J€ Fermilab FERMILAB-Conf-02/101-T June 2002

TRANSVERSE RESISTIVE WALL IMPEDANCE FOR MULTI-LAYER
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Abstract The oscillating magnetic dipole gives rise to the trans-
The transverse resistive wall impedance is calculated fgFrse magnetic field. Due to a fact that the longitudinal

arbitrary multi-layer vacuum chambers with a flat geom\—NaVe length is much larger than the aperture, this field

etry. A finite thickness of the metal layer is important atan be expressed through the longitudinal vector potential

impedance calculations for long machines like VLHC [1]A. In the vacuum, the vector potential satisfies the same

thin coating of elements like injection kickers [2] and aLapIas equation (1) as the scalar one, and also can be pre-

closed orbit coherent stability analysis [3]. This paperuseSented as a sum of the direct beam contribution and the

ideas of our similar consideration for round vacuum chamc—%amber reaction: = A +.AC with A, = ®,/3 andA..
bers [4]. as a regular harmonic function.
The scalar potential can be also expressedbas=

A> /3, where A= is the solution for the vector potential
1 METHOD OF CALCULATION at infinite conductivityA*|r = 0.

For non-round vacuum chambers, there are three trans-Using A. Chao's convention [6], the vertical impedance
verse impedances: driving vertical, driving horizontal ander unit length
detuning [5]. The two driving impedances describe dipole .
fields caused by beam offsets. The detuning impedance de- 2y = —i(Ey + BHz)/(Tyo) (2)
scribes quadrupole fields awoken by the beam current; thign pe written as
impedance has the same value and opposite signs for the . -
two transverse degrees of freedom. For a flat geometry, the Z, = —iB (aAC _ 1 oA ) ©)
detuning impedance is exactly equal to the horizontal driv- Iyo \ 0y  [3? Oy

ing impedance due to the horizontal homogeneity. Thugygte that in this definition the direct dipole contributions
only two driving impedances has to be found in this case. 4, ¢, are excluded.

Calculations of the electromagnetic fields excited by the The impedance (3) can also be expressed as a sum of an
beam dipole motion are significantly simplified when it iSideaI—conductivity ternZ> o 3~ 1~v~2 and a term caused
realized that the wave length of the beam transverse osqyy the wall resistivityZ? oc (A — A%):

lations is much longer than the half-gagw > a, which
is always true as soon as the finite skin depth plays a role, _ 707
Charges and currents excited on the chamber surface feéél — “v * v~ [y,
only local beam offset; thus, they feel the beam as moving
in parallel to the chamber axis with small transverse oscilFhe horizontal Fourier transformation is used to solve the

r—0

—if (0(A.—AX) 1 QA
dy B%y2 Oy

r—0

lations at a given frequency. Laplas equation:

This beam motion can be presented as a superposition of o
oscillating electric and magnetic dipoles: one is due to the A= / Aexp(—ikz)dx (5)
beam charge and another due to its current [1]. The cham- —oc0

ber response on the electric dipole is simply electrostatig. oy the Laplas equation, the Fourier image inside the vac-
screening. For the electrostatic response, only the tran§;m chamber follows:

verse electric field = —V® is non-zero; it can be found X
from the scalar potentiab excited by the beam offsetin- A = D(e~* — G, (k) sinh(ky)e~*12/ sinh(ka)), (6)
side an ideally conducting vacuum chamber. The potential

is found from the 2D transverse Laplas equation: where D = 2wly,/c and the inner metal plates are as-
sumed atu < |y| < a + d. A first term in the brackets,
Ve =0, (1) o e*¥, is the Fourier image of the beam dipole fiedg.

. o he second term describes the chamber potedtiabnd
with zero boundary conditions on the chamber surfact e introduced amplitudé, (k) has to be found from the

d|r = 0. o ; . . .
A response on the vertical beam oscillations has to q%or“ingﬂrtyeCc%”ndéﬂ‘égji-t;jfa&)‘”"_p'(')t“ge gz)diﬁr;ecézgr;itsuo that
’ — Yy y — 4. -

round assuming that the beam hgs a charge dipole mom%%% of this Fourier image into the impedance definition (4)

yo/(Bc). Thus, the total potential can be presented as|d_ 1< to

direct contribution of the beam dipol@;, = Iyoy/(Bcr?),

with Bc as the beam velocity, and a reaction of the vacuum _ __ . Zy /°° ke ka Zy w2
0

chamber®,; thus,® = &, + ®., whered, is a regular Zy = _Zgwmz =

sinhka _227m2572 127
function satisfying the Laplas equation. (7



Z o] —ka . . . . . "
77 = —iﬂ d ke (1— G, (k) ®) For the vertical oscillations, the continuity conditions for

 Jo  sinhka Aandu~tdA/dy aty = a andy = a + d are expressed as
tioiismiilsé considerations for the horizontal beam oscilla- exp(—ka)(1 — G,) =C
9 — exp(—ka)(1 + G coth(ka)) = Sduo an
N —‘k‘(l =
A= —iDﬁ (e‘lkyl — G (k) cosh(ky)ei) 9) Ccr+ Ss1 =G,
|k| cosh(ka) Cs1+ 8c1 = —Gogar
o . 2 i ke ka .y w2 for k > 0. Herec; = cosh(q1d), s1 = sinh(qid); the
@ = T 2 /0 coshka  2ma?B+? 24 parametergo = §1/Go = Gi/k andga; = G2/q1 reflect
(10) relative properties of adjacent media, and the consant
o Zof [T ke~ka describes vector potential in the outer layer.
Zg = o 0 cosh ka (1= Ga(k) (11) Making a ratio from the first pair of the boundary equa-

tions leads to an expression of the impedance fdctof,
— ee} o Yy
Zo =25 + 25 12) iy terms of the amplitude rati® = S/C:
Inside a medium with a conductivity and a magnetic

permeabilityy., the vector potential satisfies the 2D quasi- + ~ Cv = (1 4 coth(ka))/(coth(ka) — qi0T). (18)

static equation ) ) Similarly, a pair of equations at the outer boundary leads to
ViA-r"A=0 (13)  a solution for the amplitude ratif:
. K2 — _W_Qlt(l . 47ria) (14) T =—(G21 +t1)/(1 + Gart1) (19)
2 ' with ¢; = tanh(q;d). Substitution Eq. (19) into Eq. (18)
which means:2 = —2i /52 with § as the skin-depth inside léads to
a metal. (1 + G21t1) exp(ka)
In terms of the horizontal Fourier components, -Gy = 2o+ G1d1050 + (@100 + Gr050)n (20)

A= D (C cosh(q(y — a)) + S sinh(q(y —a))) (15) with ¢y = cosh(ka), sy = sinh(ka).

Corresponding results for the horizonta) pscillations
for the vertical oscillations and with a minor chanBe—  follows from the vertical {) ones (18, 20) by an inter-
—iD for horizontal. Herez is the coordinate of the inner changes, < co; thus,
surface of the given layer ard= v/ k2 + k2. ~

The free field amplitude§’, , (k) in Egs. (8,11) (andso 1 _ ¢, — (1 + Gaty) exp(ka) (21)

the impedances) can be found after continuity conditions 50 + G21G10¢0 + (2150 + Groco)t1
on A andu~'dA/dy are imposed at any layer's boundary. - gypstitution of the amplitudes (20, 21) in the impedance

An additional condition at infinitylim, ... A = 01eadsto  eypressions (8, 11) and integration over the horizontal wave
the field expression in the outermost medium: numberk leads to the final result. The integrals cannot be

evaluated analytically in general case, but they can be for
some specific cases. Anyway, their numerical evaluation is

sstraightforward: the integrals are regular and fast converg-

A, x el (16)

assumingReq > 0. Altogether, the presented equation
lead to an analytic expression for the impedance for arf{)9 exp(—2ka) atka > 1. _ _
number of layers. For a flat geometry, this expressions haveW.her1 the inside metal IS nop-magnetlc and the outside
a structure similar to the round case [4], with an obvioud'€dia is vacuum, the vertical impedance (8) can be pre-
complication: they are expressed as integrals over the h&gnted as
izontal wave vectorg. The integrals, however, are regular
and fast converging ata > 1.

In the next section, the impedances are found for an ar- )
bitrary two-layer structure, with a metallic layer inside angVherer = ratanh(xd), and|x|a > 1, which normally

Zop [ 2
2ma? /0 deinhﬁ(ﬁef + 7sinh§)’

79 =~ —i (22)

an arbitrary unbounded medium outside. covers the whole interesting area of parameters. Then, the
integral here can be approximated as
2 TWO-LAYER CHAMBER o0 2 7 1
/ § ~ T 23)
In this section, the impedance is found for an arbitrary /0 sinh{(€e® +7sinh &) 121+7/2

two-layer chamber with a flat symmetry. It is convenien{yith an accuracy better thdi¥ for arbitrary0 < 7 < cc.
here to use a subscripts2 for values related to the first or Thys,
g

second layer and introduge= ¢/ = vVk?2 + k%/p as a 7w ZyB 1
"medium parameter”. v T 9%ra2 1+ /2’

(24)



which is a factor ofr? /12 smaller than the impedance of a z* Resistive Impedances of Uncovered Magnet

similar round chamber with a radius e b |
Same considerations lead to the horizontal impedance 1t
2 Zoﬂ 1 05 - N
77 = —i— —— 25
m 224271'&214-7'/2’ (25) i
0.2 | T el
with the accuracy3% or better for any value of. This T T <l
accuracy gets to be absolute fors> 1. 01 1]
Note that the same form-factor$ /12 and 72 /24 de- S
scribe the ideal conductivity impedances of the flat chans- s
ber in comparison with the round one: ,
a
700 _ T 700 _ 72 (26) 0.001 0.01 0.1 1 10 100 M@
Yy 12 round xr 24 round *

If the outside medium is a low-conductive magnetid'9uré 2: Impedances of flat thick (uanovered)_magnetic
(o1 > 02, pz > 1), the same values of the form-factors""2aIIS \;thhu = 500, in units of Zy/(2ma”), as functions of
are exactly correct at = atanh(xd) > 1. For more @ /(1 0%) x w/u. The lines have similar meaning as for
details, the impedances are shown in Fig. (1) in units (ﬁ[g. (D). Calcqlaﬂons for the both figures are performed
ZofB/(2ma?) as functions ofud/s? o w. While at high With Mathematicg7]
frequenciesad/§? > 1, the vertical impedance domi-
nates over the horizontakiy = 277, at low frequencies impedances are located@t< w, = uc?/(2roa?) x p
it is not so any moreRe(Z7)/Re(Z7) o vad/§ < 1. and slowly go down as/w./w at higher frequencies. In-
The impedances are independent of the outer layer whefead, when the non-magnetic conductor covers this mag-

Vo[ < \/o1/p tanh(k:d). net, the frequency range can be significantly shrunk: the
. impedances are mainly at < ws = ¢?/(2rcad) « a/d
z Resistive Impedances of Covered Magnet and fall fasterex w9 /w, at higher frequencies.

G TR If the number of layers is more than 2, the described so-
05 oN lution can be obviously generalized in the same way as itis

' Zan done for the round geometry [4].
0.2 =
o1 N\ 3 CONCLUSIONS

0.05 - . For flat geometry of multi-layer vacuum chambers, the
resistive impedances can be calculated in the same way as
<l they are for the round case [4]. A method of calculations
N is described and applied for a two-layer structure. Several

ad limit cases are discussed in details.
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