont +
X
j

cja
sj�4Oj; (1)

where sj = dim[Oj]. In this framework lattice
spacing e�ects can be systematically removed by
adding higher dimensional operators to the lat-
tice action. The aim of this work is to design a
lattice action such that the coeÆcients of O(a)
and O(a2) terms in Eq. (1) can be reduced.
For heavy quarks with mQ � �QCD, the mass

introduces an additional short-distance scale into
the problem, and the Symanzik formalism must
be modi�ed to separate the short-distance e�ects
of both the lattice spacing and the heavy-quark
mass from the long-distance physics. The Fermi-
lab formalism [2] represents one approach to this
problem. It allows the coeÆcients cj in Eq. (1)
to depend on the quark mass. Then it takes
the Wilson action [3], modi�ed to allow di�er-
ent coeÆcients for space-like and time-like oper-
ators. Improved lattice actions are constructed
by adding higher-dimension operators, again with
di�erent coeÆcients for time- and space-like op-
erators. Ref. [2] considers operators up to dimen-
�Talk presented by M. B. Oktay.

sion �ve, to obtain a lattice action for fermions,
improved to O(a), and valid for quarks with arbi-
trary mass. In this work we extend the analysis
of Ref. [2] to include operators of dimension six
for O(a2) improvement.

2. THE ACTION

At dimension six we have to consider both
fermion bilinears and four-fermion operators. For
these proceedings, we concentrate on determining
the bilinear interactions. The �ve dimension-six
bilinears that satisfy axis-interchange symmetry
are given in Ref. [4]. Without axis-interchange
symmetry, these operators become the seventeen
operators listed in Table 1. (The lower dimen-
sional operators are given in Ref. [2].)
Following Refs. [4,2], we use �eld transfor-

mations to expose the redundant directions for
on-shell improvement. Since we are considering
dimension-six operators in the action we must in-
clude dimension-two operators in the transforma-
tions, and we must also consider gauge �eld trans-
formations. Writing

 ! eJ ; � ! � e
�J ; (2)

we have

J = a�1(=D +m) + aÆ1
 �D + a2�2(=D +m)2

� a2�F
i
2
���F�� + a2Æ2(
 �D)2 + a2ÆBi��B

+ a2Æu[
0D0;
 �D]; (3)

and �J is the same but with bars over the param-
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Table 1
Dimension-six bilinear interactions that could ap-
pear in the e�ective Lagrangian.

No Operator Parameter

1 � (
0D0)
3 �2 + �2

2 � f
 �D;D2g 

3 � f
0D0; (
 �D)2g Æ2 + Æ2

4 � [
0D0; (
 �D)2] Æ2 � Æ2

5 � f(
0D0)2;
 �Dg Æu � Æu

6 � [(
0D0)
2;
 �D] Æu + Æu

7 � 
 �[D0;E] �F + �F

8 � [��E; 
0D0] �F � �F

9 � f
 �D;��Eg 

10 � [��E;
 �D] *

11 � fi��B; 
0D0g ÆB + ÆB

12 � fi��B;
 �Dg 

13 � [i��B;
 �D] 

14 � [i��B; 
0D0] ÆB � ÆB

15 � 
0(D �E �E �D) 

16 � 
 �(D�B +B�D) 

17 � (
iD3
i ) 

eters. For the gauge �elds

A0 ! A0 + 1
2
a2�A(D �E �E �D); (4)

+ g20a
2�J ( � 
0t

a )ta

A! A + 1
2
a2(�A + ÆA)(D�B +B�D)

� 1
2
a2(�A + ÆE)[D0;E] (5)

+ g20a
2(�J+ ÆJ )( � 
t

a )ta:

Following the notation of Ref. [2], the � (Æ) coef-
�cients label axis-interchange symmetric (asym-
metric) operators, so that the axis-interchange
symmetric analysis of Ref. [4] is recovered when
all Æ coeÆcients vanish. The transformations of
Eqs. (2){(5) generate the operators listed in Ta-
ble 1 with coeÆcients which depend on the pa-
rameters in the transformations. The last op-
erator of Table 1, � 
iD

3
i , is not generated by

the transformations, and hence cannot be elim-
inated. To remove it one must improve the

nearest-neighbor lattice derivative.
Not all the operators are independent from

each other. Indeed, we have used the identities

2
0D0
 �D
0D0 = (6)

�
 �[D0;E] + f(
0D0)
2;
 �Dg;

2
 �D
0D0
 �D = (7)

f
 �D;��Eg � f
0D0; (
 �D)2g;

2(
 �D)3 = f
 �D;D2g+ f
 �D; i��Bg; (8)

to remove the operators shown on the left hand
side of these equations from Table 1. The interac-
tion � [��E;
�D] (marked \*" in Table 1) does
not obey particle-antiparticle interchange sym-
metry so it cannot be in the action. Nine in-
dependent parameter combinations appear in the
coeÆcients of the transformed operators. They
are �2 + �2, Æ2 + Æ2, Æ2 � Æ2, Æu + Æu, Æu � Æu,
ÆB + ÆB , ÆB � ÆB, �F + �F and �F � �F .
The choice of redundant operators is not

unique. Considerations, such as calculational
convenience (or solving the fermion doubling
problem) play a role in the choice. In this work,
we want to avoid operators which contain higher
order time derivatives, as they spoil the good
properties of the transfer matrix of actions with
Wilson-like time derivatives. There are nine such
operators, all of which can be eliminated by the
�eld transformations. Table 1 shows which pa-
rameter combination is used to eliminate a given
operator. In summary, this analysis reduces the
original seventeen operators to seven, and we can
write the lattice fermion action as

SF = S0 + SB + SE + a2c1

Z
� f
 �D;D2g 

+a2c2

Z
� 
iD

3
i + a3c3

Z
� fi��B;
 �Dg 

+a2c4

Z
� 
0(D�E �E �D) (9)

+a2c5

Z
� 
 � (D�B +B�D) 

+a2c6

Z
� f
 �D;��Eg + a2c7

Z
� [i��B;
 �D] :

where S0, SB and SE are given in Ref. [2].
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3. THE COEFFICIENTS

Conditions on the coeÆcients of the improve-
ment operators are obtained by matching on-shell
quantities in the lattice theory to their continuum
counterparts. From the lattice fermion propaga-
tor we derive the dispersion relation

coshE = 1 +
(�(p) � 1)2 + (f(p)S + 2c2Q)

2

2�(p)
(10)

where (in lattice units)

�(p) = 1 +m0 +
1
2
rs�p̂

2 (11)

f(p) = � � 2c2 � 2c1p̂
2 (12)

Si = sin pi, p̂i = 2 sin(pi=2) and 2Qi = sin 2pi.
Expanding the energy in powers of p, we obtain

E = M1 +
p2

2M2

�
1

6
w4

3X
i=1

p4i �
(p2)2

8M3
4

+ : : : (13)

where M1 is the rest mass and M2 is the kinetic
mass. As in Ref. [2] we impose M2 = mq . For a
relativistic LEL we also impose M1 = M2. The
improvement conditionM2 =M4 yields a relation
for the coeÆcient c1. Rotational invariance (w4 =
0) gives a condition for c2. These relations were
already derived in Ref. [2].
For the remaining operators, c3 through c7, we

calculate temporal and spatial matrix elements
with one gluon exchange at tree-level. Using the
lattice spinors of Ref. [2], we expand the temporal
matrix element up to and including O(p2). The
lattice matrix element is

hq(�0;p0)jV G
0 jq(�;p)ilat = uy(�0; ~0)

h
1�

(p02 + p2 � 2p0:p)

8M2
E

+
i�ijl�lp

0
ipj

4M2
E0

i
u(�;~0); (14)

where

1

8M2
E

=
�2

2m2
0(2 +m0)2

+
cE�

2

2m0(2 +m0)

+
c6 � c4
(1 +m0)

; (15)

1

4M2
E0

=
1

4M2
E

+
2c4

1 +m0

: (16)

The right-hand side of Eq. (14) must be matched
to the continuum matrix element, which has ME

and ME0 replaced with mq . One matching condi-
tion is to set ME0 = ME , which requires c4 = 0.
Another matching condition sets ME = M2,
yielding a condition on c6 and cE :

4�2

m2
0(2 +m0)2

+
4cE�2

m0(2 +m0)
+

8c6
1 +m0

=
1

M2
2

: (17)

Eq. (17) is in agreement with a result fromRef. [2]
obtained in the Hamiltonian formalism. (The ex-
pression for M2 and the de�nition of cE can be
found in Ref. [2].)
The determination of improvement conditions

on c3, c5 and c7, requires the calculation of the
spatial matrix element including terms up to
O(p3). This is currently in progress.

4. CONCLUSIONS

We propose a relativistic O(a2) improved ac-
tion for heavy quarks. We use the redundant di-
rections to eliminate all operators with higher or-
der time derivatives. As a result, our action keeps
the Wilson time derivative. We have determined
the mass dependent coeÆcients of four improve-
ment operators at tree-level. The determination
of all remaining coeÆcients is in progress.
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