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Abstract

Con�dence limits are common place in physics analysis. Great care must be taken in their

calculation and use especially in cases of limited statistics. We introduce the concept of statistical

errors of con�dence limits and argue that not only should limits be calculated but also their errors

in order to represent the results of the analysis to the fullest. We show that comparison of two

di�erent limits from two di�erent experiments becomes easier when their errors are also quoted.

Use of errors of con�dence limits will lead to abatement of the debate on which method is best

suited to calculate con�dence limits.
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�Electronic address: raja@fnal.gov
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I. INTRODUCTION

We introduce the concept of error of con�dence limits by a simple Gaussian example.

Consider a sample of n events, where n = 10, characterised by the variable x distributed as

a unit Gaussian, with a mean value � = 0 and standard deviation � = 1. Then the average

value �x of the n events will be distributed as a Gaussian of mean value zero and standard

error �/
p
(n). The unbiased estimate of �, the variance of the distribution is given by s

where,

s2 =
1

n� 1
�i=n

i=1 (x
2

i � �x2) (1)

Figure 1 shows the distribution �x of our sample of 10 events for a large number of samples.

The expected value �x is zero and its standard deviation is 0.32 which is consistent with

the theoretical value of �=
p
(n)=0.316. Figure 2 shows a histogram of s deduced from a

FIG. 1: The distribution of the sample average �x over a large sample of events.

sample of 10 events for a large number of such samples. The average value of s is � 1.0,

showing that s is an unbiased estimator of �. The important point to note is that s also has

a variance and that its standard deviation is 0:23. This is as expected from theory where
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the error on the standard deviation of a Gaussian sample [1] is � �=
p
(2n)=0.223. Having

FIG. 2: Unbiased estimate s of the standard deviation of the � of the Gaussian distribution deduced

from a sample of n = 10 events. The average value of s is � 1.0 and its standard deviation is 0.23.

got the value of �x and s for our sample, one can proceed to work out con�dence limits for

our observation. The two sided 68% CL limits for our observation of �x will be given by the

standard error �(�x) of �x and we would write the observation of �x from our sample as

�x� �(�x) = �x� s=
p
(n) = �0:188� 0:408 (2)

where the numbers correspond to our sample of 10 events. Note that the standard error

�(�x) = 0.408 derived from our sample of 10 events is quite di�erent from the theoretical

value of 0.32, but this is merely due to statistical 
uctuation.

One can also work out the two sided 90% CL limits for our observation of �x which would

correspond to �1:64 �(�x) and quote the 90% CL limits as �0:188�0:669, which is the value

observed for our sample of 10 events.

Figure 3 shows the distribution of the 90% CL two sided errors on the sample average,

over a large number of samples. The mean value of the distribution is 0.505 which is close to
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the theoretical value of 1.64 �(�x)=0.519. Note that the standard deviation of the 90% CL

errors in Figure 3 is 0.12. We can also calculate the standard deviation of the 90% CL limit

from our sample as 1.64 �(�x)=
p
(2n) and this is plotted in �gure 4. The mean value of

the standard deviation of the 90% CL �gure 4 is 0.113, in line with the theoretical value of

0.116. When the mean value is of interest, we quote the mean value and the standard error

FIG. 3: The distribution of the calculated two sided 90% CL errors of the mean value of the sample.

on the mean value as in equation 2. This enables us to gauge the 
uctuations in the mean

value from sample to sample. When the con�dence limit is of interest, we propose that we

quote the con�dence limit along with its standard error. This would enable us to gauge the

signi�cance and stability of the con�dence level. In our example we would write this as

�x� 1:64�(�x)� �90 < � < �x + 1:64�(�x)� �90 at 90% CL (3)

where � is the expectation value of �x and the standard error �90 on the 90% CL limit would

be given by

�90 � �(�x)
p
(1 + (1:64)2=(2n) (4)
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FIG. 4: The distribution of the calculated error on the two sided 90% CL error of the mean value

of the sample.

In our sample of 10 events, this would lead to

�0:857� 0:434 < � < 0:481� 0:434 at 90% CL (5)

Note that the error on the lower and upper 90% CL limits are correlated by the error on �x

which they have in common. Half the di�erence between the lower and uper 90 % CL limits

is 1:64�(�x) and its error is 1.64�(�x)=
p
(2n). These two errors added in quadrature yield the

formula in equation 4. The error in the 90% CL limit indicates to the reader the stability

of the limit and the statistical signi�cance of the result.

Very often, we are not interested in the mean value of our observations but are more

interested in the con�dence limits, due to the low statistics of the observation. We may only

be interested in an upper (one sided) bound. So we would quote a 95% CL upper bound on

� as

� < 0:481� 0:434 at 95% CL (6)
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A second sample of 10 events from the same distribution may yield a result

� < 0:354� 0:335 at 95% CL (7)

but we do not fall into the trap of declaring the second result a better limit than the �rst,

because both the limits are the same within errors. If we did not quote the errors on the

limits, we would be tempted to declare the second limit superior to the �rst.

Similarly, as analyses proceed in discovery searches, events can go in and out of samples,

as cuts are re�ned and more data is accumulated. Appearance of a single event in a sample

can change the con�dence limit drastically, as was the case in the search for the top quark.

These changes can be understood as 
uctuations of the con�dence limit within errors, if we

were to quote not only the con�dence limit but also its error.

II. AN ILLUSTRATIVE EXAMPLE

We can illustrate the need for con�dence limits errors using the following example. In

1995, the D� collaboration published limits on the top quark mass and cross section [2].

Figure 5 shows [2] the 95% CL upper limit on top quark production as a function of top

quark mass using 13.5 pb�1 of data. The con�dence limit curve is used to derive a lower

limit of 128 GeV/c2 for the top quark mass at 95% CL. In the same paper, another �gure,

reproduced here as (Figure 6) shows the top quark production cross section as a function

of the top quark mass. This curve has a 1 � error band around it. But the top quark

production cross section may be thought of as the 50% CL upper/lower bound on the cross

section. Surely, if the 50% CL limit has an error band around it, the 95% CL limit should

also have its own error band. In what follows, we show how to calculate errors in con�dence

levels in general and use the method to calculate the error in the 95% CL curve shown in

Figure 5.

III. A GENERAL ALGORITHM TO CALCULATE ERRORS IN CONFIDENCE

LIMITS

Most experiments have elaborate algorithms to calculate con�dence limits for their re-

sults. Such algorithms will include detailed calculations and parametrizations of eÆciencies
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FIG. 5: The 95% con�dence level [2] on �t�t as a function of top quark mass. Also shown are central

(dotted line) and low (dashed line) theoretical cross section curves [3].
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FIG. 6: Measured t�t production cross section (solid line, shaded band = one standard deviation

error) as a function of top mass [2]. Also shown are central (dotted line), high and low (dashed

lines) theoretical cross section curves [3].

and acceptances. In addition, they will have several other input parameters such as the

number of events observed, total integrated luminosity and the error on the luminosity. Let

us denote the input parameters as ai; i = 1; n. The output of such a program will be the
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con�dence limits C�; � = 1; k. Figure 7 illustrates this general case. Then, for small changes

FIG. 7: Schematic \black box" representation of a general con�dence limit calculating algorithm,

that has input parameters a1; a2::a4 and outputs a con�dence level C in a single variable.

in the input parameters, the following equations hold.

ÆC� =
ÆC�

Æai
Æai (8)

< ÆC�ÆC� >=
ÆC�

Æai

ÆC�

Æaj
< ÆaiÆaj > (9)

where the repeated indices i; j are meant to be summed over and the symbols <> indicates

the average over the enclosed quantities. The quantity on the left hand side of the equation

is the error matrix in the con�dence limits C�, denoted ECC . The above equation can be

re-written in matrix form as

ECC = ~TEaaT (10)

where Eaa is the error matrix of the input parameters ai; i = 1; n and T is the transfer matrix,

such that T�;i =
ÆC�

Æai
. T can be determined numerically by varying the input parameters to

the limits algorithm. The error matrix Eaa should be known to the experimenter, yielding

the required error matrix ECC .

A. An Example

Let us consider the calculation of C, the 95% CL upper limit to the top quark cross

section as published in reference [2]. The output of the limits algorithm is C. The input
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parameters can be taken as three, namely a1, the total number of top quark events observed,

a2, the luminosity�eÆciency�branching ratio of the channels under consideration, summed

over the channels and a3, the error in the luminosity. We have used a single parameter a2

summed over the channels to simplify the calculation. In principle, all channels may be

varied independently, but since they are uncorrelated, and the dominant error is due to the

common luminosity factor, the above simpli�cation will result. We use this example for

illustrative purposes to show how such a calculation may proceed.

The error matrix of the parameters Eaa is a 3�3 diagonal matrix, since the parameters

are uncorrelated. The variance of a1 is the number of events observed, the variance of a2 is

calculated using the error in luminosity, and the variance of a3 is calculated assuming that

there is a 50% uncertainty in the error in the luminosity. The transfer matrix T is calculated

by numerical di�erentiation.

Figure 8 shows the contribution to �C , the error in the 95% CL upper limit to the cross

section, due to the three parameters a1, a2 and a3 as a function of the top quark mass. The

overall error �C , obtained by adding the component errors in quadrature, is also shown as

a function of the top quark mass. It can be seen that the contribution due to uncertainties

in a1, is negligible. So we are not sensitive to errors in our guess of 50% uncertainty to

the error in the luminosity. The overall error is dominated by the 
uctuation in the total

number of events. This example thus graphically illustrates why con�dence limits 
uctuate

up and down as events fall in and out of the selected sample as the analysis proceeds and

more data is accumulated. The 95% CL upper limit to the cross section is merely 
uctuating

within its error as all statistical quantities do. When we are interested in a con�dence limit,

it thus behooves us to compute not only that limit but also its error. We may superimpose

these errors on Figure 5 yielding Figure 9. The 95% CL lower limit to the top quark mass

can then be quoted as 128+14
�18 GeV/c

2, the error bars indicating the range of 
uctuation for

the mass limit. This implies that if one were to repeat the D� experiment numerous times

with an integrated luminosity of 13.5 pb�1 
uctuating within its errors, one would expect

to get a top quark lower mass limit that 
uctuates within the errors quoted.
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FIG. 8: The components of �C , the error in the 95% CL top quark cross section upper limit, due to

uncertainties in (a) error in luminosity (b) Luminosity�eÆciency�branching ratio (c) The overall

number of events observed as a function of top quark mass. (d) shows the overall error �C .

IV. COMBINING LIMITS

Combining limits from two di�erent experiments is diÆcult at best. We remark here that

in simple Gaussian cases, quoting the limit and its error provides us with enough information

to make a combined result, as may be seen by examining equations 3 and 4. Using the value

of the limit and its error, we may deduce �x and �(�x), if the number of events n in the sample

(the dependence on n in equation 4 is weak and may be neglected for large enough n) is

known. Having the mean and its variance in each case, we can combine the results to get a

new limit. One can also ask if the two limits are consistent with each other, if the errors on

the limits are quoted.

10



FIG. 9: The D� 95% CL upper limit to the top quark cross section [2] with its accompanying error

band, as calculated by the method in the text.

V. COMPARING LIMITS FROM TWO DIFFERENT ALGORITHMS

When two di�erent algorithms are used on the same data, two di�erent limits will result

that are correlated. The correlations will be due to the common input into the two algo-

rithms. We can think of the \black box" in Fig. 7 as consisting of two di�erent algorithms

producing as output C1 and C2, the two con�dence levels in question, using the same com-

mon input ai; i = 1; n. We can then use equation 10 to work out ECC , the error matrix of

the two con�dence level algorithms and use this matrix to decide whether the two con�dence

levels are signi�cantly di�erent from each other.

VI. CONCLUSIONS

We have motivated the concept of statistical error for a con�dence limit. In cases of lim-

ited statistics, our estimates of the con�dence limits can 
uctuate signi�cantly. Comparing

con�dence limits is only meaningful if these errors are quoted. Di�erent methods exist (e.g

Bayesian, Frequentist) for calculating these limits. The di�erences between limits computed

in the same experiment using di�erent methods will lose their signi�cance if the limits are
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accompanied by their error. Often in analyses with limited statistics, the appearance of a

new event can make signi�cant di�erences to the limit calculation. An error analysis of the

limit will show that the limit is exhibiting statistical 
uctuation as it is entitled to. We

propose that experimenters publish con�dence limits to their data accompanied by the error

on the limits.
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