
EPS HEP 2001 


Online Monitoring in the CDF II experiment 


Wolfgang Wagner·3t , Tetsuo Arisawa4, Koji Ikado4 , Kaori Maeshima1 , Hartmut 
Stadie3 , Greg Veramendi2 , Hans Wenzel1 

1 Fermi National Accelerator Laboratory, Batavia, U.S.A. 

2 Lawrence Berkeley National Laboratory, Berkeley, U.S.A. 

3 Universitiit Karlsruhe, Institut fur Experimentelle Kernphysik, Karlsruhe, Germany 

4 Waseda University, Tokyo, Japan 


ABSTRACT: We describe the online monitoring system of the CDF II experiment designed 

to check the data quality of all subsystems in real-time. A subset of the events accepted 

by the highest trigger level is made available to 10 analysis programs which check the data 

quality on an event-by-event basis and produce diagnostic histograms. The monitoring 

results are distributed to the user via a client-server scheme. The display clients feature 

an intuitive GUI which allows to browse and request the available results. The monitoring 

package is coded in C++ and makes use of the ROOT analysis framework which offers 

histogramining methods, networking classes and graphics handling. We report about 

the design and the implementation of the monitoring system and discuss our experiences 

during the first months of operation. 

The Collider Detector at Fermilab (CDF) is a general purpose detector operating at 
the Tevatron pp collider located in Batavia, Illinois. During Run I, from 1992 to 1996, the 
Tevatron operated at VB = 1.8 TeV and CDF collected data with an integrated luminosity 
of £. 110 pb-1. Numerous high quality physics results were obtained, among them the 
discovery of the top quark, the discovery of the Be meson and first indications on CP 
violation in the system of neutral mesons. 

From 1996 to 2001 the Tevatron collider was upgraded to provide an instantaneous 
luminosity of about 2.1032 cm-2s-1, i.e. 20 times more than in Run I, at VB = 2.0 TeV. 
The larger data samples to be expected in Run II, lasting from 2001 to 2007, will allow 
to repeat measurements of Run I with higher precision and perform new ones which were 
out of reach before. In order to prepare for the improved conditions CDF was considerably 
upgraded in all subsystems. Among these upgrades are new monitoring programs to control 
the data quality which are described in this article . 

•Speaker. 

t wagner@ekp.physik.uni-karlsruhe.de 


mailto:wagner@ekp.physik.uni-karlsruhe.de


EPS HEP 2001 Wolfgang Wagner 

1. Goals and system requirements 

Our main goal is to monitor the data quality of all subsystems of CDF online, while the 
data are being taken. The monitoring is realized by consistency checks on an event-by-event 
basis, by filling diagnostic histograms or time-charts, which show the time development of 
certain quantities, and by performing periodic statistical tests of the bin contents of those 
histograms. Furthermore, we want to report discovered errors in an automatic way to run 
control and thereby allow to request an automatic action, e.g. to reset or reboot faulty 
front-end crates or even halt, recover and restart the run. At the end of each run each 
monitoring program should give a final assessment of run quality. The judgments should 
be stored in a data base to give an overview and allow access by higher level assessment 
programs. Additionally, we want to use the monitoring programs offline, for example to 
check reconstructed data, to analyze test beam data or for primary checks on Monte Carlo 
data sets. 

To accomplish the goals mentioned above our monitoring system needs to fulfill certain 
technical requirements: (1) avoid interference with the data acquisition; (2) select events 
according to the trigger types; (3) parallelize concurrent tasks, like monitoring different 
su bdetectors or different quantities; (4) guarantee each monitoring process an adequate 
input rate of minimum 1 Hz; (5) minimize the interference between the monitoring process 
and the display process, which delivers and visualizes the monitoring results to the user; the 
communication with the user should not slow down the monitoring process considerably; 
(6) implement structures and interfaces which are common to all monitoring processes; 
we named this common basis for all monitoring programs, which are in CDF jargon called 
consumers, the Consumer Framework [2]; (7) offer access to the monitoring results from 
remote institutions; that is important since not all subsystem experts are permanently 
located at Fermilab. (8) an easy-to use and versatile graphical user interface (GUI); (9) 
stable operation for long time periods; (10) a large part of the Consumer Framework should 
be kept independent of the CDF framework; this allows us to develop a universal tool which 
can be ported easily to other applications. 

2. Design of the Consumer Framework 

The highest trigger level (Level 3) of the CDF II experiment is a software trigger imple­
mented on a large PC farm. The available bandwidth for data logging is 20 Mbyte/s, the 
approximate size of an event is 250 kByte. Therefore, the expected trigger output rate is 
typically 75 Hz. The data are transfered from Level 3 to a process called Consumer Server 
Logger (CSL) [3] which sends the data to the computer center where they are written to 
tape and forwards copies of a subset of these events to the online monitoring programs. 
The total bandwidth available to the consumers is limited to 10 MByte/s. The Consumer 
Framework is written in C++ and makes heavy use of the ROOT [4] package. 

Monitoring programs: The CSL serves in total 10 monitoring programs: YMon 
(occupancies), XMon (trigger rates), LumMon (luminosity), TrigMon (trigger bits, trigger 
decisions), StageO (drift chamber calibrations), BeamMon (beam position), ObjectMon 

2 




EPS HEP 2001 Wolfgang Wagner 

serious errors 

d; 
., ;E 

z 
a: ___ ~ ____ R ____ ~ ti: 

w w w w 
:;; :;; :;; :::e 
:::l :::l ::;) ::;) 

til til til til 
Z Z Z Z 
0 0 0 0 
(,) (,) (,) (,) 

socket configuration via 
connections 'talk to' 

monitoring 

programs 

push protocol 

Figure 1: Design of the Consumer Framework. 

(reconstructed objects like jets, electron and photon candidates, muon candidates and 
tracks), SiliMon (silicon hit maps, silicon tracks), SvxMon (chip-wise silicon information: 
raw ADC counts, pedestals, signal-to-noise) and L3RegionalMon (silicon Level 3 regional 
tracking). The consumers can be configured and parameters can be customized via a 
steering file (in CDF jargon called a talk-to) which is read in at start-up. 

The monitoring programs are written by the subsystem experts. However, the Con­
sumer Framework provides common features: the embedding in the CDF offline software 
(AC++), interfaces for initialization and event processing, the transport of results to the 
users, a common display program and error logging. This allows the subsystem experts 
to concentrate on their monitoring tasks, insures a large coherence between the individual 
consumers and eases additions and maintainability. The availability of such a common 
basis for all online monitors has to be viewed as a major improvement as compared to Run 
I of CDF. 

The design and the components of the Consumer Framework are shown in Fig. l. 

One important design choice was to implement a distributed system with many consumers 
running in parallel on different machines rather than one huge central process. The reason 
for this is that consumer jobs are CPU bound rather than limited by the available input 
rate. 

Display Servers: Another major design decision was to separate the publishing of 
monitoring results from the consumer jobs, in order to increase stability and smoothness 

3­



EPS HEP 2001 Wolfgang Wagner 

of operation. Thus, we designed a client-server model to transport the monitoring results 
to the user. Each consumer has its own server program. The display servers receive all 
monitoring results from the consumers via a push protocol. The update occurs by default 
every 10 events. The update frequency can be customized via a steering file. To increase 
the performance we do not instantiate objects inside the display servers but rather keep 
them in a buffer type format. The display servers are running on the same machine as 
the affiliated consumers. The bandwidth of the internal socket communication is about 
10 Mbyte/s. Since each consumer and its display server are running on the same machine, 
we can start the server process from the consumer in an automated way using fork/exec. 
When the consumer exists, the server is stopped automatically. 

Display clients can connect to several servers at the same time and request specific 
monitoring results via a pull protocol. After connection to a server the display clients 
request first a list of all objects which are available by that server. This list is presented to 
the user in a list tree of the GUI. The user has access to the available objects via atomized 
requests: The user chooses from this list an object he wants to view. The request is sent 
to the server and the object is returned. Inter-process communication between consumer 
and display server on one hand and display server and display client on the other hand is 
realized by socket connections provided by the ROOT package (TSocket). 

The display clients offer an auto-update mode to" users, such that a selected object will 
be automatically updated with a specified update frequency, the default being 5 seconds. 
Another important feature of the display is the slide show option. The consumer writers 
can flag certain histograms or canvases as particularly important. If the user switches the 
slide show on, the display window will pop up and the flagged objects will consecutively 
be shown on this window. The objects will be automatically updated and the display will 

cycle over them. 

The standard input method for the display is via sockets as discussed above. However, 
it is also possible to use the GUI to view ROOT files written by the monitoring programs. 

Error receiver: Above all it is the purpose of the monitoring to find errors in the 
data or produce warnings about faulty distributions. Thus, it is important to get an 
overview about the error messages produced by the monitoring processes. For this purpose 
we collect error messages of all consumers by a central process: the error receiver. The last 
ten messages of each consumer are displayed on a web page. 

Serious error messages will be forwarded to run control to take necessary actions. These 
messages have to be registered in advance to acquire a specific error key, which allows the 
error receiver to identify them. The registered error messages are forwarded to run control 
and can prompt an automated action, for example to halt, recover and restart a run. 

State Monitor: This is a watchdog process which monitors the status of each con­
sumer and displays it on a web page. The state monitor provides information on how 
many events each consumer has processed, on which machine the consumer and the affil­
iated server are running and the port number on which the server offers its service to the 
display clients. 

-- 4­



EPS HEP 2001 

3. 	Performance 

The online monitoring programs are permanently running in the CDF control room since 
April 2001. The 10 processes are distributed over 6 Linux PCs (4 1.4 GHz and 2 2 x 
800 MHz). The PCs serve 10 screens where the display clients are showing the results. 
To start the consumers and displays in standard operation the shift crew runs two scripts 
which start the necessary processes on the assigned machines. 

To commission our monitoring system we have made several performance tests. Some 
findings are reported here: We checked how the communication of a consumer with its 
display server influences its monitoring performance by running the consumer with the 
highest number of histograms (YMon) with and without server connected. With YMon 
running alone on one machine we got an event rate of 5.8 Hz if the server was off and 
4.7 Hz if the server was on. We consider this decrease in processing rate due to the export 
of monitoring results to be acceptable. 

Another test dealt with the resources used up by the display client if it is running on 
the same machine. It turned out that the update time when being in auto-update mode is 
a crucial quantity. If set to a reasonable value of 5 seconds the consumer gets 80% of the 

CPU, the display uses 4%, the X server 6% and the display server 2%. If the update time 
is set to a far too low value, e.g. 0.3 seconds the share left for the consumer goes down to 
36%, the X server uses 34% and the display 21%. 

With the full system under operation we find that all consumers reach an event pro­
cessing rate of approximately 2 Hz which is within specifications. 

4. 	Conclusions 

We have designed and implemented a common framework (Consumer Framework) for all 
10 CDF online monitoring programs. The package includes common base classes, a display 

server to publish monitoring results and a versatile and user-friendly display GUI. The 
monitoring programs are in continuous operation since April 2001. Monitoring results are 
accessible from remote sites. 

References 

[1] 	 F. Abe et aL, The CDF detector: an overview, Nucl. Instrum. Meth. A 271 (1988) 387-403. 

[2] 	 H. Wenzel et al., Online Monitoring and Module Maintenance for CDF in the Upcoming 

Fermilab Tevatron Run ll, CHEP 2000, Padova, Italy, February 2000; 

T. Arisawa et aL, CDF Run II Run Control and Online Monitor, CHEP 2001, Beijing, 
China, September 2001. 

[3) 	 M. Shimojima et al., Consumer-Server/Logger system for the CDF experiment, 11th IEEE 
NPSS Real Time Conference, June 1999, Santa Fe, U.S.A.; 
B. Kilminster et al., Design and Specifications for the CDF Run II Consumer-Server/Logger, 
CDF internal note CDF/DOC/ONLINE/PUBLIC/4794, 1998. 

[4] 	 R. Brun, F. Rademakers et aL, http://root.cern.ch. 

5 

http:http://root.cern.ch

