
Fermilab FERMILAB-Conf-02/204  October 2002

Tracking of Three Variants
of Transition-Free Lattices for a Proton Driver

Bela Erdelyi∗ and Carol Johnstone∗

∗Fermi National Accelerator Laboratory, P.O. Box 500, MS 220, Batavia, IL, 60510

Abstract. Transition-free lattices are favored as possible realization of proton drivers. Several variants have been
proposed, some of which have considerably different behavior. One of the main quantities used to characterize
this behavior is the short term dynamic aperture (DA). In this note we study three different variants of such
lattices, and show that the differences in DA among the lattices essentially disappear as soon as magnet multipole
errors are included in the simulation. The tracking results can be understood in terms of the normal form based
amplitude dependent tune shift and resonance strength coefficients.

TRANSITION-FREE LATTICES

Transition is defined as the point during acceleration
where there is no deviation in the revolution period as
a function of momentum. Transitionless machines avoid
transition either by injecting beam above the transition
energy; that is, the pathlength of the higher momentum
particles is sufficiently long that they always arrive later
than the synchronous particle (relative to the rf wave-
form), or, more commonly, by shortening the pathlength
of high-momentum particles via lattice design until a
shorter revolution period is maintained throughout the
acceleration cycle. In general, control over the transition
energy is achieved by changing the dispersion function
and the location of dipoles with respect to the dispersion
function. This is easy to see, since the higher the dis-
persion, the larger the orbit is offset radially from the on-
momentum orbit and, consequently, the longer the traver-
sal time for higher momentum particles (conversely, it
becomes shorter for low-momentum ones).

In general, transition is higher in energy the shorter
the arc cell length when the phase advance per cell is
kept constant. For the PD energies studied here, the
cell length would require an inter-quadrupole spacing
of only about 4 m which is clearly not an option af-
ter considering injection and extraction. The other ap-
proaches to controlling transition are “missing-dipole”
and “strong focussing” techniques. The missing dipole
is based on the standard FODO arc module, but dipoles
are removed from high dispersion locations. The PD arc
modules studied here are formed from a trio of FODO
cells with dipoles removed from the center FODO cell.
The effect is to create a dispersion function across the
three cell unit which, when integrated with 1/ρ across
the length of the remaining dipoles, reduces the slip fac-
tor, η when compared with a normal three cell unit. If
enough empty space is available, the dispersion function
can be driven negative for some fraction of the module

length. A second way to control the dispersion function
is by increasing the quadrupole focussing strength. One
example of increased quadupole strengths has already
been mentioned–the shortened standard cell. A second
way to increase focussing strength is to create a hor-
izontal lower-beta region at the center of a focussing
quadrupole by inserting a quadrupole triplet or doublet
and a short drift. Outside of the low-beta region, the beta
functions are matched to normal FODO cell ones, mak-
ing the insertion transparent in the linear optics (espe-
cially if the phase advance across the insertion is close
to π). The peak beta functions are the same as the stan-
dard FODO cell, and the fractional cell phase advances
can be made similar; hence the optical properties are also
not strongly different. In this approach long regions of
negative dispersion can be created, and, by propitiously
locating dipoles, the transition can often be driven imag-
inary (transition does not occur at any energy indicating
pathlength decreases with momentum).

The missing dipole is the simplest structure of the two,
but generally has lower dipole packing so that the arcs
must be longer, and realizes a more limited range inγt .
Dispersion suppression for straights is standard or in-
duced with a dispersion wave by instituting an integer
phase advance across the arcs. The strong-focussing lat-
tice has the more complicated low-beta insertion, but ex-
hibits standard FODO cell dipole packing and arcs which
are more compact. Also, dispersion suppression is usu-
ally more efficient in terms of length requirements. For
similar peak beta functions, the strong-focussing lattices
have higher transitions (unless significant bend is re-
moved in the missing dipole case). PD lattices have been
designed with both types of transition control, but the
studies which follow concentrate on the “missing dipole”
types which have so far been proposed for the new gener-
ation of PDs, mainly because of their close resemblance
to conventional synchrotron lattices.

However, in the following, an abnormal sensitivity to



the positions of the chromatic-correction sextupoles was
discovered in the transition-free lattices proposed which
resulted in a local nonlinear cancellation of geometric
aberrations and seeming enhancement of dynamic per-
formance. This artifact associated with the specific lay-
out of the arc module was verified by constructing the
same lattice using conventional FODO cells (which were
not transition-free), and placing the chromatic-correction
sextupoles as in the transition-free case. Hence the effect
could be pinpointed to the particular placement of the
chromatic-correction sextupoles. (For example, standard
FODO cells with sextupole correctors every half cell do
not show the same sensitivities and depowering of a sex-
tupole family always results in an increase in dynamic
aperture for an ideal, or error-free, lattice.) When stan-
dard field errors are introduced, the advertised proper-
ties (particularly the large dynamic apertures) of these
sensitive lattices were found to deteriorate substantially,
making the different versions almost identical in perfor-
mance. The details leading to these conclusions are pre-
sented below.

RESULTS

As mentioned in the previous section, we tracked three
versions of transition-free lattices for proton drivers.
The lattices are termed hereafter: FODO, R. FODO,
and PD which represent an arc module composed of
3 standard FODO cells, an identical three-cell FODO
module, but with rearranged sextupoles to match the
PD locations, and the PD arc module, which has miss-
ing dipoles, respectively. (The standard FODO module
has chromatic correction sextupoles located near each
quadrupole, while the rearranged FODO and PD mod-
ules have sextupoles in the center FODO cell only).
The ideal lattices were tracked with the full complement
of chromatic correction sextupoles, then with horizontal
sextupoles turned off, and, finally, with a realistic set of
multipole errors.

The code COSY Infinity was used to track [1, 2, 3]. We
note that COSY is a single particle map code, in which
the correct differential equations are used (including the
kinematic effects and thick elements) with a high preci-
sion integration algorithm. The fringe fields were turned
off (sharp cutoff approximation). The tracking was per-
formed with an order 18 one-turn transfer map, by first
employing a quick search for the approximate DA using
the truncated Taylor part, followed by fine tuning with
the optimally symplectified EXPO map [4, 5]. It is worth
mentioning that, while order 7 effects were still strong
in the case of the ideal lattices, order 9 and higher ef-
fects were almost always negligible. With errors turned
on, higher order effects became important.

The initial conditions for tracking were set up on a

grid in polar coordinates in thex− y plane with steps
of 0.5 cm along seven directions with polar angles:
0◦,15◦,30◦,45◦,60◦,75◦, and 90◦. The transverse mo-
menta were set to zero and tracking preformed for 1000
turns. As DA along each angle the largest value of radial
distance was taken, for which all particles with smaller
radii survived.

DA of the ideal lattices

First, we tracked the ideal lattices. In the following,
the results are presented along three angles only, because
the DAs in other directions follow from an interpolation
of the values shown in the tables below.

As shown in Table 1, the ideal lattices show widely
different behavior: from the ridiculously large horizontal
DA of the R. FODO to the small vertical DA of the
FODO. One is tempted to conclude from this table that
the R. FODO would be the best choice.

TABLE 1. The dynamic aperture of the three
ideal lattice variants. The DA is shown in units
of cm along the horizontal, diagonal, and verti-
cal directions in thex−y plane.

Lattice / Direction 0◦ 45◦ 90◦

FODO 17.5 10.0 6.5
R. FODO ≈ 150 19.0 15.5

PD 30.5 13.5 15.0

However, we will see in the next section that this is
misleading. The first clue that some “accidental cancel-
lation” is causing this behavior is obtained by looking at
the dynamic aperture of the ideal lattices with the hor-
izontal sextupoles turned off. The results are shown in
Table 2. The table is structured in the same way as Table
1. One expects that in the absence of the nonlinearities
due to the sextupoles, the DA would increase or at least
stay unchanged. This is indeed the case in the horizon-
tal direction, but in the case of the vertical direction of
the PD lattice the DA decreases by 33%, which implies
cross-talking of the horizontal and vertical planes due to
the horizontal sextupoles. Also, a small reduction in the
diagonal DA of the R. FODO can be observed. This in
turn implies that some accidental cancellations are going
on in the ideal lattices, which might not be robust against
systematic and/or random multipole errors. This is the
case studied in the next section.

Lattices with Errors

A set of realistic multipole errors was included in the
simulation of all three ideal lattices (with the horizontal
sextupoles now turned back on), taken from the Fermi-
lab’s Main Injector Technical Design Handbook (see Ta-
ble 3) [6]. Only normal systematic dipole and quadrupole



TABLE 2. The dynamic aperture of the three
ideal lattice variants with horizontal sextupoles
turned off. The DA is shown in units of cm along
the horizontal, diagonal, and vertical directions
in thex−y plane. To be compared with Table 1.

Lattice / Direction 0◦ 45◦ 90◦

FODO ≈ 110 10.5 8.0
R. FODO ≈ 182 18.5 15.5

PD ≈ 131 14.0 10.0

body errors have been used, the dipole errors up to 14-
poles, and quadrupole errors up to 20-poles. We note that
the conclusions of these studies are not very sensitive to
the magnitude of the errors, so one can think of the con-
clusions as being valid for any generic set of multipole
magnet errors.

TABLE 3. Set of multipole magnet errors
used in the tracking, taken from the Fermilab’s
Main Injector Technical Design Handbook.

Multipole order Error < bn>
Dipole Quadrupole

4 0.06 -
6 -0.4 0.5
8 0.04 5.85
10 0.33 -0.1
12 -0.01 -1.82
14 -0.03 0.21
16 1.41
18 -0.03
20 -0.8

Under these conditions the DAs of all three lattices
change dramatically compared to the ideal lattices. Now
essentially all lattices have the same, reduced, DA, as
presented in Table 4, with the notable difference of the
horizontal DA of the PD, which might be significantly
above the noise level. Clearly, the errors now dominate
the DA, and any cancellation or point solution that was
present in the ideal lattices vanished. Since errors in
practice are unavoidable, it follows that realistically there
is no clear best lattice in terms of dynamic aperture.

TABLE 4. The dynamic aperture of the
three lattice variants with multipole errors
turned on. The DA is shown in units of cm
along the horizontal, diagonal, and vertical
directions in thex− y plane. To be com-
pared with Table 1.

Lattice / Direction 0◦ 45◦ 90◦

FODO 3.5 1.5 1.5
R. FODO 3.5 1.5 1.5

PD 6.0 2.0 1.5

ANALYSIS OF THE RESULTS

Since the tracking was performed with the one-turn map,
the order-by-order amplitude dependent tune shifts and
resonance strengths can be analytically extracted using
Differential Algebraic normal form techniques [7]. Their
relative magnitude sheds light on the reasons behind
the widely varying dynamic apertures. We exemplify the
process through a few examples.

For example, why is the horizontal DA of the ideal
rearranged FODO so large compared to the other two?
Looking at first and second order amplitude dependent
tune shifts we obtained Table 5. The reason is clear
now; the FODO has very large higher order amplitude
dependent tune shifts.

TABLE 5. Comparison of first and sec-
ond order amplitude dependent coefficients
of two ideal lattices.

Tune shift coef. R. FODO FODO

First order -0.2 -8
Second order -2 11828

Or one might wonder why does the vertical DA stay
the same for the rearranged FODO and is decreasing
for PD, when the horizontal sextupoles are turned off?
Again, a quick look at tune shifts solves the puzzle (see
Table 6).
TABLE 6. Comparison of first and second order amplitude
dependent coefficients of two ideal lattices with horizontal
sextupoles turned on and off, respectively.

Tune shift c. R. FODO PD

Horizontal HS ON HS OFF HS ON HS OFF

First order -2 -2 -7 -1
Second order 6548 6385 -28516 -8144

Vertical

First order 0.1 -0.1 2 -6
Second order 154 188 -19 654

Finally, the question arises why are the properties of
the three lattices essentially the same when magnet errors
are included? For example, the largest tune shift coeffi-
cients are roughly equal, as seen in Table 7. Likewise, the
dominating resonance driving terms, included in Table 8
are also the same and of the same order of magnitude.
However, notice that at third order the (1,0) resonance is
not excited in the case of PD, which is the reason why
PD has a larger horizontal dynamic aperture.

Finally, we checked also higher order tune shifts and
resonance strengths, and the same qualitative aspects
persist to very high orders.



TABLE 7. Comparison of the largest first and second
order amplitude dependent coefficients of the three lat-
tices with multipole errors on.

Tune shift coef. FODO R. FODO PD

First order 144 94 150
Second order 4161514 3317155 2346097

TABLE 8. Comparison of the dominating resonance driving
terms of the three lattices with multipole errors on.

D. t. c. FODO R. FODO PD

3rd order of (1,0):: 28 of (1,0):: 22 of (3,0):: 12
4th order (2,-2):: 18217 14605 33198
5th order (1,0):: 1160894 1174164 946206

CONCLUSIONS

Three variants of a Proton Driver lattice have been in-
vestigated for dynamic aperture with emphasis on ro-
bustness studies with respect to multipole errors. Ideal
lattices showed a wide array of properties, mainly due
to the positioning of the sextupoles. However, the “acci-
dental” cancellations of the ideal lattices in general did
not survive under the presence of generic magnet errors,
and the lattices with errors showed essentially the same
behavior (with PD performing a tad better for the set of
errors employed in this study).

Although no systematic study has been done, it seems
that the choice of the tune alters the results quantitatively,
but qualitatively the same conclusions can be drawn.
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