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At �rst glance, it appears that the color-octet
contributions to the rate are tiny, v4 � 0:01,
compared to the color-singlet. However, that is
not true. To see why, we need to compare the
rate for each channel, including the Wilson coef-
�cients. For the color-singlet rate, the � decays

to a photon and two gluons, so C
(0)
1 (3S1) / �2s.

For the color-octet channels, on the other hand,
the �nal decay products are a photon and one

gluon. So C
(0)
8 (1S0) � C8(

3P0) / ��s, where the
� comes from there being one less particle in the
�nal state. The color-octet is enhanced perturba-
tively by a factor of ��s = O(10).
But that is not all. Since there are only

two particles in the �nal state for the color-
octet decay, the rate is peaked at the endpoint,

C
(0)
8 (1S0) � C

(0)
8 (3P0) / Æ(1 � z). If we com-

pare the integrated rate in the endpoint region,
(1 � v2 < z < 1), we have �end1 (3S1) / �2sv

2 for
the color-singlet, and �end8 (1S0) � �end8 (1S0) /
��sv

4 � �2sv
2 for the octet, using the fact that

numerically v2 � �s=�. So in the endpoint region
the singlet and octet rates contribute equally.
If we went to higher order in the velocity ex-

pansion, we would �nd further contributions, for-
mally suppressed by higher powers of v, that con-
tribute equally in the endpoint region. This is due
to a breakdown of the non-perturbative expan-
sion. The solution has been known for some time
[6]. The series needs to be reordered as a twist
expansion, similar to what is done in B decays
[7]. The rate is then written as

d�

dz
=

Z
dk+Cn(z; k+)fn(k+)hO(n)i; (6)

where fn(k+) are shape functions, which measure
the probability for the quark pair (in state n) to
have light-cone momentum k+. As these are non-
perturbative functions, they must be modeled.
We also must worry about the perturbative se-

ries. The fact that the color-octet rate begins as
a Æ function is already worrisome. Higher order
corrections could lead to further problems. This
in fact is true. The next-to-leading order (NLO)
perturbative corrections have been calculated for
the color-singlet (numerically) [8] and color-octet
[9]. The NLO color-octet rate is singular at the
endpoint. In particular, Sudakov logarithms ap-

pear in the Wilson coeÆcients at NLO of the form

�2s

�
log(1� z)
1� z

�
+

and �2s

�
1

1� z

�
+

; (7)

which become large as z ! 1. If we again inte-
grate over the endpoint, (1 � v2 < z < 1), these
terms give contributions to the rate �2s log

2(v2)
and �2s log(v

2). Both are O(�s), since �s log2(v2)
and �s log(v2) are O(1). This is an indication
that the perturbative series breaks down in the
endpoint. If we looked at higher order perturba-
tive corrections, we would get terms of the form
�s[�ns log

2n(v2)], which are also O(�s).
The break down of the perturbative and non-

perturbative series are due to the same problem:
NRQCD does not contain all of the correct de-
grees of freedom for the endpoint region. It is
missing collinear modes. To correctly describe
the physics at the endpoint we need to couple
NRQCD to an EFT that contains these missing
�elds, SCET [3].
The invariant mass of the hadronic jet in the

endpoint region, M2
X = (1 � z)M2

� � �2M2
�, is

much larger than the energy in the jet, (EX =
zM�=2). We therefore have a multiscale system,
and EFT techniques are useful to separate the
scales. In this case, the expansion parameter � =p
1� z. There are three classes of particles that

are included in the EFT, depending on the scaling
of the momentum. They are massless quarks and
gluons with:

Collinear : E + p3 �M�; E � p3 � �2M�;

p1;2 � �M�;

Soft : p� � �M�;

Ultrasoft : p� � �2M�:

The scales in the problem are the hard scale,
M�, the collinear scale, �M�, and the soft scale,
�2M�. The plan of attack is to integrate out the
hard scale by matching to the EFT and then run
to the collinear scale using the renormalization
group equations (RGEs) of SCET. At this point
all collinear particles are far o� shell and should
be integrated out. This is done by matching onto
the soft theory, which is same as the large energy
e�ective theory [10]. We will then run from the
collinear scale to the soft scale, at which point all
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+ crossed diagram

=

Figure 1. Matching onto SCET. The diagram on
the left is calculated in full QCD, and then ex-
panded in � and v. This is matched onto an op-
erator in the EFT.

the large logarithmswill be in the coeÆcient func-
tions. The logs in this case are log�! log(1�z),
so by using the EFT RGEs, we have resummed
all the logs of (1 � z), i.e. the Sudakov logs [4].
To follow this program, we �rst need to match

onto SCET. This is done by calculating the
graphs in QCD and expanding in � (and in v
which will also match onto NRQCD). An exam-
ple of this is shown in Fig. 1. The matching,
at leading order in �, gives two operators in the
EFT, for the octet 1S0 and 3P0 channels. We
do not get any other operators at leading order,
which means there are no leading Sudakov logs
in the color-singlet channel [11]. There are other
operators suppressed by � [12].
We next need to run using the SCET RGEs.

This requires the anomalous dimensions of the
operators. We therefore need to calculate the one-
loop diagrams in Fig. 2. The anomalous dimen-
sions of the 1S0 and 3P0 operators are the same,
which is related to the fact that the Sudakov logs
are the same for both channels [9]. Please see [4]
for the details.
We next match onto the soft theory, by remov-

ing all collinear particles. However, we have a
collinear gluon in the �nal state, so to remove
it, we perform an operator product expansion
(OPE). The result is a non-local operator, sep-
arated along the light-cone. This is shown dia-
grammatically in Fig. 3. The operator we match

+

Figure 2. The one-loop diagrams needed to calcu-
late the anomalous dimensions of the SCET op-
erators.

onto is of the form

On(x) =  y�0n�Æ(1� x+ iD+=M�)�
y�n ; (8)

where the derivative is in the + light-like direc-
tion. The rate is now

d�

dz
=

Z
dx
X
n

Cn(x� z)fn(x)hO(n)i; (9)

where fn(x) = hOn(x)i=hO(n)i. This is just
the rate including the shape function. By using
SCET, the shape function appears naturally.
We now run down to the soft scale. For the

details, see [4]. At this point, there are no large
logs in the operators. We have summed all the
Sudakov logs into the Wilson coeÆcients. To plot
the result, we use the model of [13], introduced for
B decays. For �, we need to give the shape func-
tion some unknown �rst moment of order �QCD
[4]. The results are shown in Fig. 4. The dashed
curve is the resummation without the shape func-
tion. The dotted curve is the singular terms in the

Figure 3. Matching onto the soft theory, by doing
an OPE.
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Figure 4. The di�erential decay spectra near the
endpoint region in arbitrary units. The curves
are described in the text.

one-loop result, and the dot-dashed curve is these
terms convoluted with the shape function. The
solid curve is the resummation convoluted with
the shape function. Note that the shape func-
tion without resummation and the resummation
without the shape function give similar results.
However, both are necessary.
At this point we compare to the color-singlet

results. To do this we need the color-octet MEs.
In Fig. 5, the solid curve is the color-singlet result.
The dotted curve is the resummation without the
shape function, the dashed is resummation with
the shape function. The two sets of curves corre-
spond to scaling the octet MEs from the singlet
by factors of v4=10 and v4=100. As can be seen,
to get comparable results, the naive scaling (v4)
seems to be o� by a factor of 100 [14].
However, before a meaningful comparison to

the data is possible, we should follow a similar
program for the color-singlet rate [12]. This will
allow us to resum subleading Sudakov logs. The
existence of these logs was �rst pointed out in [11],
where it was observed that though the leading
logs cancel in the color-singlet di�erential rate,
they are present in the derivative of the rate.
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